احسان حقوقی فرد

احسان حقوقی فرد

مدرک تحصیلی: دانشجوی کارشناس ارشد مدیریت شهری، دانشکده اقتصاد و مدیریت، دانشگاه آزاد اسلامی واحد شیراز

مطالب

فیلتر های جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۱ مورد از کل ۱ مورد.
۱.

بهبود طبقه بندی منطقه شهری با استفاده از تلفیق تصاویر اپتیک چندباندی و لایدار با قدرت تفکیک مکانی بالا(مقاله علمی وزارت علوم)

کلیدواژه‌ها: مناطق شهری تصاویر اپتیک و لایدار تلفیق در سطح ویژگی الگوریتم ژنتیک ماشین بردار پشتیبان

حوزه های تخصصی:
تعداد بازدید : ۴۲۱ تعداد دانلود : ۲۹۷
امروزه با گسترش مناطق شهری تولید اطلاعات دقیق و به روز از جمله اطلاعات اساسی، به منظور مدیریت و برنامه ریزی شهرها است. گسترش روز افزون تکنولوژی سنجش از دور امکان استخراج اطلاعات متنوع از پوشش های شهری را فراهم آورده که موجب جلب توجه محقق های فراوانی به این موضوع شده است. وجود عوارض متنوع و نیز کاربری های مختلف اطلاعات مکانی مناطق شهری، تلفیق منابع داده مختلف به منظور شناسایی عوارض را به امری کاربردی مبدل کرده است. هدف این تحقیق تلفیق ویژگی های بهینه استخراج شده از داده های اپتیک و لایدار به منظور شناسایی عوارض شهری در منطقه مورد مطالعه می باشد. در این راستا ویژگی های مختلفی از هر یک از این داده ها استخراج شده است. از جمله این ویژگی ها می توان به ویژگی های رنگی، شاخص گیاهی و بافت از تصویر اپتیک و ویژگی های نرمی، مدل ارتفاعی رقومی نرمال و زبری از تصویر لیدار اشاره نمود. سپس به منظور انتخاب ویژگی های بهینه از الگوریتم ژنتیک استفاده شده است. در انتها با استفاده از روش طبقه بندی کننده ماشین بردار پشتیبان به شناسایی عوارض مورد نظر پرداخته شده است. دقت طبقه بندی کننده الگوریتم ماشین بردار پشتیبان در منطقه مورد مطالعه با استفاده از ویژگی های بهینه و داده های اولیه 734/88 محاسبه شده که نسبت به طبقه بندی داده اولیه اپتیک چندباندی دارای بهبود 438/25 درصدی و نسبت به طبقه بندی داده اولیه لایدار دارای بهبود 236/18 درصدی است. نتایج بررسی نشان دهنده افزایش دقت طبقه بندی با استفاده از ویژگی های بهینه در کنار باندهای اولیه است.

کلیدواژه‌های مرتبط

پدیدآورندگان همکار

تبلیغات

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان