رسول آتشی دلیگانی

رسول آتشی دلیگانی

مطالب

فیلتر های جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۱ مورد از کل ۱ مورد.
۱.

بهبود دقت برآورد غلظت ازن در سطح زمین با استفاده از محصولات ماهواره ای و یادگیری ماشین(مقاله علمی وزارت علوم)

کلیدواژه‌ها: غلظت ازن یادگیری ماشین رگرسیون خطی چندمتغیّره شبکه عصبی بازگشتی آلاینده جوّی

حوزه های تخصصی:
تعداد بازدید : ۷۴ تعداد دانلود : ۶۹
ازن نزدیک به سطح زمین یکی از آلاینده های بسیار خطرناک است که تأثیرات زیان بار درخور توجهی در سلامت ساکنان مناطق شهری دارد. هدف از این مطالعه شناسایی عوامل مؤثر در غلظت ازن و مدل سازی تغییرات آن، با استفاده از داده های ماهواره ای و روش های گوناگون یادگیری ماشین در شهر تهران است. بدین منظور داده های غلظت آلاینده ها، داده های هواشناسی و دمای سطح خاک، طی بازه زمانی بین سال های 2015 تا 2021، به کار رفت. پس از محاسبه همبستگی بین غلظت ازن و پارامتر های مستقل، طی پنج حالت متفاوت، با پارامترهای ورودی و روش یادگیری متفاوت و به کارگیری پالایش داده ها، غلظت ازن مدل سازی شد. در حالت اول و دوم، مدل سازی با استفاده از داده های غلظت آلاینده ها و داده های هواشناسی با روش رگرسیون خطی چندمتغیره انجام شد. تنها تفاوت این دو حالت، پالایش داده های ورودی به شیوه WTEST در روش دوم است. در حالت سوم، دمای سطح خاک به داده های ورودی افزوده شد و در حالت چهارم و پنجم، به ترتیب مدل سازی ازن با استفاده از شبکه عصبی چندلایه ای و شبکه عصبی بازگشتی انجام شد. مقایسه این حالت ها نشان داد که مدل سازی های مراحل اول تا پنجم، به ترتیب با ضریب تعیین تعدیل شده 5/0، 64/0، 69/0، 74/0 و 8/0 توانایی بازیابی غلظت ازن را داشته اند. همچنین مشخص شد در بین آلاینده های گوناگون، مونوکسید نیتروژن، دی اکسید نیتروژن، نیتراکس و از میان داده های هواشناسی دما، رطوبت و سرعت باد بیشترین تأثیر را در غلظت ازن دارند. افزودن دمای سطح خاک به داده های ورودی نیز افزایش پنج درصدی دقت را در برآورد غلظت ازن، به همراه داشت.

کلیدواژه‌های مرتبط

پدیدآورندگان همکار

تبلیغات

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان