آرشیو

آرشیو شماره‌ها:
۴۲

چکیده

کربن سیاه (BC) یکی از اجزای مهم ذرات ریز معلق در هواست که تأثیر قابل توجهی بر آب و هوا و سلامت انسان دارد و فعالیت های انسانی همراه با شرایط آب و هوایی بر تغییرپذیری آن در طولانی مدت تأثیر می گذارد. از این رو، مطالعه حاضر به بررسی روابط آماری بین پارامترهای هواشناسی (دما، بارش، سرعت باد، رطوبت نسبی، فشار هوا، ساعات آفتابی، تابش خورشیدی و ابرناکی)، آلاینده های معیار هوا (CO، NO2، SO2، O3، PM10 و PM2.5) و آلاینده کربن سیاه و همچنین ارزیابی و مقایسه کارایی پنج الگوریتم یادگیری ماشین (رگرسیون خطی چندگانه (MLR)، مدل جمعی تعمیم یافته (GAM)، درخت طبقه بندی و رگرسیون (CART)، جنگل تصادفی (RF) و تقویت گرادیان (GBM)) در مدلسازی آلاینده ها و عوامل آب و هوایی مؤثر در تغییرات سطح غلظت آلاینده کربن سیاه در تبریز و تهران (2021 -2004) با استفاده از نرم افزار R 4.3.2 پرداخته است. نتایج مطالعه ی حاضر بیانگر تفاوت آشکار تأثیر پارامترهای هواشناسی و آلاینده های جوی معیار بر سطح غلظت آلاینده کربن سیاه در تبریز و تهران به دلیل موقعیت جغرافیایی، شرایط آب و هوایی و ساختار منطقه ای متفاوت این شهرها است. ذرات کربن سیاه روند صعودی معناداری را با سرعت نسبتاً برابر در طول دوره آماری مورد مطالعه در شهرهای تبریز و تهران تجربه کرده اند. بر اساس یافته های حاصل از تحلیل همبستگی اسپیرمن، ذرات کربن سیاه دارای همبستگی مثبت با آلاینده های PM2.5، NO2، CO و SO2 و همبستگی منفی با O3 است. آلاینده کربن سیاه دارای بیشترین همبستگی با پارامترهای سرعت باد (منفی) و رطوبت نسبی (مثبت) در تبریز و پارامترهای دما (منفی) و فشار هوا (مثبت) در تهران است. بر اساس ارزیابی عملکرد مدل های پیشگو و با توجه به اصل صرفه جویی، در تبریز مدل GAM و در تهران مدل مبنای MLR از عملکرد بهتری در پیش بینی مقادیر کربن سیاه نسبت به سایر مدل ها برخوردار بودند.

Investigating the effects of criteria air pollutants and meteorological parameters on the change of black carbon concentration in Tehran and Tabriz

Black carbon (BC) is a primary component of fine particulate matter which has a significant effect on climate and human health, and anthropogenic activity along with weather conditions affects its long-term variability. This study aimed to investigate the statistical relationships between meteorological elements (temperature, rainfall, wind speed, relative humidity, air pressure, sunshine hours, solar radiation, and cloudiness), criteria air pollutants (CO, NO2, SO2, O3, PM10, and PM2.5) and black carbon particles (BC), as well as assess and compare the efficacy of five different machine learning algorithms (multiple linear regression (MLR), generalized additive model (GAM), classification and regression trees (CART), random forest (RF) and gradient boosting machine (GBM)) in modeling pollutants and climatic factors responsible for variations in black carbon concentration levels in Tabriz and Tehran from 2004 to 2021 using R 4.3.2 software. The results of the present study showed a significant variation in the influence of meteorological parameters and criteria air pollutants on the level of black carbon pollutant concentration in Tabriz and Tehran depending on the different geographical locations, weather conditions, and regional structure. Black carbon particles have experienced a significant upward trend with a relatively equal speed during the statistical period studied in the cities of Tabriz and Tehran. Based on the results of Spearman's correlation analysis, black carbon particles have a positive correlation with PM2.5, NO2, CO, and SO2 and a negative correlation with O3. Black carbon was highly correlated with parameters of wind speed (negatively) and relative humidity (positively) in Tabriz and temperature (negatively) and air pressure (positively) in Tehran. Based on the performance evaluation of predictive models and concerning the parsimony principle, the GAM model in Tabriz and the MLR model in Tehran had better performance in predicting black carbon values than other models.

تبلیغات