مطالب مرتبط با کلید واژه " ANFIS "


۱.

پیش‌بینی نرخ ارز با مدل‌های عصبی- فازیِ ANFIS، شبکه عصبی- خودرگرسیونیِ NNARX و خودرگرسیونیِ ARIMA در اقتصاد ایران (87-1381)

کلید واژه ها: پیش بینینرخ ارزARIMAANFISNNARX

حوزه های تخصصی:
تعداد بازدید : ۱۳۰۹ تعداد دانلود : ۱۳۲۴
سیاست گذاران پولی به منظور جلوگیری از زیان های ناشی از تغییرات از هم گسیخته نرخ ارز، همواره درصدد یافتن روشی مناسب برای پیش بینی نرخ ارز بوده اند. لیکن ویژگی های چند بعدی نرخ ارز باعث رفتار پیچیده و غیرخطی آن شده و مدل های غیرخطی از عمل کرد بهتری در پیش بینی آن برخوردار می باشند. لذا، در این مطالعه کارایی مدل های غیرخطی ANFIS و NNARX و مدل خطی ARIMA در پیش بینی برابری نرخ ارز ریال/دلار آمریکا و ریال/یورو برای 2، 4 و 8 روز آتی با استفاده از مهمترین معیارهای ارزیابی کارایی مدل ها و داده های روزانه مربوط به دوره 1/9/1387-1/1/1381 مقایسه شد. نتایج نشان داد که مدل های ANFIS و NNARX در مقایسه با مدل ARIMA و مدل ANFIS در مقایسه با مدل NNARX در همه افق های مورد نظر، از کارایی بیشتری در پیش بینی نرخ ارز ریال/دلار آمریکا و ریال/یورو برخوردار می باشد.
۲.

پهنه بندی آسیب پذیری آب های زیرزمینی، با کمک الگوریتم های فازی عصبی (مطالعه موردی: استان زنجان)

کلید واژه ها: پیش بینیآسیب پذیریزنجانآب های زیرزمینیANFIS

حوزه های تخصصی:
  1. جغرافیا جغرافیای طبیعی جغرافیای آبها
  2. جغرافیا فنون جغرافیایی سنجش از راه دور GIS
تعداد بازدید : ۷۵۰ تعداد دانلود : ۷۰۷
ارزیابی آسیب پذیری آبخوان، کاری سودمند برای توسعه و مدیریت و تصمیم گیری های مربوط به کاربری اراضی، نحوه پایش کیفی منابع آب زیرزمینی و جلوگیری از آلودگی این آب ها به شمار می آید. هدف از این مطالعه، به کارگیری مدل هوشمند ریاضی برای پیش بینی آسیب پذیری آب های زیرزمینی در استان زنجان است و به همین خاطر با استفاده از مدل ANFIS، روش جدیدی برای تخمین آسیب پذیری آب های زیرزمینی ارائه شده است. فرایند توسعه و ارزیابی این مدل با استفاده از مجموعه داده های واقعی و معیارهای آماری صورت گرفته است. بدین منظور با تهیة داده های مورد نیاز شامل عمق سطح آب زیرزمینی، تغذیه خالص، محیط آبخوان، محیط خاک، توپوگرافی، تأثیر منطقه غیراشباع و هدایت هیدرولیکی آبخوان، اقدام به ایجاد مدل ANFIS شد. در مرحلة بعد نتایج حاصل از مدل با داده های واقعی اعتباریابی گردید. طبق نتایج تحقیق، مدل ایجاد شده توان پیش بینی موفقیت آمیز آسیب پذیری آب های زیرزمینی را دارد. مقادیر RMSE و در مرحله آموزش به ترتیب 18/101 و 98/0، و در مرحله ارزیابی 8/173 و 94/0 به دست آمدند. روش ارائه شده در این تحقیق، رهیافت جدیدی در تخمین آسیب پذیری آب های زیرزمینی به شمار می آید و قابلیت اتصال و ترکیب با مدل های دیگر و نیز به هنگام سازی با توجه به شرایط واقعی را به خوبی دارد. در بررسی نتایج حاصل از مدل ANFIS، بیشترین درصد پتانسیل آلودگی دشت مربوط به کلاس آسیب پذیری کم 74 درصد، و کمترین آن مربوط به کلاس خیلی بالا 1 درصد برآورد شده است.
۳.

ارزیابی پیش بینی پذیری قیمت طلا و مقایسه پیش بینی روش های خطی و غیرخطی

کلید واژه ها: شبکه عصبی فازیقیمت طلاANFISپیش بینی پذیریآزمون BDSروش های غیر خطی

حوزه های تخصصی:
تعداد بازدید : ۳۲۴ تعداد دانلود : ۳۲۰
در این مقاله قابلیت پیش بینی بازده روزانه قیمت جهانی طلا از تاریخ 25/07/2011 تا 17/12/2012 مورد بررسی قرار گرفته است. بدین منظور ابتدا با استفاده از آزمون براک- دیکرت- شاینکمن (BDS) به بررسی خطی، غیرخطی و آشوبناک بودن سری مورد مطالعه پرداخته شده است. نتایج تحقیق فرض تصادفی بودن سری مورد مطالعه را رد می کند که شاهدی بر پیش بینی پذیر بودن بازده روزانه قیمت طلاست. همچنین فرضیه عدم وجود رابطه غیرخطی در جملات پسماند مدل خطی رد می شود که نشان از وجود رفتار غیرخطی در سری مورد بررسی است. برای پیش بینی بازده روزانه قیمت طلا یک مدل عصبی فازی ANFIS طراحی گردیده و نتایج آن با استفاده از معیارهای مختلف مورد ارزیابی قرار گرفته است. همچنین نتایج با نتایج دو مدل خطی ARMA و غیرخطی GARCH مقایسه شد که مطابق انتظار، مدل غیرخطی ANFIS پیش بینی بهتری از سایر مدل های رقیب داشت. در نهایت با استفاده از آماره مورگان- گرنجر- نیبولد (MGN) معنی داری اختلاف پیش بینی مدل ها مورد بررسی قرار گرفت. نتایج حاکی از معنی دار بودن اختلاف پیش بینی مدل های غیرخطی نسبت به مدل خطی ARMA است.
۴.

پایش خشکسالی و ارزیابی امکان پیش بینی آن در استان اردبیل با استفاده از شاخص SPI و مدل ANFIS

کلید واژه ها: پیش بینیاستان اردبیلخشکسالیشاخص SPIANFIS

حوزه های تخصصی:
  1. جغرافیا جغرافیای طبیعی آب و هواشناسی
  2. جغرافیا فنون جغرافیایی سنجش از راه دور GIS
  3. جغرافیا فنون جغرافیایی روش های کمی در جغرافیا
تعداد بازدید : ۱۸۹ تعداد دانلود : ۱۷۱
خشکسالی به عنوان یک پدیده اقلیمی به شدت بر همه جوانب فعالیت های بشری تاثیر می گذارد. با این حال مطالعات انجام شده در رابطه با این پدیده بر اساس روش های مناسب بسیار کم می باشد. بررسی ویژگی های خشکسالی و پیش بینی آن می تواند در کاهش خسارات حاصل از آن موثر باشد. از این رو در این تحقیق به بررسی خشکسالی و ارزیابی امکان پیش بینی آن برای ایستگاه هایی از استان اردبیل پرداخته می شود. داده های مورد استفاده این تحقیق مقدار بارندگی به صورت ماهانه در دوره آماری 23 ساله می باشد. شاخص بارندگی استاندارد شده در مقیاس های زمانی 1، 3، 6 و 12 ماهه برای بررسی ویژگی خشکسالی و مدل سیستم استنتاج عصبی - فازی تطبیقی برای پیش بینی خشکسالی مورد استفاده قرار می گیرد. بر اساس نتایج حاصل از این پژوهش شدیدترین خشکسالی در استان اردبیل در ایستگاه شهرستان اردبیل در مقیاس زمانی 6 ماهه، در ماه دسامبر سال 2010 با مقدار شاخص 47/2- رخ داده است. در مجموع بیشترین درصد وقوع خشکسالی در ایستگاه پارس آباد و کمترین آن در ایستگاه خلخال مشاهده می شود. به جز ایستگاه پارس آباد در مقیاس زمانی 3 و 6 ماهه، روند خطی شاخص SPI کاهشی است، به عبارتی خشکسالی روند افزایشی دارد. بر اساس تحلیل خوشه ای انجام شده ایستگاه خلخال و اردبیل در هر چهار مقیاس زمانی در یک گروه قرار گرفته اند بنابراین ویژگی خشکسالی در آنها مشابه هم است و ایستگاه پارس آباد در گروه دیگر قرار دارد. نتایج حاصل از پیش بینی شاخص با مدل انفیس نشان داد که در اکثر موارد خطای پیش بینی قابل توجه بوده و مدل در این پیش بینی کارایی قابل قبولی ندارد.
۵.

