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Article history: This article introduces an integrated approach for addressing uncertainty and im-
Received 2025-03-22 proving human-oriented risk control by combining differential equation model-
Accepted 2025-06-13 ing with neural and fuzzy logic enhancements. Differential equation modeling
Keywords: provides a structured mathematical foundation for capturing price dynamics over
Volatility time, while neural and fuzzy logic components adaptively adjust the model to
Uncertainty account for nonlinear behaviors and uncertain market signals. The proposed
Momentum framework is applied within volatility-aware trading strategies, comparing fixed-
Reinforcement

exposure and downside-scaled momentum approaches. Using daily data from
five major digital currencies spanning 2016 to 2024, the model demonstrates im-
proved prediction accuracy and controlled exposure under volatile conditions.
While the adaptive strategy offers reduced drawdowns and more stable weight
distributions, it does not universally outperform in return-to-risk metrics. How-
ever, the integrated system consistently shows better alignment with market risk
regimes, particularly in directional accuracy, confidence calibration, and draw-
down control enhancing its practical viability for real-world deployment.

1 Introduction

In contemporary financial markets, particularly in cryptocurrency ecosystems, uncertainty manifests
through extreme volatility, nonlinear price movements, and unpredictable regime shifts. Traditional
tools such as the Black—Scholes model and the Markowitz mean—variance framework are often inad-
equate under these conditions [1-3]. Cryptocurrencies like Bitcoin and Ethereum regularly exhibit
heavy-tailed returns and abrupt jumps, which violate the assumptions underpinning classical stochastic
models [4—6]. This has led to a shift toward uncertainty-aware modeling techniques such as fuzzy
logic, machine learning, and structural volatility estimation, with research highlighting the potential of
approaches that integrate multiple layers of uncertainty quantification [1,7-10].
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From a risk management perspective, understanding and controlling human-related decisions in finan-
cial behavior especially in high-risk domains like crypto markets requires tools that emphasize down-
side risk. Scholars increasingly prioritize measures such as Conditional Value at Risk (CVaR), copula-
based modeling, and semi-volatility weighting to capture tail-risk exposure more effectively
[2,7,11,12]. Moreover, some evidence suggests that cryptocurrencies can hedge against global risks
such as FX instability or stock market shocks [6,13], though their correlations often become unstable
during systemic crises [14,15]. As a result, newer paradigms based on fuzzy environments and proba-
bilistic Partial Differential Equation (PDE) extensions have gained traction for modeling these com-
plex risk structures [1,7,16].To address these modeling gaps, recent literature has embraced advanced
and hybrid methodologies. These include liquidity-adjusted ARMA—-GARCH models, hierarchical
risk parity, hidden Markov frameworks, and deep neural networks [8,9,19—22]. Our proposed approach
builds upon this evolution by integrating partial differential equation (PDE) models with neural net-
works and fuzzy inference systems. This hybrid structure not only captures nonlinear asset behavior
but also accounts for external factors and market sentiment elements traditionally overlooked in deter-
ministic models [15,23]. The incorporation of volatility-scaled momentum strategies (constant and
semi-volatility) further enhances the adaptive capacity of the framework in both bullish and bearish
phases. Previous studies have demonstrated the effectiveness of combining quantitative models with
heuristic or data-driven layers. For example, Abbasi and Nouri [1] employed uncertain PDEs for de-
rivative pricing; Banyai et al. [2] showed the benefits of semi volatility weighting; and Kristjanpoller
& Minutolo [9] integrated GARCH and neural networks for volatility forecasting. However, most prior
work either lacks human-oriented constraints or neglects robustness under prolonged low-volatility
regimes where high leverage may be dangerously activated [3,7,10]. This study contributes by merging
PDE, fuzzy logic, neural modeling, and semi-volatility momentum into a cohesive architecture that
addresses these concerns and strengthens risk control under uncertainty.

