آرشیو

آرشیو شماره ها:
۶۲

چکیده

گردآوردی اطلاعات میدانی دقیق، به منظور مدیریت پایدار مناطق جنگلی، مستلزم صرف زمان و هزینه بالایی است؛ بنابراین استفاده از روش های نمونه برداری و تصاویر ماهواره ای جایگزین مناسبی برای این کار خواهد بود. هدف پژوهش حاضر تأثیر طرح های گوناگون نمونه برداری خوشه ای در برآورد مشخصه های کمّی جنگل های سامان عرفی اولادقباد شهرستان کوهدشت، استان لرستان، با استفاده از تصاویر سنجنده سنتینل 2 است. به منظور برآورد مشخصه های مورد بررسی، 150 خوشه در قالب شش طرح (مثلث، مربع، ستاره ای 1، خطی، اِل شکل و ستاره ای 2) در منطقه ای به مساحت تقریبی 4500 هکتار ایجاد شد. هر خوشه شامل چهار ریزقطعه نمونه، با مساحت هفتصد مترمربع (شعاع ریزقطعه نمونه دایره ای برابر با پانزده متر و فاصله بین ریزقطعه نمونه ها از هم، شصت متر) بود. سپس در هر ریزقطعه نمونه ، مشخصه های تعداد و مساحت تاج درختان اندازه گیری شد. پس از پیش پردازش و پردازش تصاویر (تجزیه مؤلفه اصلی، آنالیز بافت و ایجاد شاخص های گیاهی)، ارزش های رقومی متناظر با قطعات نمونه زمینی از باندهای طیفی استخراج و به منزله متغیرهای مستقل، در نظر گرفته شد. مدل سازی با استفاده از روش های ناپارامتریک جنگل تصادفی، ماشین بردار پشتیبان و نزدیک ترین همسایه انجام شد. نتایج نشان داد میانگین تراکم در هکتار 51 اصله و سطح تاج پوشش 3294 مترمربع در هکتار است. نتایج اعتبارسنجی نشان داد که درمورد هر دو مشخصه تراکم و سطح تاج پوشش، الگوریتم جنگل تصادفی به همراه طرح های نمونه برداری خطی و ستاره ای 2، به ترتیب با درصد مجذور میانگین مربعات خطا 00/46 و 44/10 و اریبی (02/0- و 82/2%)، عملکرد بهتری در مدل سازی داشته است. به طورکلی نتایج اعتبارسنجی مشخص کرد استفاده از طرح های متفاوت نمونه برداری خوشه ای، روش های مدل سازی ناپارامتریک جنگل تصادفی و تصاویر سنجنده سنتینل 2 کارآیی بهتری در برآورد مشخصه تاج پوشش دارد اما، در مقابل، عملکرد مناسبی در برآورد تعداد در هکتار را نداشته است.

The Effect of Different Cluster Sampling Schemes in Estimating the Quantitative Characteristics of Zagros Forests Using Sentinel 2 Sensor Images

Gathering accurate information for statistics requires high cost and precision. The time factor is also one of the important issues that should be seriously considered in statistics. Therefore, the use of sampling methods and satellite images will be a good alternative for this purpose. In the present study, the aim of the effect of different cluster sampling schemes in estimating the quantitative characteristics of the traditional forests of Olad Ghobad in Koohdasht township, Lorestan province using Sentinel 2 sensor images. To estimate the studied characteristics, 150 clusters in the form of six designs (triangular, square, star 1, linear, L-shaped, star 2) were implemented in the region. Then, in each subplot, the characteristics of the number and area of the tree canopy were measured. Afterimage preprocessing and appropriate image processing (principal component analysis, texture analysis, and different spectral ratios to create important plant indices), the corresponding digital values of the ground sample plots are extracted from the spectral bands and used as independent variables. Modeling was performed using nonparametric methods of random forest, support vector machine, and nearest neighbor. The results showed that the average density per hectare was 51 and the canopy area was 32.94%. The diagram of the mean squares of the error of the training and test data against the number of trees for the characteristic number per hectare and canopy showed that the optimal number of trees was obtained at approximately 75 and 350 points. The results of validation according to the percentage of squared mean squared error showed that for both density and canopy surface characteristics of random forest algorithm with linear and double star sampling designs with the squared percentage of mean squared error respectively (46.00%) and (10.44%) and Bias (-0.02%, 2.82%) along with cluster sampling designs linear and double star, respectively, had better performance in modeling. In general, the results showed that the use of different cluster sampling schemes, nonparametric modeling methods, and Sentinel2 sensor images can better performance estimate the quantitative characteristics of Zagros forests.

تبلیغات