مطالب مرتبط با کلیدواژه

شناسایی ساختمان


۱.

شناسایی و استخراج اتوماتیک عارضه ساختمان با ساختار هندسی پیچیده از تصاویر هوایی و داده لیدار به صورت پیکسل مبنا و شیء مبنا(مقاله علمی وزارت علوم)

کلیدواژه‌ها: شناسایی ساختمان استخراج ساختمان لیدار طبقه بندی قطعه بندی

حوزه‌های تخصصی:
تعداد بازدید : ۶۳۵ تعداد دانلود : ۵۱۶
روش های اتوماتیک شناسایی و استخراج عارضه ساختمان از منابع گوناگون اطلاعاتی همچون تصاویر هوایی و ماهواره ای و داده های لیدار دارای کاربردهای بسیار وسیع و مهم مانند به روزرسانی نقشه ها، مدلسازی و آنالیز رشد و پیشرفت در مناطق شهری و نیمه شهری به دست می آید. هدف اصلی مقاله طرح روش جدید اتوماتیک استخراج ساختمان با تلفیق داده های لیدار و تصویر هوایی است. برا ی این منظور در مرحله اول، انواع روش های شناسایی ساختمان (SVM 1 ، MD 2 و ANN 3 ) در دو سطح پیکسل پایه و شیء مبنا بررسی و ارزیابی شد. نتایج حاصل از شناسایی حاکی از توانایی بالای روش SVM، در مقایسه با دیگر روش ها، در دو سطح پیکسل پایه و شیء مبناست که دقت کلی 95.9٪ و خطای نوع اول 6.2٪ و خطای نوع دوم 3.2٪ را نشان می دهد که در حالت پیکسل مبنا به منزله روش منتخب شناسایی است. در مرحله دوم، براساس روش منتخب شناسایی مرز دقیق ساختمان بازسازی می شود. بنابراین با استفاده از قطعه بندی برمبنای طیفی و هندسی، لبه هر ساختمان به صورت قطعات مجزا تفکیک شد. سپس لبه های هر ساختمان براساس معادلات کمترین مربعات بازسازی می شود. نتایج روش پیشنهادی استخراج ساختمان با دقت کلی 96.85٪ ، خطای نوع اول 5.9٪ و خطای نوع دوم 2.5٪ برای الگوریتم پیشنهادی استخراج است.
۲.

راهکاری مبتنی بر شبکه های عصبی کاملاً کانوولوشنی برای تشخیص هم زمان جاده ها و ساختمان ها در تصاویر هوایی(مقاله علمی وزارت علوم)

کلیدواژه‌ها: یادگیری عمیق شبکه های عصبی مصنوعی شبکه های عصبی کانوولوشنی تصاویر هوایی شناسایی جاده شناسایی ساختمان شناسایی عوارض طبیعی هوش مصنوعی

حوزه‌های تخصصی:
تعداد بازدید : ۳۴۹ تعداد دانلود : ۲۳۶
توسعه سیستم های خودکار تشخیص جاده و ساختمان در تصاویر هوایی همواره با چالش های مهمی مانند متفاوت بودن ظاهر ساختمان ها، تغییرات روشنایی، زاویه تصویربرداری و فشرده و چگال بودن جاده ها و ساختمان ها در نواحی شهری روبه روست. در چند سال اخیر، استفاده از شبکه های عصبی مصنوعی چندلایه (شبکه های عصبی عمیق) مورد توجه بسیاری از پژوهشگران این حوزه (و حوزه های مشابه) قرار گرفته و نتایج خیره کننده ای با به کارگیری آنها حاصل شده است. باوجوداین، به دلیل استفاده از لایه های کاملاً متصل در راهکار های داده شده، میانگین مدت زمان پردازش هنوز بسیار زیاد است و مدل ساخته شده نیز به سرعت دچار پدیده بیش برازش می شود. علاوه براین، در بیشتر روش های پیشنهادی، برای تفسیر تصاویر هوایی براساس چنین راهکاری از رویکرد تک کلاس استفاده شده است. به عبارتی، تشخیص جاده ها و ساختمان ها از عوارض طبیعی به طور هم زمان امکان پذیر نیست و لازم است مدل های جداگانه ای برای تشخیص هریک از آنها ایجاد شود. هدف اصلی، در این پژوهش، طراحی معماری جدیدی است که مدل ساخته شده با استفاده از آن بتواند، هم زمان، جاده ها و ساختمان ها را از عوارض طبیعی تشخیص دهد و به این ترتیب، پیچیدگی عمل طبقه بندی را به حداقل برساند. همچنین، در طراحی معماری پیشنهادی، حذف لایه های کاملاً متصل از معماری چندلایه ای مرسوم و در نتیجه، کاهش میانگین مدت زمان پردازش مورد توجه قرار گرفته است. نتایج آزمایش های انجام گرفته روی بانک تصاویر هوایی ماساچوست نشان می دهد عملکرد معماری پیشنهادی %۳۸ سریع تر از دیگر روش های مبتنی بر شبکه های عصبی چندلایه بوده است و دقت تشخیص را به طور میانگین، %۲ افزایش می دهد.