مطالب مرتبط با کلید واژه

برنامه ریزی ژنتیک


۱.

پیش بینی مصرف انرژی بخش کشاورزی ایران با استفاده از مدل ترکیبی الگوریتم ژنتیک و شبکه های عصبی مصنوعی

کلید واژه ها: شبکه های عصبی مصنوعی مصرف انرژی الگوریتم ژنتیک بخش کشاورزی ایران برنامه ریزی ژنتیک

حوزه های تخصصی:
تعداد بازدید : ۵۱۴ تعداد دانلود : ۳۳۲
هدف از این مقاله ارزیابی الگوی ترکیبی شبکه های عصبی مصنوعی و الگوریتم ژنتیک در پیش بینی تقاضای انرژی بخش کشاورزی ایران می باشد. برای این منظور، از داده های سالانه مصرف انرژی بخش کشاورزی کشور به عنوان متغیر خروجی مدل های پیش بینی و از داده های سالانه جمعیت کل کشور و کل تولیدات بخش کشاورزی کشور به عنوان متغیرهای ورودی مدل های پیش بینی استفاده شد. در پایان به منظور مقایسه نتایج پیش بینی مدل ترکیبی مذکور با مدل های شبکه ی عصبی مصنوعی و برنامه ریزی ژنتیک، از شاخص های ارزیابی خطای استاندارد نسبی، میانگین خطا، میانگین قدر مطلق درصد خطا و مجذور میانگین مربعات خطا استفاده شد. نتایج ارزیابی نشان داد که الگوی ترکیبی شبکه های عصبی و الگوریتم ژنتیک، نسبت به مدل شبکه عصبی مصنوعی و برنامه ریزی ژنتیک دارای بالاترین دقت در پیش بینی تقاضای انرژی بخش کشاورزی کشور می باشد. پیشنهاد می شود در تحقیقات آتی با استفاده از مدل ترکیبی مذکور به پیش بینی مصرف انرژی در سایر بخش های اقتصادی پرداخته شود و کارایی آن سنجیده شود.
۲.

پیش بینی تراز آب زیرزمینی حوضه آبریز شریف آباد قم با استفاده از مدل های موجک عصبی و برنامه ریزی ژنتیک

کلید واژه ها: شبکه عصبی آنالیز موجک برنامه ریزی ژنتیک دشت شریف آباد تراز آب زیرزمینی

حوزه های تخصصی:
تعداد بازدید : ۴۳۳ تعداد دانلود : ۲۴۶
در این تحقیق پیش بینی تراز آب زیرزمینی حوضه آبریز شریف آباد استان قم با بهره گیری از برخی مدل های هوشمند می باشد. به این منظور از داده های ماهیانه تراز آب زیرزمینی در سه حلقه چاه مشاهده ای واقع در حوضه آبریز شریف آباد در مدل سازی ها استفاده شده است. جهت مقایسه نتایج حاصل از مدل های هیبرید آنالیز موجک-شبکه عصبی (WNN)، برنامه ریزی ژنتیک (GP)، رگرسیون خطی چند متغیره (MLR) و شبکه عصبی مصنوعی (ANN) از دو معیار ریشه خطای مربع متوسط (RMSE) و ضریب کارایی نش- ساتکلیف (E) استفاده شده است. نتایج تحقیق نشان داده است که مدل ترکیبی موجک-عصبی پیش بینی دقیقتری برای تراز آب زیرزمینی ماهانه نسبت به مدل های ANN، GP و MLR ارائه داده، به طوریکه ضریب نش در مدل ترکیبی برای پیزومترهای 1، 2 و 3 به ترتیب 98/0، 98/0 و 95/0 حاصل شده است.
۳.

مدل سازی جریان روزانه رودخانه با استفاده از برنامه ریزی ژنتیک و شبکه عصبی (مطالعه موردی: حوضه آبخیز معرّف امامه)

کلید واژه ها: بارش- رواناب برنامه ریزی ژنتیک شبکة عصبی پرسپترون چندلایه حوضة آبخیز معرف امامه

حوزه های تخصصی:
تعداد بازدید : ۳۴۰ تعداد دانلود : ۱۹۴
فرایند بارش- رواناب پیچیده و غیرخطی است و مدل سازی آن به دلیل عدم قطعیت های زیاد یکی از مهم ترین دغدغه های پژوهشگران در حیطة مسائل منابع آب به شمار می رود. از بین روش های مورد استفاده، مدل های هوشمند در پیش بینی چنین فرایندهایی مفید و مؤثرند. بنابراین، به منظور مدل سازی جریان رودخانه از روش های شبکة عصبی مصنوعی و همچنین برنامه ریزی ژنتیک به منزلة روشی صریح که جزو الگوریتم های تکاملی به شمار می رود در حوضة آبخیز معرّف امامه و در دورة آماری 1349 - 1350 تا 1390 - 1391 (42 ساله) استفاده شد. بدین منظور، از داده های هواشناسی و آب سنجی در مقیاس روزانه و در قالب 62 مدل پیشنهادی استفاده شد. نتایج نشان داد برنامه ریزی ژنتیکی، از میان مدل های فراوان، خطای کمتری داشت. خطای مدل ها نیز وقتی که فقط از عملگرهای اصلی ریاضی و توان استفاده شد به مراتب کمتر بود. سرانجام، با توجه به معیارهای ارزیابی مورد استفاده در این تحقیق، ساختار پیشنهادی با ورودی های (مدل 54) دما، باران، و تأخیرهای باران تا دو روز، رطوبت نسبی و تبخیر و تعرق و تأخیر جریان تا دو روز به عنوان بهترین مدل با خطای 001/0، 031/0، و 009/0 در مرحلة آموزش و 001/0، 032/0، و 009/0 در مرحلة آزمایش به دست آمد.