مطالعه تطبیقی مدل شبکه عصبی مصنوعی(ANN) و مدل عصبی -فازی وفقی (ANFIS) در پیش بینی تقاضای پروانه ساخت (مطالعه موردی: شهرداری زابل)

کلید واژه ها: شبکه عصبی مصنوعیANFISتقاضای پروانه ساخت

حوزه های تخصصی:
  1. جغرافیا فنون جغرافیایی روش های کمی در جغرافیا
  2. جغرافیا جغرافیای انسانی جغرافیای شهری فضا و محیط شهری
تعداد بازدید : ۱۲۵ تعداد دانلود : ۱۱۸
اطلاع از میزان تقاضای موجود در زمینه صدور پروانه ساخت در هر دوره یکی از مباحث اساسی است که شهرداری ها در راه پاسخگویی به تقاضاکنندگان نیازمند آن هستند. عدم اطلاع در این زمینه سبب ایجاد مشکلاتی مانند اتلاف وقت و انرژی، کاهش کارایی و نارضایتی ارباب رجوع و در نهایت فقدان برنامه ریزی مدون را سبب می شود. با توجه به روند پرنوسان و غیر خطی انگیزه افراد برای ساخت وساز و در ادامه تهیه مجوز ساختاز شهرداری و متغیرهای موثر بر آن، مدل های غیرخطی و بخصوص شبکه های عصبی (ANN) و سیستم استنتاج عصبی فازی تطبیقی (ANFIS) در این امر توفیق بیشتری داشته اند. به این منظور ترکیبی از اساسی ترین پارامترهای برون بخشی و درون بخشی تاثیر گذار در تصمیم گیری افراد برای ساخت وساز یعنی جمعیت شهرو نرخ رشد آن، متوسط درآمد وهزینه خانوار شهر (زابل)، تاثیرفصل های مختلف سال در قالب عامل دما، میزان تولید ناخالص داخلی(در سطح کلان)، تورم، ونوسانات مربوط به نرخ ارز (به عنوان پارامترهای برون بخشی) و عواملی مانند زمین و قیمت آن، تراکم و نرخ عوارض ساخت وساز (به عنوان عناصر درون بخشی) در نظر گرفته شده اند. در این بینبرای مقایسه توانایی آن ها نسبت به هم از معیارهای ارزیابی کارایی مدل ها مانند(ضریب تعیین)MAD,(میانگین قدر مطلق انحرافات) و RMSE (ریشه میانگین مربع خطا) استفاده شده است. در نهایت ANFIS به دلیل اتکا به ترکیب (( قدرت یادگیری شبکه عصبی و عملکرد منطقی سیستم های فازی)) ؛ بامقدار (9656/0، 9899/0), RMSE(0026/0، 0064/0) ,MAD (0018/0، 0061/0)به ترتیب برای آموزش و آزمون، بر روشANNبرتری نشان داده در نتیجه مدل مناسبتری برای پیش بینی هدف ماست.
۶.

مقایسه سیستم های هوش مصنوعی (ANFIS و ANN) و رگرسیون لجیت در پیش بینی ورشکستگی مالی شرکت های پذیرفته شده در بورس اوراق بهادار تهران

کلید واژه ها: پیش بینیشبکه های عصبی مصنوعیANNورشکستگی مالیANFISشبکه های عصبی - فازیرگرسیون لجیت (LR)بازاریابی مالی

حوزه های تخصصی:
  1. مدیریت مدیریت صنعتی تحقیق در عملیات پژوهش عملیاتی
  2. مدیریت مدیریت مالی – حسابداری مدیریت مالی
تعداد بازدید : ۲۱۴ تعداد دانلود : ۱۸۸
بانک ها به عنوان بخش اصلی نظام مالی نقش کلیدی را در تأمین مالی بخش های مختلف اقتصادی بر عهده دارند. یکی از مهم ترین موضوع های مطرح شده در زمینه ی مدیریت مالی و بازار یابی مالی، این است که سرمایه گذاران فرصت های مناسب سرمایه گذاری را از فرصت های نامطلوب تشخیص دهندو مدیران مدیریت مالی موثر و کارآمد در تامین منابع مالی داشته باشند. یکی از راه های کمک به سرمایه گذاران، ارائه ی الگوهای پیش بینی ورشکستگی شرکت ها است. تا به امروز تکنیک های مختلفی برای طراحی مدل های پیش بینی ورشکستگی شرکت ها مورد استفاده قرار گرفته است. از آنجا که مطالعات اخیر در زمینه ی پیش بینی ورشکستگی ، بر ایجاد و به کارگیری هوش مصنوعی و روش های یادگیری ماشینی متمرکز شده است، لذا در پژوهش حاضر به منظور پیش بینی ورشکستگی شرکت ها از شبکه های عصبی-فازی(ANFIS)و شبکه های عصبی مصنوعی(ANN) و رگرسیون لجیت(LR) به عنوان مدل مقایسه ای وبرای پیاده سازی مدل ها، از نرم افزار متلب نسخه 2015 استفاده شده است. نمونه ی تحت بررسی شامل 71 شرکت ورشکسته و 74 شرکت سالم می باشد که طی یک دوره 5 ساله از سال 1389 الی1394از بورس اوراق بهادر تهران انتخاب شده اند. یافته های تحقیق حاکی از آن است که در پیش بینی ورشکستگی شرکت ها، مدل مبتنی بر شبکه های عصبی مصنوعی(ANN) نسبت به مدل مبتنی بر شبکه های عصبی-فازی(ANFIS) و رگرسیون لجیت(LR) از دقت کلی بیشتری برخوردار است.
۷.

