فرامرز سرمدی

فرامرز سرمدی

مدرک تحصیلی: دانشجوی کارشناسی ارشد سنجش از دور، دانشکده مهندسی نقشه برداری، دانشگاه صنعتی خواجه نصیرالدین طوسی

مطالب

فیلتر های جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۱ مورد از کل ۱ مورد.
۱.

آشکارسازی تغییرات مناطق شهری مبتنی بر شبکه های عصبی، ویژگی های مکانی و الگوریتم ژنتیک با استفاده از تصاویر ماهواره ای بزرگ مقیاس(مقاله علمی وزارت علوم)

کلیدواژه‌ها: آشکارسازی تغییرات گسترش شهر ویژگی های مکانی شبکه های عصبی الگوریتم ژنتیک

حوزه های تخصصی:
تعداد بازدید : ۴۱۸ تعداد دانلود : ۲۵۴
آشکارسازی تغییرات پوشش اراضی برای پایش رشد شهرها و برنامه ریزی مسئولانه در مورد آنها امری ضروری است. سنجش از دور فناوری قدرتمندی است که می توان از آن در آشکار سازی تغییرات اراضی استفاده کرد. یکی از چالش های موجود در این زمینه توسعة روش های کارآمد به منظور آشکار سازی تغییرات با سطح خودکارسازی بالاست که بتواند اطلاعاتی صحیحی در مورد موقعیت جغرافیایی و ماهیت این تغییرات ارائه کند. در پژوهش حاضر با استفاده از دو تصویر GeoEye منطقة 17 شهر تهران مربوط به سال های 2004 و 2010 از ویژگی های مکانی متن تصویر، شبکه های عصبی و الگوریتم ژنتیک برای آشکار سازی تغییرات استفاده شد. شش حالت مختلف، هریک با دو رویکرد طبقه بندی مستقیم چندزمانی و مقایسة پس از طبقه بندی، از دیدگاه صحت آشکارسازی و زمان اجرای الگوریتم مورد مقایسه قرار گرفتند. بررسی های انجام شده نشان دادند که رویکرد طبقه بندی مستقیم چندزمانی در هر شش حالت نتایج بهتری ارائه کرده است. همچنین در بین شش حالت بررسی شده، عملکرد حالت ششم (روش پیشنهادی این تحقیق) از نظر صحت طبقه بندی بهتر است. در حالت ششم پس از انتخاب بهینة ویژگی ها، طبقه بندی مبتنی بر شبکه های عصبی با تعیین معماری شبکه و با چندین بار اجرا صورت می گیرد. هرچند زمان اجرای این روش درمقایسه با دیگر حالت های بررسی شده بیشتر است، اما درصورتی که صحت طبقه بندی به زمان ارجحیت داشته باشد این روش کاملاً توصیه می شود

کلیدواژه‌های مرتبط

پدیدآورندگان همکار

تبلیغات

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان