حمیدرضا باباعلی

حمیدرضا باباعلی

مطالب
ترتیب بر اساس: جدیدترینپربازدیدترین

فیلترهای جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۲ مورد از کل ۲ مورد.
۱.

شبیه سازی سطح آب زیرزمینی دشت سلسله استان لرستان با استفاده از الگوریتم های فراکاوشی نوین(مقاله علمی وزارت علوم)

کلیدواژه‌ها: افت سطح آب رگرسیون بردار پشتیبان دشت سلسله استان لرستان

حوزه‌های تخصصی:
تعداد بازدید : ۳۴ تعداد دانلود : ۳۶
در سال های اخیر افت منابع آب زیرزمینی به عنوان مهم ترین چالش در مسائل مدیریت منابع آب مطرح است. اولین گام در جهت مدیریت آب زیرزمینی، ش بیه سازی سطح آب زیرزمینی و شناسایی عوامل مؤثر بر سطح آب زیرزمینی است. از این رو در این پژوهش جهت شب یه سازی سطح آب زیرزمینی دشت سلسله واقع در استان لرستان از مدل ترکیبی رگرسیون بردار پشتیبان (SVR) با موجک و الگوریتم های فرا ابت کاری گرگ خاک ستری (GWO) و خفاش (BA) در مقیاس زمان ی ماهانه طی دوره ی آماری 2020-2010 استفاده ش د. م عیارهای ضریب همبستگی (R2)، م جذور میانگین مربعات خطا (RMSE) ، میانگین مطلق خطا (MAE)، ضریب بهره وری نش-ساتکلیف (NSE)، درصد بایاس (PBIAS) برای ارزیابی و مقایسه ی عملکرد مدل ها مورد استفاده قرار گرفت. نتایج نشان داد هر سه مدل هیبریدی، در الگوهای ترکیبی نتایج بهتری نسبت به سایر الگوهای تعیین شده دارند. همچنین، با توجه به معیارهای ارزیابی مشخص شد که از بین مدل های به کاررفته در شبیه سازی سطح آب زیرزمینی، مدل رگرسیون بردار پشتیبان-موجک با ضریب تعیین (988/0-975/0R2=)، ری شه ی میانگین مربعات خطا (146/0-112/0RMSE=)، میان گین قدرمطلق خطا (m093/0-076/0MAE=) ضریب نش ساتکلیف (978/0-963/0NS=) و درصد بایاس (001/0PBIAS=) در مرحله ی صحت سنجی عملکرد بهتری نسبت به سایر مدل ها از خود نشان داده است.
۲.

پیش بینی دبی سیلابی با استفاده از شبکه ی عصبی موجک(مقاله علمی وزارت علوم)

کلیدواژه‌ها: دبی سیلابی شبکه ی عصبی موجک شبکه ی عصبی مصنوعی الشتر

حوزه‌های تخصصی:
تعداد بازدید : ۳۲ تعداد دانلود : ۴۱
سیل یکی از بلایای طبیعی مهمی است که همه ساله باعث ایجاد خسارت های مالی و جانی فراوانی به جوامع مختلف می گردد. به همین دلیل محققان سعی نموده اند که تغییرات کمی این پدیده را حتی المقدور به طور دقیق مورد بررسی قرار دهند. در این پژوهش جهت تخمین دبی سیلابی ایستگاه کهمان الشتر واقع در استان لرستان از مدل شبکه ی عصبی موجک استفاده شد و نتایج آن با سایر روش های هوشمند از جمله شبکه ی عصبی مصنوعی مقایسه گردید. برای این منظور از پارامتر حداکثر بارش 24 ساعته در مقیاس زمانی روزانه با تأخیرهای مختلف در طی دوره ی آماری (1391-1380) به عنوان ورودی و دبی حداکثر روزانه به عنوان پارامتر خروجی مدل ها انتخاب گردید. معیارهای ضریب همبستگی، ریشه ی میانگین مربعات خطا و میانگین قدرمطلق خطا برای ارزیابی و عملکرد مدل ها مورد استفاده قرار گرفت. نتایج نشان داد هر دو مدل قابلیت خوبی در تخمین دبی سیلابی دارند، لیکن از لحاظ دقت، مدل شبکه ی عصبی موجک عملکرد بهتری نسبت به شبکه ی عصبی مصنوعی از خود نشان داده است.

کلیدواژه‌های مرتبط

پدیدآورندگان همکار

تبلیغات

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان