آرشیو

آرشیو شماره‌ها:
۶۱

چکیده

یک سیستم رودخانه­ای یک سیستم بازاست که از درگیر شدن ارتباطات مختلف و پیچیده شکل می گیرد. خصوصیات ذاتی حوضه ها از یک سو و عوامل خارجی از سوی دیگر رفتارهای رودخانه را متاثر می سازد.وجود ارتباطات متقابل متعدد از جمله ارتباطات جریان ورسوب حمل شده وتاثیر عوامل ژئومورفولوژی حوضه و مدل سازی آن از اهمیت ویژه ای برخوردار است.در این مطالعه دونوع شبکه عصبی مصنوعی ژئومورفولوژیکی و غیر ژئومورفولوژیکی برای پیش بینی بار رسوب جریان رودخانه سمندگان طراحی گردید و نتایج آن با دو نوع مدل رگرسیونی ژئومورفولوژیکی و غیر ژئومورفولوژیکی مورد مقایسه قرار گرفت. نتایج طراحی شبکه های عصبی مبین کارآیی خوب شبکه های چند لایه ی پرسپترون با الگوریتم یادگیری پس انتشار خطا است. نتایج نشان داد که شبکه عصبی ژئومورفولوژیکی با ضریب تبیین 862/0 و مجذور میانگین مربعات خطای 815/1 در مقایسه شبکه عصبی غیر ژئومورفولوژیکی با ضریب تبیین 827/0و معیار خطای031/2 میزان رسوب جریان را بهتر پیش­بینی می کند. نتایج ارزیابی مدل های رگرسیونی مبین عملکرد ضعیف­تر آن ها در مقایسه با روش شبکه عصبی مصنوعی است به طوری که ضریب تبیین مدل رگرسیونی ساده غیر ژئومورفولوژیکی 759/0و معیار خطای 395/2 و ضریب تبیین مدل رگرسیونی ژئومورفولوژیکی برابر 811/0 با معیار خطای معادل 142/2 است. همچنین از مقایسه نتایج مدل های مختلف چنین استنباط می شود زمانی که پارامترهای ژئومورفولوژیکی نظیر شاخص ناهمواری، شاخص گردی و شاخص تراکم زهکشی در مدل سازی وارد شوند نتایج ارزیابی آن ها مناسب­تر می شود.

تبلیغات