مدل سازی و پیش بینی رشد اقتصادی ایران با استفاده از مدل های ARIMA، مارکف سوئیچینگ و ANFIS

کلید واژه ها: رشد اقتصادیARIMAمارکف سوئیچینگANFIS

حوزه های تخصصی:
تعداد بازدید : ۹۳ تعداد دانلود : ۸۸
یکی از مسائل مهم در اقتصاد پیش بینی رشد اقتصادی می باشد. پیش بینی صحیح رشد اقتصادی، اثر مهمی در سیاست گذاری و برنامه ریزی های اقتصادی دولت دارد و می تواند علاوه بر ایجاد زمینه توسعه روش های جدید پیش بینی، سیاست گذاران را در تصمیم گیری آتی یاری رساند. پیش بینی بر اساس مدل های چند متغیری اقتصادسنجی با محدودیت های زیادی همراه است، بنابراین یک روش جایگزین استفاده از مدل های تک متغیری است. اما اکثر روش های تک متغیری برای حصول به نتیجه خوب نیاز به داده های زیادی دارند. از این رو در این مطالعه کارایی مدل میانگین متحرک خودرگرسیون تجمعیARIMA) ) با روش های مارکف سوئیچینگ و شبکه عصبی فازی (ANFIS) در پیش بینی رشد اقتصادی ایران مقایسه می شود. برای تخمین مدل از داده های دوره 1338 تا 1384 استفاده شده است. سپس کارایی این مدل ها در پیش بینی رشد اقتصادی ایران برای دوره 1385 تا 1392 با استفاده از معیارهای RMSE، MAE و MAPE ارزیابی و مقایسه شده است. مقایسه این معیارها حاکی از این است که بهترین عملکرد متعلق به روش ANFIS است. همچنین مدل مارکف سوئیچینگ عملکرد بهتری نسبت به مدل ARIMA دارد.
۸.

بررسی تغییر دما و ارزیابی امکان پیش بینی آن در استان اردبیل بر اساس روش های آماری و سیستم استنتاج فازی- عصبی تطبیقی

کلید واژه ها: پیش بینیاستان اردبیلANFISتغییر دما

حوزه های تخصصی:
تعداد بازدید : ۶۲ تعداد دانلود : ۶۱
با توجه به تاثیر دمای هوا بر جوانب مختلف زندگی بشر و لزوم مطالعه ی نحوه ی تغییرات و پیش بینی آن، در این مطالعه با استفاده از تحلیل های آماری تغییرات دمای میانگین، حداقل و حداکثر ماهانه، در طول دوره ی آماری 24 ساله (از ماه ژانویه ی سال 1987 تا ماه دسامبر سال 2010 به طول 288 ماه) در ایستگاه های استان اردبیل بررسی، و در ادامه امکان پیش بینی دما با استفاده از سیستم استنتاج فازی - عصبی تطبیقی ارزیابی شد. نتایج حاصل نشان داد که روند تغییرات دمای ماهانه در ایستگاه های استان اردبیل طی دوره ی مورد مطالعه افزایشی بوده است. شدت افزایش دمای حداقل بیشتر از دمای حداکثر و میانگین بود. بر اساس نتایج پیش بینی، رابطه ی مشخصی بین ویژگی های آماری داده ها و خطاهای پیش بینی وجود داشت. هرچه دامنه ی تغییرات داده ها کمتر، واریانس و انحراف معیار آنها بیشتر بوده و امکان پیش بینی مقادیر داده ها بیشتر است. در اکثر موارد در فصول سرد سال نوسان مقادیر دمای ماه ها در سال های مختلف بیشتر بوده است، مدل در پیش بینی این موارد دچار خطای بیشتری شده است. در اکثر موارد مدل دمای ماه های فصول گرم سال را که روند مشخص تری دارند بهتر پیش بینی کرده است. در کل بر اساس نتایج این تحقیق سیستم استنتاج فازی - عصبی تطبیقی در اکثر موارد کارایی قابل قبولی در پیش بینی دمای میانگین، حداقل و حداکثر ماهانه در ایستگاه های استان اردبیل داشته است.