چکیده

به طور کلی هدف اصلی تحقیق حاضر بررسی تاثیر حضور تصاویر راداری در طبقه بندی تصاویر ماهواره-ای چند زمانه اپتیکی در الگوریتم های طبقه بندی مبتنی بر یادگیری ماشینی، شامل جنگل تصادفی (Random Forest)، درخت تصمیم کارت (CartDecision Tree) و ماشین بردار پشتیبان (Support Vector Machine) می باشد. در تحقیق حاضر ابتدا اطلاعات شاخص طیفی تفاضل نرمال شده گیاهی(NDVI) به همراه لایه های شیب، مدل رقومی ارتفاعی و یک تصویر اصلی تصحیح شده ماهواره Sentinel-2 توسط سه روش اشاره شده به صورت نظارت شده مورد آموزش و طبقه بندی قرار گرفت. سپس فرآیند طبقه بندی با حضور تصاویر راداری ماهواره Sentinel-1 مجدداً انجام گردید. در نهایت طی عملیات پس پردازش با استفاده از فیلتر بیشترین فراوانی پیکسل های منفرد به کلاس های همسایه الصاق شده و نتایج نهایی با داده های زمینی مورد صحت سنجی قرار گرفت. نتایج نشان داد در بررسی تمام کلاس ها، دقت کل و ضریب کاپا در حالت حضور داده های راداری و برای هر سه روش طبقه بندی تنها 3 درصد بهبود یافته است اما در بررسی یک به یک کلاس ها مشاهده می شود دقت تولید کننده روش جنگل تصادفی در کلاس کشت مجدد بهبود قابل توجهی داشته و مقدار آن از 74/0 به 84/0 رسیده است. در روش ماشین بردار پشتیبان نیز کلاس های دیم و باغات بهبود محسوس تری داشته اند که به ترتیب از 75/0 و 78/0 به 84/0 و 92/0 افزایش یافته است. نهایتاً می توان چنین عنوان کرد که اضافه کردن تصاویر راداری به عمل طبقه بندی تنها در کلاس های مربوط به اراضی کشت مجدد، دیم و باغات تاثیر مثبت و قابل توجهی دارد و نیز برتری کاملاً محسوس روش جنگل تصادفی در مقایسه با روش های دیگر مشهود است.

متن

Investigating the effect of radar images in classifying land use classes in machine learning based algorithms

Acquiring knowledge about the types of land uses and the stages of their change provides basic and very important information to researchers and decision makers. One of the most common and useful methods in remote sensing is to access the maximum information contained in satellite data by combining radar and optical satellite images. In general, the main purpose of this study was to investigate the effect of the presence of SAR images in the classification of optical multi-temporal satellite images in machine learning-based classification algorithms, including random forest, Cart Decision Tree and Support Vector Machine. In the above paper, the Normalized Difference Vegetation Index (NDVI) dataset, along with slope layers, a digital elevation model and a corrected Sentinel-۲ satellite image was supervised by the three methods mentioned. Once again, this was done with the presence of the Sentinel-۱ satellite SAR image database. Finally, in the post-processing stage, the individual pixels were connected to neighboring classes. This was done by majority filtering. The final results were validated with ground data. The results showed that in the study of all classes, the overall accuracy and kappa coefficient in the presence of SAR dataset and for all three classification methods improved by only ۳%, but in the one-to-one study of the classes, the producer accuracy of the random forest method in the dual agriculture class improved. It has been significant and its value has increased from ۰.۷۴ to ۰.۸۴. In the support vector machine method, dry farming and orchard classes have had a more significant improvement, which have increased from ۰.۷۵ and ۰.۷۸ to ۰.۸۴ and ۰.۹۲, respectively. Finally, it can be said that the addition of radar images to the classification has a positive and significant effect only in the mentioned classes, and also the obvious advantage of the random forest method compared to other methods is quite obvious.

تبلیغات