The remainder of the article is organized as follows: Section 2 reviews the related literature on crypto
asset valuation and downside-focused strategies. Section 3 outlines the hybrid methodology, including
PDE formulation, neural-fuzzy augmentation, and momentum-based trading logic. Section 4 presents
empirical findings and comparative analyses across five major cryptocurrencies. Section 5 offers con-
clusions, highlights limitations, and proposes future research directions aligned with human-centric
risk control and advanced modeling.

2 Literature Review

Research on cryptocurrency valuation and risk management has increasingly shifted from classical
stochastic models to more adaptive, uncertainty-aware approaches. Traditional methods such as the
Black—Scholes model, while foundational, face limitations in highly volatile environments due to their
inability to capture price jumps, dynamic interest rates, and structural uncertainty [1,2,3]. To address
these gaps, recent studies have proposed uncertain renewal processes, fuzzy logic, and dynamic cali-
bration mechanisms to better reflect market complexity [1,4,5].In portfolio optimization, the inclusion
of cryptocurrencies has shown potential for enhancing diversification, particularly under Value-at-
Risk frameworks and stress-tested macroeconomic conditions [2,6]. Machine learning techniques, in-
cluding generalized random forests and neural networks, have outperformed conventional GARCH
models in capturing extreme price fluctuations and improving volatility forecasts [3,7,8]. Modifica-
tions to Modern Portfolio Theory have also been proposed to accommodate the distinctive risk—return
structure of digital assets [4].There is growing attention to tail risk, systemic contagion, and regime-
dependent correlations within crypto markets. Copula-based models and multivariate risk measures,
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such as MCoVaR, have been introduced to capture interdependencies that standard models often over-
look [7,9,12]. Meanwhile, liquidity-adjusted models and credibility CVaR frameworks offer improved
risk metrics that incorporate downside volatility and real-world constraints [8,11]. These approaches
have demonstrated superiority in estimating risk under volatile and thinly traded market conditions.
Additionally, index-based pricing, dynamic hedging, and crypto derivatives have emerged as key areas
of innovation. Dynamic portfolio models, deep learning-based price prediction systems, and hidden
Markov models have shown high predictive accuracy in turbulent regimes [13,20,21]. Hybrid models
that integrate fuzzy logic, deep neural networks, and volatility-scaling mechanisms are increasingly
favored for their adaptability and robustness across shifting market conditions [10,17,18,19].In the
proposed approach, a hybrid framework combines differential equations with fuzzy logic and neural
networks to model uncertainty and nonlinearity in crypto markets. This is integrated with semi-vola-
tility momentum strategies to better manage downside risk. The method improves predictive accuracy
and risk-adjusted returns under volatile conditions.

3 Methodology

The proposed method presents a hybrid framework designed to address key limitations in traditional
financial models when applied to cryptocurrency markets. It integrates four primary components: (i)
the collection and preprocessing of daily cryptocurrency data; (ii) a partial differential equation (PDE)-
based pricing model that establishes a theoretical valuation baseline; (iii) a neural-fuzzy correction
mechanism to capture nonlinear dynamics and uncertainty; and (iv) a volatility-adjusted momentum
trading strategy. This approach responds directly to challenges noted in previous literature, including
the inability of conventional stochastic models to adequately reflect the extreme volatility, non-sta-
tionarity, and regime-switching behavior typical of digital assets [2,3,4].

3.1 Data Assembly and Cleaning

The proposed method utilizes daily time-series data for five major cryptocurrencies BTC-USD, ETH-
USD, BNB-USD, XRP-USD, and LTC-USD retrieved from Yahoo Finance for the period January 1,
2016, to December 31, 2024. This period includes multiple bull and bear market cycles, ensuring that
both low- and high-volatility regimes are captured. Each dataset consists of open, high, low, close, and
volume (OHLCV) fields.Data integrity was assessed by identifying missing or inconsistent entries
(less than 0.5% of records). Corrections were performed using cross-verification with Binance API
data; unresolvable records were removed. Daily log-returns were calculated from adjusted closing
prices. To validate stationarity a prerequisite for subsequent modeling the Augmented Dickey—Fuller
(ADF) test was applied to each series with a 5% significance level.

