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Abstract

Purpose: In the banking industry, retaining loyal customers is considerably more cost-effective and profitable than
acquiring new ones. Customer churn remains a major challenge for banks, directly reducing profitability, increasing
marketing expenditures, and lowering market share. This study evaluates the performance of machine learning algorithms
in predicting customer churn in the branches of a state-owned bank in Iran between 2021 and 2024. By focusing on
customer retention and minimizing the costs associated with attrition, the study aims to develop an efficient and
interpretable model for identifying customers at risk of churn.

Methodology: This descriptive-analytical and retrospective study analyzed data from 2,025 active customers over a four-
year period. For each customer, 12 features covering transactional, behavioral, and demographic characteristics were
collected. Following data cleaning, z-score normalization was applied. Several machine learning algorithms—including
Decision Tree, Random Forest, Support Vector Machine, Multilayer Perceptron, Bayesian Network, and XGBoost—
were implemented in R. Their performance was assessed through 10-fold cross-validation based on accuracy, sensitivity,
and specificity.

Findings: Among the 2,025 customers examined, 325 (16%) were identified as churners. Statistical tests revealed no
significant differences between churners and non-churners in terms of age, relationship duration with the bank, and
average deposits during the past six months. Among the models tested, XGBoost demonstrated superior performance
with an accuracy of 96.89%, sensitivity of 87.11%, and specificity of 98.71%. The area under the ROC curve (AUC) for
this model was 0.9907, indicating excellent discriminatory power.

Originality /Value: The contribution of this study lies in integrating advanced machine learning techniques with rigorous
statistical analysis using real-world banking data. To the best of our knowledge, this is among the few studies to
systematically compare multiple ML algorithms within the Iranian banking context, emphasizing both interpretability
and robust validation. The findings provide practical insights for banking policymakers to design proactive strategies
aimed at improving customer retention.
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Input: Training data X_train, y_train; Test data X_test
Output: Predicted labels y_pred

1. Initialize root node with all training samples

2. For each node:

a. For each feature, compute best split threshold with highest information gain
b. Choose feature & threshold that maximizes impurity reduction
c. Split node into left/right children

d. Repeat the process recursively for each child node until the maximum depth is reached or no further split improves
purity.

3. Assign a class label to each leaf node using the majority class of its samples.

4. Predict labels y_pred for X_test by traversing the tree from root to leaf based on feature values,
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Input: Training data X_train, y_train; Test data X_test
Output: Predicted labels y_pred

Fort=1to T (number of trees):

a. Draw a bootstrap sample from X_train .

b. Build a Decision Tree using a random subset of features at each split.
c. Store the trained tree ht(x)

For prediction:
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I.For each test sample xxx, collect all tree predictions ht(x).
I1. Aggregate predictions by majority vote:
I11.Ypred=mode{h1(x), h2(x),..., hT(x)}
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Input: Training data X_train, y_train; Test data X_test

Output: Predicted labels y_pred

1. Define linear kernel function

2. Optimize the following objective:

) 1
miny, ¢ 7 IWII? + CLié
S. t.

yiwTp(x) +b) =1—-§,& = 0.

3. Compute support vectors and parameters w,h.
4. Predict each test sample xeXtest:

YVpred = Sign(WT(:b(x) + b).

1 Support Vector Machine (SVM)
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3.

oo 030l b 3 e B30 it i [ e | W

(6355 S\a pkie) el (slaosls :X_train

(Bdn olis) ) sel (ssmar » 1y_train

ase)l sWsesls :X_test

asesl esls gl e Lawss odS sy polis b i y_pred

Lao3s slo W

s g0 0353 s el i 4y 4 (1o 51 Blosl) il (sakor 2D

S 2l | andle Cosgdees badisad S das o 03ll aS SVM s Gloes e i€

S g 2ol ez (g 3luaiaS 5 4l (il o 1033150 45 SYM s (s5lundaie 2l :C
S e Sl VL bl b gliad a1y Laesls a8 SVM 3 (5 S Coil) b S oS :9(X)
Waosls 3l ith 4 4e3 oXi

Xi 300 b Ble (3l5 oy 2y

‘auiz rac 4t -Y-F

¥ s olgn ¥ L LSS sas 4Y SO ol Y ki 5l ST Sl Goes (5500 2,8 sladie 5l (S a¥ i eae oSS
adlas ol 55 K58 o Jamte dm s 13 AN Glapis, s 4 s wolro b oS Sl o ol Jold Y a 55 oo SIS (9 >
bl s o f 3ladbad B ok 5l e (o oS5 sis oo Gl -l )l a3 4 3l 31 g (52505 Slresls
ore 238 el Slaagy (5SS 5 Uas HLa) e o )s801 51 o3litsl L 4 (230 il GRl33l Jas od Jailys o5 s ke QUl5
e e )lzs) slaedls (5 3,50 35 5 (eblite o5 0T Uas 0 :S0ls o) iy 3 6 s JBlt bl 2550 85

L
s e olis Vi eae sl U5 5 sl ol Jole p) ASas
Input: Training data X_train, y_train; Test data X_test

Output: Predicted labels y_pred

Initialize network architecture with input, hidden, and output layers.
Randomly initialize weights and biases.
For each epoch:

I Multi Layer Perceptron (MLP)
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a. Perform forward propagation to compute output:

a® = f(WOal=D 4 pO),

b. Compute loss between predicted and true labels.
c. Perform backpropagation to compute gradients of weights.
d. Update weights and biases using gradient descent.

4. Predicty_pred for X_test using forward propagation,

Y

(8355 Sawiie) L&) 5el (slresls :X_train

(Gdn olis) ) sel (ssmr » 1y_train

asesl sWeesls :X_test

0523l Slresls (5l dibe Lo 5 0l sy p3lie b s 1y_pred
WV eee aSih o) Y (ladbd) > 5 Lls

MLP 5 Y &Y bl Sls 0 5 bagy s e sle bl WI
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Input: Training data X_train, y_train; Test data X_test

Output: Predicted labels y_pred

1.Define network structure G=(V,E), where each node represents a variable.
2.Estimate conditional probability tables (CPTs) P(XilParents(Xi)) from X_train.
3.For each test sample:

a. Compute posterior probability for each class c:

P(c | X) o P(c)[1;P(X; | Parents(X))).
b. Assign class with the highest posterior probability.

4.0utput y_pred for all samples in X_test
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Input: Training data X_train, y_train; Test data X_test

Output: Predicted labels y_pred

1. Initialize model with a constant prediction (e.g., mean of ytrainy_{train}ytrain).

2. Fort=1to T (number of boosting rounds):
a. Compute pseudo-residuals:

B aL()’iJA’i)_
A%

T
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b. Fit a regression tree ft(x) to predict residuals ri
¢. Compute leaf weights to minimize loss with regularization.
d. Update model:

Vi < i +nfe(xp).

3. Predicty_pred for X_test using the sum of all trees:

Ypred = Z?:ﬂ?ft (x),
oS
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Ol slaesls :X_test

0523l Slaesls (5l dibe Lo 5 0l s s polie b s 1y_pred
RSP TR (178 Cgl: s Qli.s\ﬁ Ty

P4 500 & by po 88l5 i 2 Y

Jde uf«jjﬂ Ol s i dsed sy o s e e B

S e U8 1) XGBOOSE 5 Ay S 53 2,30 ()ljee 45 (5 1850 A
Boosting Ll 3 51t (sal e 53 (S 55) (o S @b fe(0)

0815 asgoze -Y-V

Rl 03 A Goslmer 5 g L3 JRB VF T B VF e cladle 53 oS (s GaSL 3 (S 0 4 g e slaosls plaie s
Cudgdons ¢Cyabuy sl 55,0 ulol  3ldad ol ol Sl 15,055 st Sl 0l 2ia 55 b Jad e (ST S5s VY (g
ol 5l sl il o s S5 31 (6 2 31 Sl 13 S el S5l el Us e Canl sl s 5 SSL Bl (sl
VY sl ol by f>jﬂ¢.w>)'\blw;i.or@.oLg)\:é)QLo)Ua\>ﬁ4)§w}¢3u§2;>\wUZAK}:)&M%B&K}JJAL;W

S e 3l adde (3luesly Jas CoiB 5 o i S35 o emslie Dol cosl

oo VY 3 (aS15 a3B) Jlad b (slaols 3IUns (6 e (§Lae3 youn 1S «SSL b alarly oy ok (20 pow Jol @315 VY 550 2 (5l
ol VY 53 e poos (1 Slie () ¢y saloe) aniedS elo VY 55 Laed oo ailale (SSloo Jolum caisdS ole £ 55 il sy 2S5 sl (Sl carndS
La 813 sl labe S5l ((Jby o gdes) a22edS ole VY 3 la 2815 Sl cJ}Iubw@pLﬁ-uUA.wéLaui;SU)‘mmﬁ‘4:&55

.,\:“@,Tcp_(thOxp)mﬁouv);uum@égwd}muw@p%uuuéu&s\p\mmzm;:xeuw,;




eve 31 00l b SOb G sl b 39 5 (i) i / e

\.¥

Ol it G S5 -Y Jos
Table 1- Customer features.
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Table 3- Turbulence matrix.
Predicted

Positive Negative

Real Positive  True Positives (TP)  False Negatives (FN)
Negative  False Positives (FP)  True Negatives (TN)

Lag,.:,_)).ﬁl Lo aydas oS Sl Jlsls 5 015 K55 0 j2iee Slas o5 5 4 True Negative (TN) 5 Positive (TP) slaslre i g5 ol 5
False 51555 ol 0313 jaseds 013,50 55 Jdhe Jawgs bzl w48 ail o Isbs oL iee slias False Positive (FP) «is g ol gluaibs
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Table 4- Calculation of performance metrics used.
Performance criteria Calculation
Accuracy TP + TN
TP + FP + TN + FN
Sensitivity/ Recall TP
TP + FN
Specificity TN
FP + TN
lrazdl -Y
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Table 5- Description of study variables.
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Figure 1- Comparing the performance of machine learning algorithms.

Plot {Area under ROC = 0.9907)
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Figure 2- ROC chart for the Xgboos algorithm.

* Area Under the Curve (AUC)
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