مطالب مرتبط با کلید واژه

شبکهی عصبی مصنوعی


۱.

ارزیابی عملکرد الگوهای شبکهی عصبی و خودرگرسیون میانگین متحرک در پیش بینی قیمت نفت خام ایران

کلید واژه ها: قیمت پیش بینی نفت خام ایران شبکهی عصبی مصنوعی خودرگرسیون میانگین متحرک

حوزه های تخصصی:
  1. حوزه‌های تخصصی اقتصاد اقتصاد بخشی،اقتصاد صنعتی،کشاورزی،انرژی،منابع طبیعی،محیط زیست اقتصاد انرژی نفت،گاز طبیعی،زغال سنگ،مشتقات نفتی پیش بینی قیمت،نوسانات قیمتی،عدم ثبات،نااطمینانی و ریسک
  2. حوزه‌های تخصصی اقتصاد روش های ریاضی و کمی روش های آماری و اقتصادسنجی:موضوعات خاص شبکه های عصبی و موضوعات مربوطه
تعداد بازدید : ۱۵۷۹ تعداد دانلود : ۷۶۶
این مطالعه با هدف معرفی الگوهای مطلوب پیش بینی برای قیمت نفت خام ایران انجام شده است داده های مورد استفاده به صورت هفتگی و شامل دورهی 2010-1997 میباشد و پیش بینی ها برای 10، 20 و 30 درصد داده های یاد شده انجام گرفته است. الگوهای مورد استفاده برای پیش بینی، شامل 4 الگوی شبکهی عصبی و یک الگوی رگرسیونی (خودرگرسیون میانگین متحرک) بوده است. شبکه های منتخب شامل شبکهی پیشخور پس انتشار، شبکهی آبشاری پس انتشار، شبکهی المان پس انتشار و شبکهی رگرسیون تعمیم یافته می باشد. هم چنین توابع آموزش مورد استفاده در پیش بینی شامل توابع لونبرگ- مارکوآت و شبهی نیوتنی است. یافته های به دست آمده نشان میدهد برای پیش بینی 10 درصد از داده های قیمت نفت خام، الگوهای شبکهی رگرسیون تعمیم یافته و شبکهی آبشاری پس انتشار با تابع آموزش شبهی نیوتنی، به ترتیب با خطایی کم تر از 1 و کم تر از 2 درصد دارای بهترین عملکرد هستند. برای پیش بینی 20 درصد داده های قیمت نفت خام ایران، شبکهی پیشخور پس انتشار و شبکهی المان پس انتشار با تابع آموزش لونبرگ- مارکوآت، دارای عملکرد بهتر میباشند. در مورد 30 درصد از داده ها نیز شبکهی پیشخور پس انتشار مطلوب تر ارزیابی شده است. هم چنین نتایج نشان میدهد به طور نسبی با افزایش درصد داده های مورد استفاده در پیش بینی، دقت پیش بینیها به ویژه با افزایش از 10 درصد به 20 درصد رو به افول میرود. دقت پیش بینی خودرگرسیون میانگین متحرک نیز پایین تر از الگوهای شبکهی عصبی ارزیابی میشود.