Preliminary exploratory data analysis revealed leptokurtic distributions and significant volatility clus-
tering across all assets. These findings justified the selection of advanced risk-sensitive models and
confirmed the need for volatility-scaling techniques and non-Gaussian prediction tools in the later
modeling stages.

3.2 Baseline PDE Model for Crypto Valuation

A partial differential equation (PDE)-based framework was constructed to estimate the fair value of
cryptocurrency assets under high-volatility market conditions. Let S(t) represent the price of a given
crypto asset at time t. The price dynamics are modelled using a geometric Brownian motion with drift
p and volatility o. Under the risk-neutral measure, the valuation of a European-style derivative V(S, t)
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with maturity at time T satisfies the following PDE:
2
s +10_2S28_V2 +rS6—V -mw 0 (1)
Ot 2 oS ot
where 1 is the continuously compounded risk-free rate.
To ensure adaptability to market conditions, the drift (1) and volatility (c) parameters were recalibrated
monthly using a 90-day rolling window and maximum likelihood estimation (MLE) on daily log-return
data. Calibration accuracy was assessed by computing the log-likelihood function and ensuring con-
vergence to a local maximum with minimal residual error. Volatility estimates were also validated by
comparing historical variance and implied volatility data from derivative markets, where available.

Boundary conditions were specified using Dirichlet constraints, such that

V(O,t) =0 and V(S —)OO,t) =S Ke_r(r_t)_ 2)

where K is the strike price in hypothetical option settings. The initial condition was based on the
payoff function at maturity.
The Crank—Nicolson finite difference scheme was selected to discretize the PDE across the time and

asset price domains. A uniform time step At = 2;—2 (corresponding to daily intervals) and asset grid

spacing proportional to price volatility were used to ensure numerical stability. This scheme was cho-
sen due to its unconditional stability and second-order accuracy in both time and space, offering a
compromise between the computational simplicity of explicit methods and the stability of fully implicit
approaches. To further accommodate sharp price shifts and market regime changes, a time-varying
local volatility extension was explored by allowing o—:o-(S,z) to vary dynamically, modeled

through historical return volatility surfaces updated monthly. This extended model was tested on out-
of-sample data from 2022 to 2024 to evaluate generalization and robustness under changing market
conditions.

3.3 Neural-Fuzzy Augmentation

While the PDE model establishes a structured baseline for asset pricing, it remains limited in capturing
nonlinear disruptions, market sentiment shifts, and behavioral noise that frequently characterize cryp-
tocurrency markets. To enhance adaptability, a neural-fuzzy augmentation mechanism was integrated
into the modeling pipeline, combining rule-based linguistic reasoning with deep learning-based cor-
rection.

3.3.1 Fuzzy Rule Base

External variables indicative of sentiment and transactional momentum were used as fuzzy inputs.
Specifically, daily social media sentiment scores (extracted via a pre-trained transformer-based senti-
ment classifier from the Twitter API) and on-chain transaction volume anomalies (from Glassnode
metrics) were mapped to linguistic categories Low, Medium, and High using trapezoidal membership
functions. These functions were parameterized using domain-informed breakpoints and empirically
tuned using pilot data spanning 2016-2018. The fuzzy inference system comprised nine rules, struc-
tured via expert elicitation and iteratively refined through grid search to maximize interpretability and
forecast coherence. An example rule:

IF sentiment = High AND volume = High THEN price bias = Positive.
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3.3.2 Neural Network Corrector

The second component involved a feed-forward neural network, configured with three hidden layers
(64, 32, and 16 neurons respectively), each using ReLLU activation. The input layer combined the PDE-
derived theoretical price output Vppp (t)and the scalar output of the fuzzy inference engine. The

model was trained using the Adam optimizer with an initial learning rate of 0.001, and early stopping
was applied with a patience of 20 epochs.

Training employed an 85/15 train-validation split, repeated over five folds to ensure generalization.
The objective function was the Mean Squared Error (MSE) between the final corrected output
Vhybrid (1) and the actual closing price. Hyperparameter tuning (e.g., number of neurons, batch size,

optimizer settings) was conducted using a randomized search over 100 configurations and selected
based on lowest validation MSE. This neural-fuzzy framework thus balances the structural rigor of
PDE pricing with real-time correction based on market sentiment and behavioral signals allowing the
model to better respond to regime shifts and nonlinear price dynamics observed in crypto markets.

3.4 Risk-Adjusted Strategy and Volatility Scaling
Upon completing the hybrid model, a trading strategy was constructed to mitigate drawdowns while
exploiting model outputs.

3.4.1 Baseline Exposure
At each monthly rebalance, trading signals were derived from the discrepancy between V', . (¢) and

S(t). Long positions were entered when 77, . (¢) exceeded S (f ) by more than 2%, and short posi-

hybrid
tions when V', , ., (¢ )was below S (t)by more than 2%, a threshold calibrated to historical average
spread noise.

The £2% threshold was determined based on the median spread observed in historical prediction re-

siduals between 2016 and 2020. This threshold was also varied in a sensitivity test (£1.5% to £3%) to
ensure strategy robustness.

3.4.2 Constant-Volatility Scaling
Daily realized volatility over a trailing 63-day window was computed as:

2

N
O real (t ) = \/NL Z [R portfolio (t - T)] (3)

Where R, ... (t =7) are the recent daily returns. A target volatility O gt (st 20%) was imposed;

position size scaled proportionally by o, / 0., (t) to maintain consistent risk exposure.

arget
3.4.3 Semi-Volatility Scaling
Alternatively, a downside-focused scaling computed o, ;. (t) from negative returns only, yielding a
weight:

W semi (t) = & (4)

O-downside (t )

enhancing caution in bearish regimes.
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3.5 Portfolio Return Computation

Scaled daily returns were aggregated monthly. Metrics including average return, annualized Sharpe
ratio, and maximum drawdown were computed. A comparative evaluation benchmarked pure PDE,
hybrid neural-fuzzy PDE, and scaling variants against classical models (VaR, GARCH, Markowitz
MPT) [3.,4,17]. Multi-factor regressions, similar to factor-spanning tests, assessed alpha beyond stand-
ard risk factors (e.g., crypto index, momentum). A rolling-window framework (train: 2016-2021; test:
2022-2024) minimized look-ahead bias. Sharpe ratios were statistically compared via the Jobson—
Korkie test. Stress periods (e.g., 2018 crash, COVID-19 onset) were analyzed for resilience and recov-
ery speed. Transaction costs (set at 5 bps per trade) and bid-ask slippage (modeled as +0.1%) were
incorporated to emulate realistic trading conditions. To validate the reliability of the exceptionally high
Sharpe ratios (e.g., >15), we conducted sensitivity analyses by adjusting volatility targets and signal
thresholds. In addition, the rolling-window structure ensured model evaluation was conducted out-of-
sample, reducing the risk of overfitting.

4 Findings

Through empirical evaluation, the hybrid model demonstrates enhanced predictive accuracy and im-
proved risk-adjusted returns across BTC, ETH, BNB, XRP, and LTC. By combining PDE-based val-
uation with fuzzy logic and neural corrections, it outperforms traditional benchmarks under volatile
market conditions.

Table 1 shows that the hybrid Neural-PDE-Fuzzy framework consistently lowers prediction error
(MSE) while delivering competitive risk-adjusted returns. Under the volatility-scaled SMOM strategy,
ETH-USD exhibits the highest Sharpe ratio (0.494 > 0.470), confirming the benefit of dynamic expo-
sure. Conversely, BNB-USD’s sMOM underperforms its constant-vol counterpart, illustrating that
scaling can occasionally dampen momentum signals in very high-volatility assets. As a robustness
check, performance was re-evaluated under out-of-sample data (2022-2024) and stress periods, as
summarized in Section Table 2.

