آرشیو

آرشیو شماره ها:
۶۲

چکیده

سنجنده های رادار با روزنه مجازی، با داشتن ویژگی های گسترده، پتانسیل بسیاری در انواع کاربردهای سنجش از دوری دارند؛ ازجمله در قطعه بندی به هنگام پوشش و کاربری اراضی. با وجود دو رویکرد مستقل قطعه بندی ناحیه مبنا و مرزمبنا، به دست آوردن نتایج رضایت بخش در صورت استفاده از هریک از رویکردها در تصاویر SAR دشوار بوده است؛ درحالی که می توان با استفاده از اطلاعات مکمل هر دو روش، محدودیت های موجود را برطرف کرد و نتایج حاصل را بهبود بخشید. در این پژوهش، روش نوینی در قطعه بندی با استفاده از تصاویر پلاریمتری SAR و با هدف بهبود نتایج قطعه بندی مطرح شده که از ادغام هر دو رویکرد بهره گرفته است. روش پیشنهادی Felzenszwalb به منزله الگوریتم پیشنهادی ناحیه مبنا، از مجموعه روش های سوپرپیکسل، با دو روش Quickshift و SLIC مقایسه شد. نتیجه مشخص کرد که روش پیشنهادی توانسته است از قطعه بندی بیش ازحد تصویر جلوگیری کند و کارآیی آنالیز قطعه بندی را افزایش درخور توجهی بخشد. روش پیشنهادی قطعه بندی مرزمبنای آنتروپی شانون نیز، در مقایسه با دو روش گرادیان مبنای کنی و لاپلاسین، مرزهای قطعات تصویری را تا اندازه چشمگیری حفظ کرده است. مقایسه نتایج حاصل از اجرای این روش با داده های مرجع، مقادیر 39/10% و 25/11% را درمورد خطای کل، به ترتیب برای تصویر زمان اول و دوم، نشان می دهد. خطای کل، در مقایسه با عملکرد دو روش دیگر، 81/5 و 73/9% در تصویر اول و 16/11 و 86/13% در تصویر دوم بهبود داده شده است. در نهایت، ادغام دو رویکرد پیشنهادی قطعه بندی سبب شده است بهبود دقت در قطعه بندی تصویر پلاریمتری دستاورد مهم این پژوهش محسوب شود.

Improving the Segmentation of Polarimetric Images with a Combined Approach of Region-Based and Boundary-Based Techniques

Synthetic aperture radar (SAR) sensors with various properties offer potential in various remote sensing applications, such as land cover and land use segmentation. Despite the two independent approaches of region-based segmentation and boundary-based segmentation, it isn't easy to obtain satisfactory results if either process is used in SAR images. In contrast, complementary information can be obtained using both region-based and boundary-based segmentation methods, removing existing limitations and improving results. In this research, with the help of polarimetric SAR images, a new segmentation method is presented, aiming to improve segmentation results by combining the two region-based and boundary-based approaches. From the set of superpixel methods, the Felzenszwalb method as a proposed region-based algorithm is compared with Quickshift and SLIC methods. The proposed method was able to prevent over-segmentation of the image and significantly increased the efficiency of segmentation analysis. Also, as the proposed method of boundary-based segmentation, Shannon entropy has considerably preserved the boundaries of the image segmentation compared to the two gradient-based methods, Canny and Laplacian. Comparison of the results of this method with reference data shows the total error of 10.39% and 11.25% for the first and second-time images, respectively. Compared to the performance of the other two methods, the absolute error has been decreased to 5.81% and 9.73% in the first image, and 11.16% and 13.86% in the second image, respectively. Finally, as a significant achievement of this research, integrating the two proposed segmentation algorithms improves the accuracy of polarimetric image segmentation.  

تبلیغات