مطالب مرتبط با کلیدواژه

MLC


۱.

ارزیابی عملکرد الگوریتم های ماشین بردار پشتیبان و حداکثر احتمال در تهیة نقشة کاربری اراضی جنگل های رودخانه ای با استفاده از سنجندة OLI (منطقة مورد مطالعه: جنگل های رودخانه ای مارون بهبهان)(مقاله علمی وزارت علوم)

کلیدواژه‌ها: SVM MLC جنگل های رودخانه ای سنجندة OLI طبقه بندی مارون بهبهان

حوزه های تخصصی:
  1. حوزه‌های تخصصی جغرافیا جغرافیای طبیعی آب و هواشناسی
  2. حوزه‌های تخصصی جغرافیا فنون جغرافیایی سنجش از راه دور GIS
تعداد بازدید : ۶۲۴ تعداد دانلود : ۵۴۸
تهیة اطلاعات دقیق و به روز از منابع جنگلی یکی از عوامل اساسی در مطالعه و مدیریت پایدار این منابع است و این اطلاعات را می توان به آسانی و با صرف هزینه و زمان کمتر، از راه طبقه بندی داده های دورسنجی تهیه کرد. در این مطالعه به منظور ارزیابی عملکرد الگوریتم های ماشین بردار پشتیبان و حداکثر احتمال در تهیه نقشه کاربردی اراضی جنگل های رودخانه ای، از داده های ماهواره لندست 8 استفاده شد. برای این کار، پنجره ای از تصاویر چندطیفی سنجندة OLI جنگل های رودخانة مارون بهبهان، در استان خوزستان، انتخاب شد. پس از عملیات پیش پردازش، شامل رفع خطای رادیومتریک و تصحیح اتمسفریک، طبقه بندی تصاویر به روش نظارت شده و با استفاده از الگوریتم های حداکثر احتمال و ماشین بردار پشتیبان و با هفت کلاس کاربری جنگل، مرتع، کشاورزی، آیش، رودخانه، مسکونی و جاده، و همچنین سه کلاس کاربری جنگل، رودخانه و دیگر مناطق، روی مجموعة باندهای اصلی صورت پذیرفت. برای ارزیابی عملکرد الگوریتم ماشین بردار پشتیبان، از سه گروه نمونة تعلیمی با تعداد 241، 141 و 41 نمونه و همچنین از چهار هستةخطی، چندجمله ای، شعاعی و حلقوی استفاده شد. نتایج حاصل نشان داد که تهیة نقشة طبقه بندی جنگل های رودخانه ای مارون و تفکیک کاربری ها با استفاده از تصاویر سنجندة OLI امکان پذیر است و بهترین نتیجه مربوط به طبقه بندی، با استفاده از الگوریتم - PolynomialSVM در باندهای اصلی سنجندة OLI و با سه کلاس کاربری و صحت کلی 24/99 و ضریب کاپای 97/0 است. همچنین مشخص شد که با کاهش تعداد کلاس ها از هفت به سه، کاربری صحت طبقه بندی افزایش می یابد ولی با کاهش تعداد نمونه ها تا حد میانگین، تغییر محسوسی در کیفیت طبقه بندی رخ نمی دهد و در صورت کاهش زیاد تعداد نمونه ها، از صحت طبقه بندی نیز کاسته می شود.