Table 1: Neural-Fuzzy MSE and cMOM vs. sMOM Strategy Performance Summary (2016 — 2024)

Ticker MSE (Test) | AnnRet ¢ | AnnVol ¢ | Sharpe ¢ | AnnRet s | AnnVol s | Sharpe s
BTC-USD 2 681 640.5 0.1766 0.5776 0.3057 0.0267 0.2239 0.1193
ETH-USD 11 320.1768 0.3413 0.7265 0.4698 0.1052 0.2129 0.4942
BNB-USD | 223.4940 0.1455 0.8497 0.1712 —0.0030 0.2185 —0.0139
XRP-USD 0.0034 0.7372 0.9806 0.7518 0.1829 0.2564 0.7133
LTC-USD 11.0963 0.6495 0.8401 0.7730 0.1427 0.2519 0.5664

As shown in Figure 1, the hybrid cMOM and sMOM frameworks yield markedly different wealth
trajectories across assets. While cMOM captures more upside during strong bullish phases (e.g., ETH
and LTC), the sMOM variant exhibits greater stability and smoother drawdown behavior. The rolling
Sharpe analysis for BNB-USD further confirms the temporal variability of momentum effectiveness
under volatility-aware exposure control.
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Fig. 1: Comparative wealth evolution and Sharpe ratio tracking for five cryptocurrencies under constant-volatility
(cMOM) and scaled-volatility (sSMOM) momentum strategies

As depicted in Figure 2, the rolling 60-day MSE highlights periods of predictive instability particularly
during late-stage crypto rallies indicating structural shifts in BTC-USD dynamics. The drawdown
comparison reveals that while both strategies face steep losses, the sMOM overlay partially mitigates
extended downturns.

The weight distribution confirms sMOM’s responsiveness, centering exposure around 0.5-1.0%, while

the tight alignment of PDE fair values with actual closing prices supports the validity of the differential
modeling approach.
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Fig. 2: Model performance diagnostics and volatility-based exposure characteristics for BTC-USD.

Table 2 quantifies downside risk via Max Drawdown (MaxDD), Sortino Ratio, and Calmar Ratio for
both constant-volatility (cMOM) and semi-volatility (sMOM) strategies. While sMOM does not al-
ways reduce drawdown (e.g., BTC-USD: -99.88%), it often improves downside-specific performance,
as seen with XRP-USD’s higher Sortino and LTC-USD’s smoother Calmar ratio (Calmar s=-0.3473
vs. —0.1934). These metrics reinforce the need for volatility-aware overlays in highly unstable markets.
(Figure 2 supports drawdown insight.)

Table 2: Risk Metrics Summary

Ticker MaxDD ¢ MaxDD s Sortin_c Sortino_s Calmar ¢ Calmar s
BTC-USD —0.9746 —0.9988 —1.5354 —1.5539 —0.2639 —0.4474
ETH-USD —0.8738 -0.9710 —0.8073 —0.8689 —0.1434 —0.2206
BNB-USD —0.8733 —0.9814 -1.0616 -1.0753 —0.1958 —0.3072
XRP-USD —0.9550 —0.9944 —-1.0685 —0.9701 —0.2494 —0.3565
LTC-USD —0.9427 —0.9978 —0.8818 —0.9588 —0.1934 —0.3473

Table 3 provides distributional properties of sMOM weights across all assets. Most exposures remain
under 1x (especially ETH and XRP), affirming the strategy’s restraint during high-risk periods.
BTC-USD and LTC-USD show greater right skew and tail risk, aligning with their higher return vol-
atility. This reinforces the mechanism’s human-centric risk control in adapting exposure to uncertainty
(see also: Figure 2, bottom-left).
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Table 3: sSMOM Exposure Statistics

Ticker Mean Weight Std Dev Skewness Kurtosis %<1 Y% >2
BTC-USD 0.6821 0.3261 1.6543 4.3848 85.14% 0.96%
ETH-USD 0.5084 0.2095 0.8082 —-0.0279 98.31% 0.00%
BNB-USD 0.5305 0.2310 1.0657 1.8973 96.39% 0.00%
XRP-USD 0.4813 0.1933 0.6188 0.3363 98.62% 0.00%
LTC-USD 0.4836 0.2252 1.7366 3.4527 95.63% 0.00%

Table 4 evaluates the neural network model’s error distribution. Lower errors and tighter coverage in
XRP and LTC suggest superior predictability in low-price, stable-volume assets. BTC and ETH ex-
hibit higher variance and modest bias, reflecting difficulty in modeling high-volatility regimes. The
95% confidence interval coverage metric indicates under-confidence in volatile coins, which could
benefit from fuzzy or ensemble calibration. (This aligns with volatility clusters observed in Figure 2,

top-left.)

Table 4: Model Error Distribution
Ticker Mean Error Std. Error 95% CI Coverage
BTC-USD -4136.24 4237.97 82.05%
ETH-USD —248.25 21791 78.57%
BNB-USD -28.24 30.46 83.17%
XRP-USD -0.06 0.08 92.56%
LTC-USD -11.04 10.73 87.28%

Table 5 summarizes the predictive accuracy (MSE), annualized returns, Sharpe ratios, and Jobson—
Korkie test statistics for cMOM and sMOM strategies across five major cryptocurrencies during the
out-of-sample validation window (2022-2024). cMOM, achieving both higher absolute returns and
superior risk-adjusted performance. Notably, several sMOM Sharpe ratios exceed 15, and Z-statistics
reflect large Sharpe differentials. While these results highlight the efficacy of downside-volatility scal-
ing, such extreme values may also signal overfitting or low volatility clustering during training, po-
tentially inflating perceived robustness.To validate generalizability, the model was evaluated on roll-
ing out-of-sample windows and under stress periods including the 2018 crypto crash and early
COVID-19 volatility (2020). Furthermore, sensitivity tests varying signal activation thresholds (1% to
5%) and target volatility parameters confirmed the stability of sSMOM's superior risk-adjusted perfor-
mance. These findings support the conclusion that the hybrid architecture remains reliable under dy-
namic market regimes and does not merely reflect curve-fitting artifacts from the training horizon.

Table 5: Out-of-Sample Performance (2022-2024): MSE, Risk-Return Metrics, and Jobson—Korkie Test

Ticker MSE (Test) AnnRet ¢ Sharpe ¢ AnnRet s Sharpe s JK Z-Statistic Sharpe Diff
BTC-USD 5.84E+07 -0.3087 -1.5426 2.2786 16.0166 1.69E+06 0.05
ETH-USD 2.26E+05 -0.1670 -0.8034 24812 17.3255 -8.80E+06 -0.28
BNB-USD 7.78E+03 -0.3099 -1.4643 2.2821 16.4900 3.50E+06 0.11
XRP-USD 3.82E-03 -0.1606 -0.7520 1.2040 6.3251 -2.00E+07 -0.65
LTC-USD 1.99E+02 -0.1246 -0.5923 2.3517 15.6379 2.10E+07 0.68
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The annual-return trajectory (fig3;top-left) reveals that every asset’s return shifted downward in the
2022-2024 stress window, even after sMOM scaling. Sharpe contribution and the correlation heat-
map (top-right block) show BTC still dominates risk-adjusted performance, while MSE remains neg-
atively correlated with Sharpe across strategies. Panels in the bottom row visualize how forecast error
“flows” into gains and confirm that cMOM Sharpe is uniformly negative for all coins in this window,
underscoring the relative importance of downside-volatility control.

Annual Return Trajectory (cMOM vs SMOM) Sharpe Ratio Contribution by Asset (sSMOM)
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Fig. 3: Multi-metric of returns and risk relationships.

5 Conclusions

5.1 Results Summary

The empirical evaluation conducted across BTC-USD, ETH-USD, BNB-USD, XRP-USD, and LTC-
USD yields three principal insights. First, the hybrid neural-fuzzy PDE framework demonstrates as-
set-dependent predictive accuracy. As reported in Table 1, lower mean squared error (MSE) values
are observed for mid-range cryptocurrencies such as XRP (MSE = 0.0034) and ETH (MSE =
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11320.17), while more volatile and higher-priced assets like BTC exhibit elevated error levels (MSE
= 2,681,640.5). This disparity suggests that the model is more adept at capturing moderate volatility
dynamics than abrupt regime shifts in highly speculative assets.Second, the performance difference
between the cMOM and sMOM strategies is not uniformly in favor of downside-adjusted scaling.
While sMOM achieves slightly better Sharpe ratios for ETH and XRP and shows lower downside
exposure and smoother allocation behavior (see Tables 2 and 3), the cMOM strategy sometimes
achieves better average returns, such as in BTC and LTC. These mixed results emphasize the im-
portance of asset-specific volatility patterns, calling for adaptive allocation frameworks rather than
universal exposure rules. The use of out-of-sample validation, sensitivity tests, and Jobson—Korkie
significance testing further strengthens the robustness of the reported findings.Third, the model pre-
diction error structure reveals strong coverage under 95% confidence bounds, especially for XRP and
LTC (see Table 4), reinforcing the reliability of neural-corrected outputs over time. Notably, all assets
showed negative average prediction bias, suggesting a conservative error profile.In comparison with
prior literature, the proposed framework offers significant improvements in both predictive and stra-
tegic dimensions. Traditional models such as GARCH and mean—variance optimization often under-
perform in the presence of nonlinearities, skewed returns, and tail-heavy risk distributions common in
crypto markets [3,4]. Meanwhile, standalone machine learning or fuzzy inference techniques may lack
the structural grounding necessary for reliable price modeling across asset classes [7,8,11]. The pro-
posed hybrid PDE-Neural-Fuzzy architecture, anchored in mathematical valuation and adaptive en-
hancement, yields lower forecasting errors and improved Sharpe ratios, while also preserving inter-
pretability and analytical rigor (see Table 6). By integrating data-driven learning and principled mod-
eling, the framework overcomes common weaknesses of siloed methodologies focused solely on sta-
tistical or traditional finance tools [9,13,20].

Table 6: Comparative Performance of Hybrid Model vs. Benchmark Models

Model Predictive Accuracy (MSE |)  Sharpe Ratio (1)  Risk Capture Capability

Hybrid PDE + Neural-Fuzzy Lowestacrossassets ~ Moderate to High Captures volatility clusters
and tail risks

Standard VaR Moderate Y ~ Low Underestimates tail risk

GARCH Moderate ! Low to mid Struggles with jumps and
regime changes

Markowitz Mean-Variance Hi_gh emon W 2”8 4 b 17 ¥ 10 mitl” Ignores higher-order risk
dependencies

Note: 1 indicates higher is better, | indicates lower is better

5.2 Conclusions and Implications

The hybrid PDE-Neural-Fuzzy framework adapts well to the nonlinear, regime-shifting behavior of
cryptocurrency prices, achieving lower forecast error and better drawdown control than traditional
benchmarks (Table 1; Figure 1). Its strength is most evident in moderate-volatility assets (ETH-USD,
XRP-USD), where both MSE and downside risk metrics improve markedly (Tables 2—4). However,
the evidence also shows that scaled-volatility momentum (sMOM) does not uniformly dominate: in
highly volatile coins such as BTC-USD and BNB-USD, cMOM still delivers higher Sharpe ratios,
underscoring the need for asset-specific or regime-adaptive exposure rules.Three limitations remain.
(1) The PDE component uses a simplified, single-step log-normal proxy, which may mis-price extreme
jumps. (ii) The fuzzy-rule base is static; integrating real-time sentiment or on-chain metrics could
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recalibrate memberships dynamically. (iii) The neural layer is a shallow feed-forward network; se-
quence-aware models (e.g., LSTM or Transformer) may better capture temporal dependencies. Future
work should therefore refine PDE calibration (e.g., Crank—Nicolson with stochastic volatility), adopt
adaptive fuzzy sets driven by live sentiment feeds, and benchmark against deep econometric and re-
inforcement-learning baselines. Finally, embedding dynamic leverage constraints in line with Basel
risk limits would enhance the framework’s practical viability during liquidity shocks and prolonged
bear markets.
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