احمد فریدانی فر

احمد فریدانی فر

مطالب

فیلتر های جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۱ مورد از کل ۱ مورد.
۱.

پیاده سازی الگوریتم بهینه سازی دسته میگوها برای مسئله بالانس خطوط مونتاژ مدل های چندگانه با در نظر گرفتن اثر یادگیری و فراموشی کارگران(مقاله علمی وزارت علوم)

کلید واژه ها: بالانس خطوط مونتاژ مدل های چندگانه اثر یادگیری و فراموشی کارگران الگوریتم بهینه سازی دسته میگوها

حوزه های تخصصی:
تعداد بازدید : ۷۷ تعداد دانلود : ۷۰
یکی از دغدغه تولیدکنندگان، بحث تنوع سلیقه های مشتریان است و برای مدیریت این شرایط با کمترین تغییر در محصولات تولیدی، به خطوطی به اصطلاح چندگانه نیاز است که انعطاف لازم را برای تولید این محصولات دارا باشد. از سویی خیلی از محصولات نیازمند عملیات مونتاژند؛ از این رو، به عنوان یک نوآوری در این مقاله، مدل ریاضی جدیدی برای بالانس خط مونتاژ مدل های چندگانه ارائه شده که در آن عملیات مونتاژ توسط کارگران و به شکل دستی صورت گرفته است؛ اما برای برنامه ریزی دقیق تر، تفاوت هایی که کارگران از منظر اثر یادگیری و فراموشی دارند، بر بالانس خط مونتاژ منظور شده است. هدف این پژوهش، حداقل کردن تعداد ایستگاه های کاری به ازای یک زمان سیکل معین است تا علاوه بر پوشش سلایق مختلف مشتریان، به طور غیرمستقیم نیز هزینه های احداث ایستگاه ها، استخدام و به کارگیری نیروی انسانی حداقل شود. به دلیل ساختار NP-hard مسئله، از الگوریتم بهینه سازی دسته میگوها استفاده شده است که پیش از این برای مسائل مشابه این موضوع نیز به کار نرفته است. به بیان دیگر برای حل مسائل مختلف در ابعاد کوچک از نرم افزار گمز استفاده شد و برای مسائل با ابعاد متوسط و بزرگ از الگوریتم دسته میگوها به عنوان الگوریتم پیشنهادی و الگوریتم ازدحام توده ذرات، به عنوان الگوریتم رقیب بهره گرفته شد. تجزیه وتحلیل بر مجموعه داده های استاندارد مسائل بالانس خط مونتاژ مختلف، نشان داده است الگوریتم دسته میگوها در زمان، حل بسیار کمتری نسبت به گمز دارد و الگوریتم بهینه سازی توده ذرات توانسته است به پاسخ های بهینه و یا نزدیک به بهینه دست یابد که این موضوع نشان دهنده کارایی الگوریتم پیشنهادی در حل این دسته از مسائل است.

کلیدواژه‌های مرتبط

پدیدآورندگان همکار

تبلیغات

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان