

University of
Sistan and Baluchestan

Uppsala University

Iranian EFL Instructors' and Students' Experiences with Remote Education: Responses to COVID-19 Pandemic

Behazd Aghajanzadeh Kiasi

Assistant Professor, Department of English Language, Islamic Azad University, Rasht, Iran,

Email: aghajanzadeh1970@yahoo.com

Abstract

Grounded in social learning theory, this study examined Iranian English language instructors' and students' perceptions of the contribution of Vadana-Mediated Learning Management Systems (VMLMS) as a remote education platform to online English language learning during the COVID-19 pandemic. A total of 54 university EFL instructors and 164 English language students were selected through convenience sampling from Islamic Azad Universities (IAU) in Gilan Province, Iran. To investigate their perceptions of VMLMS, one common questionnaire (for both instructors and students) and two separate questionnaires (one for instructors and one for students) were administered. Exploratory factor analysis was conducted to evaluate the common and instructor questionnaires. Descriptive analyses indicated that both groups held unfavorable perceptions of VMLMS. The results of the MANOVA revealed statistically significant differences between instructors' and students' perceptions of VMLMS. The analysis also showed that students agreed they did not receive sufficient support from either instructors or the system. These findings may have implications for universities and educational administrators seeking to facilitate the implementation of online instruction in the Iranian context.

Keywords: COVID-19 pandemic, English language learning, instructors' perceptions, students' perceptions, Vadana-Mediated Learning Management System (VMLMS)

Received: July 19, 2024 Revised: November 11, 2024 Accepted: November 29, 2024 Published: January 13, 2025

Article type: Research Article

DOI: 10.22111/ijals.2025.43231.2296

Publisher: University of Sistan and Baluchestan

© The Author(s).

How to cite: Aghajanzadeh Kiasi, B. (2025). Iranian EFL instructors' and students' experiences with remote education: Responses to COVID-19 pandemic. *Iranian Journal of Applied Language Studies*, 17(2), 175-201. <https://doi.org/10.22111/ijals.2025.43231.2296>

1. Introduction

The COVID-19 pandemic, which began in early 2020, disrupted life across the world and caused significant changes in all aspects of people's lives (UNESCO, 2020). Like other sectors, the pandemic interrupted and destabilized the education system in many ways. In times of crisis, the disruptive effects on normal instruction often compel educational systems to modify nearly all aspects of teaching and learning, with the most pressing concerns centered on the well-being and academic achievement of students during such periods of uncertainty (Cannon et al., 2021). One of the major measures affecting the education sector was the suspension of face-to-face instruction, which influenced more than 94% of the world's student population (UNESCO, 2020). As efforts to combat the COVID-19 pandemic began and continued, educational institutions and teachers were at the forefront, working with students to ensure that their social, emotional, mental, physical, and academic needs were met. The absence of face-to-face lessons due to disasters and disease outbreaks caused students to fall behind academically or exacerbated existing learning difficulties (Esnard et al., 2017; Pesnell, 2020).

The preventive measures taken to curb the spread of COVID-19 brought about a massive shift in the delivery of education, as institutions were compelled to transition from classroom-based instruction to online learning. Consequently, countries around the world suspended on-site teaching and learning and adopted virtual education to mitigate the pandemic's spread. As a result, instructors faced the challenge of determining how to teach effectively during the crisis. They continued to refine and adapt their instructional methods in response to the rapidly evolving conditions of the COVID-19 pandemic (Angode & Ressa, 2021).

In response to university closures, institutional leaders recognized the need for academic establishments to implement strategies to sustain education and provide support for students. This process involved revising curricula and policies to maintain instruction through e-learning approaches that included distance education alternatives where feasible and appropriate. Providing opportunities for students to continue learning through e-learning initiatives during closures posed significant challenges for administrators, teachers, and students alike (Elish-Piper, 2020). Given the prevailing circumstances, teachers and administrators were encouraged to acknowledge that students could not immediately adapt to online classes, which often resulted in premature assignment distribution (Means et al., 2020). Accordingly, deadlines for course assignments, as well as course and institutional policies, were reconsidered.

In this crisis situation, as Espino-Díaz et al. (2020) argue, it was crucial to reflect thoroughly on student evaluation and improvement while considering the collateral effects that might lead a substantial number of students to repeat courses. More than ever, students understood the situation and engaged in meaningful learning opportunities. An example of this was the action plan implemented by the Islamic Azad University (IAU), which relaxed certain academic requirements and adopted flexible evaluation criteria, as well as adjustments to content and methodological approaches for online instruction.

1.1. Measures Taken by IAU in the COVID-19 Pandemic

Regarding the condition of education in Iran, the country joined the rest of the world in struggling with the outbreak of COVID-19 as a global crisis. Social distancing and quarantine measures were mandated by the Iranian National Center for COVID-19 Control. As part of these measures, educational institutions across the country were closed and sought to implement remote methods of instruction. Consequently, education in Iran experienced a shift in learning strategies after the COVID-19 outbreak, as all formal educational activities in schools and universities were suspended. The transition from a face-to-face delivery system to an e-learning mode of education occurred at all levels, ranging from primary and secondary schools to higher education.

At the height of the COVID-19 pandemic in the country, the Islamic Azad University (IAU), like many other higher education institutions in Iran, conducted many of its classes through a learning management system (LMS) to provide virtual education services, facilitate students' access to learning, and connect professors and students online. IAU employed the Vadana system as its LMS to deliver online education. On the Vadana website, users can select their province and city of study and access virtual tutorials related to their university. The system allows students to receive online training in their field of study at any time and from any location. Vadana offers high speed, strong security, compatibility with internet browsers and mobile devices, user-friendly design, password recovery options, and separation of academic units by city and province. Despite the challenges posed by COVID-19, the pandemic accelerated the development of Iran's virtual education infrastructure. Vadana, as the main educational platform, provided instruction through Adobe Connect integration, which, according to Adobe (<https://helpx.adobe.com/adobe-connect/using/sharing-content-meeting.html>), is a software suite for remote training, web conferencing, presentations through PDFs and PowerPoint files, desktop sharing, file exchange, whiteboard collaboration, and management of interactive audio-visual communication.

2. Theoretical Framework

In the 1950s, computer designers began to consider the development of learning management systems (LMSs) as both plausible and essential for educational purposes (Watson & Watson, 2012). Over time, advancements in technology and related tools supported the structure of online learning, particularly in the early stages of its emergence in the 1990s (Kehrwald & Parker, 2019). The LMS facilitated student learning by monitoring academic progress, providing continuous access to instructional content, and implementing assessments (Watson, 2020). It also offered a framework for synchronous instructional methods, such as video and online classes, allowing learners to interact with their instructors in real time through live chat (Alzahrani, 2019). These indicators of online participation can also be regarded as measures of behavioral engagement. Such educational developments led educators to believe that online-based instruction

is inherently interactive (Johnston et al., 2005) and that online teaching creates environments in which students actively engage with learning materials (Palloff & Pratt, 2013).

The present study is grounded in Transformative Learning Theory (TLT), proposed by Mezirow (1978). Mezirow (1991) posits that adult learners, having lost their capacity for critical reflection on existing practices, seek to modify those practices to align with contemporary worldviews. TLT serves as a suitable framework for this study, as instructors needed to learn how to teach remotely and cope with the disorientation brought about by the COVID-19 pandemic. Phillips (2020) argues that teachers who successfully adjusted their pedagogical practices viewed their own learning processes as transformative. In line with TLT, he recommended further exploration of diverse learning tasks and practices.

Merriam and Bierema (2014) assert that TLT emphasizes the learning process through which individuals derive “meaning from one’s experience” (p. 84). Similarly, Eschenbacher and Fleming (2020) note that learners’ experiences during the COVID-19 pandemic may transform the education system, as teachers continually reflect on the implications of their professional learning. Van der Wal et al. (2019) contend that when educators interpret the challenges of an educational crisis as opportunities for transformative learning, this perception can lead to “turning points or opportunities [or] can lead to depression, broken relationships or careers” (p. 147). Therefore, it was appropriate to construct this study through the theoretical lens of TLT to analyze how teachers managed their professional learning during the COVID-19 pandemic and to explore how students adapted to new learning conditions under pandemic-related disruptions.

Although several researchers (e.g., Chatterjee & Roy, 2020; Haleman & Yamat, 2021; Ilmi et al., 2020; Jain, 2020; Pastor, 2020; Pesnell, 2020) have examined the effects of the COVID-19 pandemic on students’ academic performance and attitudes, limited research has addressed teachers’ perceptions of online language instruction (Bijeikiene et al., 2011; Richardson & Newby, 2006). Moreover, to the best of the researcher’s knowledge, no study has examined or compared teachers’ and students’ perceptions of online classes within the context of evaluating remote learning during the COVID-19 pandemic and university closures in the Iranian EFL setting.

2.1. Literature Review

The rapid expansion of information and communication technology (ICT)-supported education has created various opportunities for online instruction in higher education (Szeto, 2011). Related studies have compared the effectiveness of online and face-to-face learning (Brown & Liedholm, 2002) and examined students’ satisfaction and learning outcomes (Brabazon, 2012; Gragg et al., 2008). Online education programs in English as a Foreign Language (EFL) have been increasing in number (Allen & Seaman, 2013), ranging from elementary school to doctoral levels (Mastel-Smith et al., 2015). With this growing prevalence of online programs, faculty members must remain up to date in their pedagogical roles and develop the specific skills required to function effectively in virtual learning environments in order to enhance students’ learning outcomes.

Carter et al. (2014) conducted a mixed-methods study in Canada to examine students' and faculty members' perceptions of strategies that promote meaningful online learning with adequate educational and technological support. The findings produced four major themes: the human connection between faculty and students, information technology (IT) support, course design tailored to online learning, and institutional infrastructure for supporting virtual education. In another study, Frazer et al. (2017) explored nursing faculty members' perspectives on effective online teaching and quality indicators in an asynchronous online environment. The findings showed that effective online teaching involves facilitating, connecting, leading, and collaborating with students, all of which contribute to student success, continuous improvement, and the application of knowledge to real-world professional contexts.

Ilmi et al. (2020) conducted a descriptive survey study on e-learning during the COVID-19 outbreak. Their results revealed that the implementation of e-learning was moderately effective (27.74%), although several challenges emerged. They noted that while e-learning functioned reasonably well, further innovations were needed.

In another study, Toquero (2020) reported that most higher education institutions in the Philippines were unprepared to conduct online classes because the previous instructional system relied on blended learning. Consequently, the sudden adoption of e-learning led to significant changes in students' learning experiences. The impact of the COVID-19 pandemic on the education of students with special needs was examined by Angode and Ressa (2021) in Kenya, who reported negative effects of school closures on the academic achievement of these students.

Pesnell (2020) investigated the experiences of teachers in the United States during the early stages of the pandemic. The study found that teachers employed a variety of methods, including new digital tools, to deliver instruction. However, they did not receive sufficient institutional support or clear guidelines. The study also highlighted academic disparities resulting from limited Internet access, inadequate knowledge of e-learning methods, and misconceptions among students and parents that remote learning was optional or inconsequential. Implementing an experimental study comparing asynchronous and synchronous methods using the Blackboard LMS, Alzahrani (2019) found that nearly half of the students preferred synchronous video conferencing, while more than 50% preferred asynchronous sessions.

The related literature indicates that although most universities worldwide have transitioned to online learning, and the impacts of this shift are likely to be far-reaching, with the possibility that online learning becomes the new norm, the fact that this transition was power-coercive and unplanned is concerning, even if it was the only viable option for continuing educational provision (Watson, 2020). However, experts in educational technology and online instruction argue that the implementation of online instruction presents several limitations and challenges. Most notably, the lack of meaningful interaction between instructors and students constitutes a significant challenge for online education (Eschenbacher & Fleming, 2020). Another major obstacle is the need for instructors to develop and prepare appropriate materials for online instruction, which places

considerable demands on their time and expertise (Means et al., 2020). Moreover, delays in providing feedback and responding to students' questions can lead to misunderstanding and frustration. As Pesnell (2020) notes, many instructors lack the necessary skills and experience to implement online instruction effectively, and insufficient interaction in online courses often fails to meet students' authentic learning needs.

Despite these challenges, related studies have confirmed that online instruction remains a robust and effective approach to teaching and learning from the perspectives of many teachers and students (Phillips, 2020). Moreover, several scholars in language education have emphasized that the use of the Internet and online tools enhances EFL students' autonomy and facilitates their learning (Pastor, 2020).

As the COVID-19 pandemic had a global impact on educational practices, numerous remote learning approaches were adopted as instructional delivery shifted in response to the crisis. These changes required access to technological tools and reliable Internet connectivity, which presented serious challenges for both teachers and students across the country. Limited or unstable Internet access, the lack of appropriate digital devices, difficulties in using electronic media, and the need to adapt to multimodal instructional formats involving print, audio, and video technologies were among their primary academic concerns. Additionally, adapting to synchronous online learning environments, where learners were expected to collaborate and receive support remotely from teachers and peers, proved demanding.

Therefore, it is essential to understand how instructors and students adapted their teaching and learning practices to mitigate the impact of the pandemic on education. Effective alignment between instructional approaches and learner characteristics has been proposed as a key strategy for enhancing student satisfaction, which in turn determines the success or failure of an e-learning process (Ortega-Maldonado et al., 2017). Accordingly, the present study aims to provide insights into language instructors' and students' perspectives on the implementation of the non-optimal shift from face-to-face to online instruction in language-teaching courses in Iran during the COVID-19 pandemic. Specifically, this study seeks to explore and compare instructors' and students' experiences of teaching and learning in this context. The overall purpose is to develop an understanding of online teaching and learning practices by addressing the following research questions:

1. Do the instructors and students evaluate the VMLMS differently?
2. What is the instructors' evaluation of VMLMS?
3. What is the students' evaluation of VMLMS?

3. Method

3.1. Participants

This research employed an explanatory sequential mixed-methods design, in which the quantitative phase informed the qualitative phase as the data collection process progressed. The

participants included 54 male and female English language instructors, aged 26 to 55, who were teaching English at various branches of the Islamic Azad University (IAU) in Gilan Province, Iran. The sample was selected through a convenience sampling technique. Their academic specializations included Teaching English as a Foreign Language (TEFL), English Language and Literature, and Linguistics. Another group of participants comprised 164 male and female university students, aged 19 to 32, who were selected from the instructors' classes in the same universities in Gilan Province.

3.2. Materials and Instruments

To obtain the instructors' and students' perceptions of the VMLMS, one common questionnaire was developed based on related studies, as described in Section 3.3. For this purpose, a 45-item questionnaire containing five constructs, effective communication (nine items), scaffolding (eight items), instructional efficacy (13 items), technological efficacy (seven items), and student assessment (eight items), was employed. To specifically investigate instructors' perceptions of online classes, an additional 10-item survey addressing training and support as a sixth construct was administered to examine the assistance they received for conducting online classes. To explore students' specific perceptions of online classes, a questionnaire developed by Kulal and Nayak (2020) was used. This instrument consisted of three components, impact, comfort, and instructor support, each represented by three items. All questionnaires employed a five-point Likert scale with the options: strongly agree, agree, neutral, disagree, and strongly disagree. Exploratory factor analysis (EFA) had previously been conducted by the original developers to establish the construct validity of the instruments.

3.3. Procedures for Data Collection and Analysis

Based on the detailed descriptions provided by DiPietro (2010), 17 survey items were developed to represent two constructs of teaching practices: effective communication (nine items) and scaffolding (eight items). By adopting and modifying Bandura's (2006) Teacher Self-Efficacy Scale, 13 items were created to assess instructional efficacy. In addition, seven items related to technological efficacy were adapted from Wang et al. (2004). The construct of student assessment, comprising eight items, was designed to examine assessment practices in online classes. The items for this construct were compiled from the literature and informed by instructors' professional experiences.

With regard to the construct of training and support, 10 items were adopted from Black et al. (2009). These items addressed content and language knowledge, technology-related skills, online classroom management and communication with students, structuring instructional content, accommodating diverse learning styles, and evaluating high-quality resources for online teaching. All items were rated on a five-point Likert scale: strongly agree, agree, neutral, disagree, and

strongly disagree. Additionally, instructors were asked to indicate their priorities for receiving training and support by ranking each category as low, average, or high priority.

To ensure the content validity of the instrument, the draft questionnaire was reviewed by five faculty members with research expertise in Teaching English as a Foreign Language (TEFL) and online learning. The study employed exploratory factor analysis (EFA) to identify the possible underlying structure of interrelated variables (Child, 2006), determine the number of common factors, and assess the strength of the relationship between each factor and its corresponding observed variables (Field, 2013). Data gathered from 54 respondents were analyzed using EFA, which is based on the common factor model; a factor loading represents the extent to which a variable contributes to a given factor (Pallant, 2016). Due to the small sample size, EFA was performed separately for each construct. Using eigenvalues greater than one as the criterion (Hayton et al., 2004), a one-factor solution was extracted for each construct, and items with factor loadings below .45 were removed. Subsequently, internal reliability tests were conducted for the retained items. The final version of the questionnaire was developed based on the expert feedback received.

To administer the questionnaires to instructors, the researcher contacted the English language departments of participating universities to obtain instructors' contact information and invite them to participate in the study. After contacting 63 instructors and explaining the research objectives and significance, 54 agreed to participate. Their email addresses and WhatsApp numbers were collected, and the questionnaires were distributed electronically. For student participation, instructors were asked to forward the questionnaire to their students and encourage participation. In total, 164 students completed the questionnaire and submitted their responses directly to the researcher via WhatsApp and email.

All participants completed the questionnaires voluntarily and anonymously within one week. The collected data were subsequently coded, recorded, and analyzed using descriptive and inferential statistics in SPSS (Version 24).

4. Results

The reliability estimates were carried out for each construct of the common questionnaire (Table 1).

Table 1

Internal Reliability for Questionnaire Items

Constructs	Number of items	Internal reliability
Communicating effectively (CE)	9	.87
Scaffolding (S)	8	.78
Instructional efficacy (IE)	13	.81
Technological efficacy (TE)	7	.79
Student assessment (SA)	8	.83

All construct items had acceptable reliability (Cronbach's alpha > .6). Communicating effectively (CE), Scaffolding (S), Instructional self-efficacy (IE), Technological self-efficacy (TE), Student assessment (SA), and Training and support (TS) enjoyed acceptable reliability estimates of .87, .78, .81, .79, .83, and .86, respectively.

Furthermore, the reliability of the instructors' questionnaire was also estimated. As Table 2 displays, the reliability achieved for the questionnaire was .86 showing that the questionnaire was highly reliable for conducting the study.

Table 2
Internal Reliability for Instructors' Questionnaire Items

Constructs	Number of items	Internal reliability
Training and support (TS)	10	.86

4.1. Exploratory Factory Analysis (EFA)

To ensure that an appropriate sample size was obtained for the current research for FA, Kaiser-Meyer-Olkin (KMO) sampling adequacy and the Bartlett's test of sphericity were calculated. Based on KMO sampling adequacy, a measure over 0.5 is barely acceptable, and values between .8 and .9 are great and values above .9 are superb (Kaiser, cited in Pallant, 2016). In the present research questionnaire, the KMO sampling adequacy test statistic for all 55 variables was 0.838, which was large enough for further analysis and higher than the threshold value of 0.5 as shown in Table 3.

Table 3
SPSS Output for KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy.	.838
Bartlett's Test of Sphericity	4134.770
df	1120
Sig.	.000

As shown in Table 3, Bartlett's test of sphericity yielded a value of 4134.770. Therefore, in the present study, the test results confirmed that the included variables possessed satisfactory characteristics for conducting factor analysis.

Tables 4 through 9 present the results of the exploratory factor analyses (EFA) conducted on the common and instructor questionnaires. Based on the factor analysis of the first construct, *Effective Communication*, after the exclusion of Item 8, the remaining eight variables successfully formed the construct as originally intended. Consequently, Item 8 ("Vadana-mediated classes are more interactive than traditional courses") was removed from the total set of variables. The variance explained by the retained items improved following the application of principal components analysis (PCA) (see Table 4).

Table 4*EFA on Effective Communication*

Effective Communication: In VMLMS, ...	factors		Communality
	1	2	
1) instructors and students communicate frequently for students' engagement.	.936		.83
2) instructors' communication with students make them feel connected to instructors like face-to-face teaching.		.635	.74
3) instructors ask and expect suitable student communication.	.917		.72
4) instructors ease students' application of practical communication.	.785		.78
5) instructors set guiding principles for communication and interaction.		.616	.67
6) VMLMS classes are easily accessible to students.	.642	.301	.59
7) VMLMS classes are time-efficient.	.906	.092	.87
8) <i>VMLMS classes are more interactive than traditional courses.</i>	-.005	-.140	.22
9) Multimedia can be used in VMLMS.	.892	.288	.76

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization

Rotation converged in 10 iterations.

Based on the PCA with varimax rotation, Table 5, the variables intended to form the *Scaffolding* construct had high loading factors for all variables except variable seven which was excluded from the construct and the total survey instrument.

Table 5*EFA on Scaffolding*

Scaffolding: In VMLMS	factors		Communality
	1	2	
1) instructors adapt the course to facilitate students' adaptation.	.724		.74
2) instructors develop a structured environment.		.608	.71
3) instructors use the course tools to adapt course structure.	.524		.61
4) instructors use various strategies to teach the course content.	.613		.53
5) VMLMS provides equal opportunities for learners to learn English.	.421	.536	.67
6) VMLMS promotes collaboration among students.	.312	.601	.64
7) <i>Expansive feedback can be provided for students in VMLMS classes.</i>	.3.11	.084	.35
8) Students will be more autonomous in VMLMS classes.	.591	.178	.70

The PCA with varimax rotation showed that the variables intended to form the construct of *Instructional efficacy* experienced different factor high loadings. However, items six and seven failed to load highly resulting in their removal from the construct (Table 6).

Table 6*EFA on Instructional Efficacy*

Instructional efficacy: In VMLMS, ...	factors		Communality
	1	2	
1) instructors are able to have students on task on challenging assignments.	.820	.177	.77
2) instructors encourage students to share resources.		.707	.68
3) instructors use diverse practices according to students' needs.	.126	.788	.66
4) VMLMS classes are easy to be used.	.624		.53
5) VMLMS classes enhance students' motivation.	.511		.46
6) <i>VMLMS classes are based on learner-centered approaches to teaching.</i>	.011	.042	.14
7) <i>VMLMS classes are like the traditional face-to-face classes.</i>	.329	.252	.31
8) VMLMS classes help students during COVID-19 outbreaks.	.663		.53
9) VMLMS classes are educationally effective during COVID-19 outbreaks.		.772	.59
10) updated materials can be used.	.793	.064	.63
11) various types of materials can be used.	.684	186	.59
12) shared materials during the e-learning can be learned.		.922	.84
13) authentic materials are used.	.793		.621

The PCA with varimax rotation (Table 7) showed that the variables intended to form the construct of *Technological efficacy* indicated different factor loadings and communalities supporting the construct. However, the third variable failed to support the construct with a low factor loading of .233 and a communality of .21. Thus, it was excluded from the survey items.

Table 7*EFA on technological Efficacy*

Technological efficacy: In VMLMS, ...	factors		Communality
	1	2	
1) instructors are able to teach related language content by proper technology.	.620	.177	.63
2) students receive technological help when they have difficulty with the class		.751	.62
3) <i>students join in technology-related projects to ease their learning.</i>	.233		.21
4) instructors assign and grade technology-related projects.	.624	.073	.57
5) students gain support individually by adapting resources and support.	.511	.120	.51
6) VMLMS promotes instructors' computer competence.	.860		.72
7) VMLMS promotes students' computer competence.	.781	.430	.65

According to Table 8, the varimax rotation indicated that variables of the *Student assessment* construct loaded differently with different communalities that supported the construct. However, the third and fourth variables showed low factor loadings of .42 and .36, respectively. They were removed from the survey items.

Table 8*EFA on Student Assessment*

Student assessment: In VMLMS, ...	factors		Communality
	1	2	
1) instructors use various assessment forms to measure student progress.	.551	.223	.51
2) instructors create lessons with formative assessment and opportunities for student response.		.611	.64
3) <i>students have to attend the online classes to pass the semester.</i>	.421		.35
4) <i>students have to participate in online classes to pass the semester.</i>	.361	.043	.29
5) both formative and summative assessment types are the criteria for students' passing and failing.	.612	.187	.61
6) the formative assessment is the criteria for students' passing and failing.		.560	.61
7) the summative assessment is the criteria for students' passing and failing.	.663	.332	.59
8) the assessments and tests have been effectively used during the COVID-19.	.550		.52

Based on the PCA with varimax rotation, the variables intended to form the *Training and support* (Table 9) construct loaded with different factor loadings supporting the construct. The third and fifth variables, however, revealed a low factor loading and communality of .33/ .35 and .33/.37, respectively. These variables were removed from the survey instrument.

Table 9*EFA on Training and Support*

Training and support: VMLMS provides training and support on...	factors		Communality
	1	2	
1) content specific knowledge.	.539		.57
2) technology-related skills.	.613	.231	.60
3) <i>online classroom management.</i>	.331		.35
4) effective online communication with students.	.521	.033	.51
5) <i>organizing contents for instruction.</i>	.339	.187	.37
6) strategies for providing diverse learning styles.	.530		.60
7) finding and evaluating qualified resources for classes.	.663	.434	.57
8) content/language-based technology integration.	.550		.56
9) integrating technologies into online course.	.821		.71
10) technical issues (e.g., network, software, hardware).	.66.3		.64

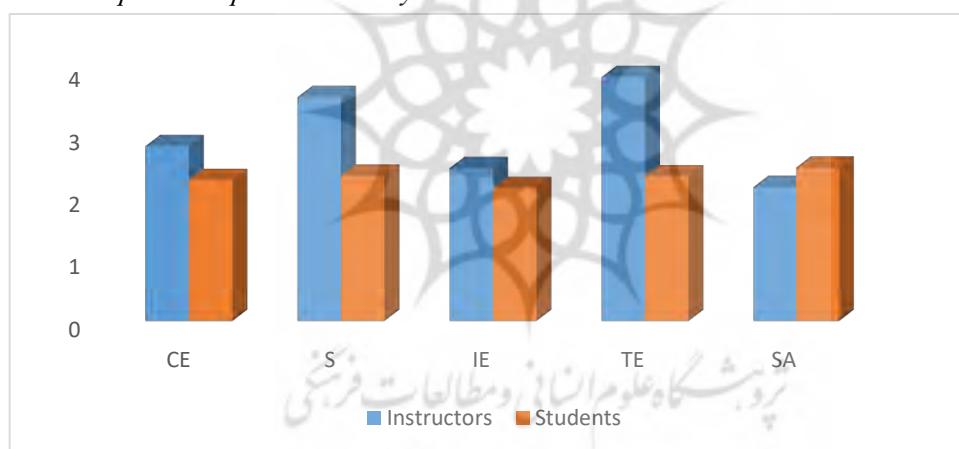
Based on the results analyzed and interpreted above, the EFA employed on the survey instrument excluded 8 items and produced six constructs with 47 items out of the initial 55 items.

4.2. The Responses to the Constructs of the Instruments

To answer the first question, the participants' responses to the constructs of the instruments, namely communicating effectively (CE), scaffolding (S), instructional efficacy (IE), technological

efficacy (TE), student assessment (SA) were analyzed by estimating the means and standard deviation of the responses (See Table 10 & Figure 1).

Table 10


The Means and the Standard Deviations of the Responses to the Survey Instrument

	Mean					standard Deviation				
	CE	S	IE	TE	SA	CE	S	IE	TE	SA
Instructors	2.79	3.57	2.44	3.98	2.14	0.14	0.19	0.14	0.10	0.11
Students	2.25	2.32	2.12	2.31	2.45	0.17	0.13	0.18	0.20	0.16

As shown in Table 10, the means were reported to be 2.79, 3.57, 2.44, 3.98, and 2.14 for instructors and 2.25, 2.32, 2.12, 2.31, and 2.45 for students in CE, S, IE, TE, and SA items components of the questionnaire. Instructors and students have the similar view about the VMLMS in terms of CE, IE, and SA. However, they have different views about S and TE. The instructors have more positive views about the mentioned constructs. Figure 1 graphically shows the results.

Figure 1

The Participants' Responses to Survey Instrument Items

To further examine the first research question, differences between instructors' and students' views regarding the survey constructs were analyzed using a multivariate analysis of variance (MANOVA). MANOVA, an extension of analysis of variance (ANOVA), is used to compare groups across multiple related dependent variables (Pallant, 2016). To determine whether statistically significant differences existed between instructors' and students' perceptions across the five constructs—Communicative Effectiveness (CE), Scaffolding (S), Instructional Efficacy (IE), Technological Efficacy (TE), and Student Assessment (SA)—multivariate tests of significance were conducted. In this study, Wilks' Lambda was used to assess multivariate significance, and Box's Test was employed to verify the assumption of homogeneity (see Table 11).

Table 11*Box's Test of Equality of Covariance Matrices^a*

Box's M	9.854
F	1.124
df1	5
df2	12457416
Sig.	.243

^a. Design: Intercept + RESPONDENTS

The output box of Box's Test of Equality of Covariance Matrices showed the status of homogeneity of variance-covariance matrices. It reported a sig. value of larger than .001 (.24), indicating that the assumption of homogeneity of variance was not violated. It also showed that the observed covariance matrices of the dependent variables were equal across the groups.

Table 12*Multivariate Tests of Significance*

Effect		Value	F	Hypothesis df	Error df	Sig.	Eta Sq.
Intercept	Pillai's Trace	.938	341.8843 ^a	5.000	368.000	.000	.938
	Wilks' Lambda	.062	341.8843 ^a	5.000	368.000	.000	.938
	Hotelling's Trace	15.083	341.8848 ^a	5.000	368.000	.000	.938
	Roy's Largest Root	15.083	341.884 ^a	5.000	368.000	.000	.938
Respondents	Pillai's Trace	.229	2.970 ^a	5.000	368.000	.016	.045
	Wilks' Lambda	.875	2.970 ^a	5.000	368.000	.016	.045
	Hotelling's Trace	.278	2.970 ^a	5.000	368.000	.016	.045
	Roy's Largest Root	.245	2.970 ^a	5.000	368.000	.016	.045

a. Exact statistic

b. design: intercept + Respondents

As shown in Table 12, a Wilks' Lambda value of .875, with a significance value of .016 was obtained. This is less than .01; therefore, there is a statistically significant difference between the instructors and the students in terms of their overall view of the survey instrument. In order to know that the variances of each variable were equal across groups, the Levene's test of equality of error variances was calculated (Table 13).

Table 13*Levene's Test of Equality of Error Variances*

	F	df1	df2	Sig.
Communicating effectively (CE)	1.672	1	109	.304
Scaffolding (S)	1.351	1	109	.294
Instructional efficacy (IE)	2.024	1	109	.194
Technological efficacy (TE)	1.314	1	109	.215
Student assessment (SA)	2.084	1	109	.298

As reported in Table 13, none of the variables recorded significant values; therefore, equal variances were assumed, and the assumption of homogeneity of variances was not violated. To know that instructors and students differed on all the dependent measures, or just some, Tests of Between-Subjects Effects were run (Table 14). It should be mentioned that because the researcher

was looking at a number of separate analyses here, a higher alpha level was set to reduce the chance of a Type 1 error (i.e., finding a significant result when there is not really one). Therefore, a Bonferroni adjustment was used, in which the original alpha level of .01 was divided by the number of analyses intend. In this case, for five dependent variables to investigate, .05 was divided by 5, giving a new alpha level of 0.01. Accordingly, the results will be considered significant only if the probability value (Sig.) is less than 0.01.

Table 14*Between-subjects Effects*

Source	Dependent Variable	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Model	CE	.390 ^a	2	.390 ^a	4.211	.031	.106
	S	152.238 ^b	2	152.238 ^b	7.419	.001	.164
	IE	243.074 ^c	2	243.074 ^c	.654	.624	.41
	TE	312.143 ^d	2	312.143 ^d	6.374	.021	.154
	SA	.412 ^e	2	.412 ^e	.934	.540	.078
Intercept	CE	483.547	1	483.547	894.568	.000	.787
	S	962.324	1	962.324	342.587	.000	.954
	IE	.591	1	.591	145.398	.000	.658
	TE	3194.214	1	3194.214	598.421	.000	.823
	SA	436.392	1	436.392	251.397	.000	.746
Respondents	CE	394.181	2	394.181	.681	.031	.106
	S	527.311	2	527.311	5.419	.001	.164
	IE	.468	2	.468	.654	.624	.41
	TE	556.144	2	556.144	6.374	.021	.154
	SA	.536	2	.536	.934	.540	.078
Error	CE	245.368	109	45.69			
	S	342.425	109	44.36			
	IE	.429	109	46.23			
	TE	297.329	109	45.21			
	SA	413.267	109	44.89			

a. R Squared = .103 (Adjusted R Squared = .079)

b. R Squared = .194 (Adjusted R Squared = .160)

c. R Squared=.031 (Adjusted R Squared = -.007)

A one-way between-groups multivariate analysis of variance was performed to investigate instructors' and students' differences with regard to VMLMS. Five dependent variables of CE, S, IE, TE, and SA were used. The normality and homogeneity of variance-covariance matrices were checked through preliminary assumption testing, and no serious violations were noted. There was a statistically significant difference between instructors and students on the combined dependent variables: $F(5, 368)=2.97, p=.016$; Wilks' Lambda =.93; partial eta squared =.04. When the results for the dependent variables were considered separately, there were two differences to reach statistical significance, using a Bonferroni adjusted alpha level of .01. The instructors' views of scaffolding and technological efficacy were significantly different for students, $F (2, 109)=5.41, p=.001$, partial eta squared=.03 and technological efficacy: $F (2, 109)=6.37, p=.021$, partial eta

squared = .03, respectively. An inspection of the mean scores indicated that instructors reported slightly higher levels of scaffolding ($M=24.49$, $SD=5.78$) and technological efficacy ($M=22.14$, $SD=4.92$) than students ($M=21.12$, $SD=5.12$) and ($M=19.32$, $SD=3.75$)

4.3. Training and Support (instructors' survey)

To answer the second question, Table 15 shows the survey results regarding the training and support instructors received in their online teaching.

Table 15

Train and Support Received by the Instructors

Training and Support	Mean	SD
Content knowledge	2.28	1.12
Technology-related skills	3.00	1.05
Effective communication	3.16	0.69
Providing diverse learning styles	2.32	0.75
Finding highly qualified resources	2.21	0.77
Language-based technology incorporation	2.34	0.91
Integrating technologies into online course.	2.21	0.87
On-going Instructional support	3.74	0.74

Generally, the instructors showed a somewhat negative attitude toward the construct of *Training and Support*. The top three types of *Training and Support* that the instructor actually received were 'on-going instructional support' ($M=3.74$, $SD=.74$), 'online communication with students' ($M=3.16$, $SD=.69$), and 'technology-related skills' ($M=3.00$, $SD=1.05$). The instructors did not have positive views about the other factors in training and support construct. The other components received very poor attention from the instructors, indicating that they were not satisfied with the extent of *Training and Support* they received during their online classes.

Asked to rank the kind of *Training and Support* they felt they needed during their online classes, the instructors believed that the top *Training and Support* areas were 1) online classroom management, 2) structuring instructional content, and 3) language-based technology integration (Table 16).

Table 16

Training & Support Needed; Instructors' Ranking

Training & Support Category	Ranks			
	1L	2A	3H	Total
Content knowledge	46	5	3	54
Technology-related skills	37	10	7	54
Effective communication	6	4	44	54
Providing diverse learning styles	33	11	10	54
Finding highly qualified resources	38	9	7	54
Language-based technology incorporation	10	13	31	54
Integrating technologies into online course.	39	7	8	54
on-going instructional support	10	11	33	54
Total	209	70	153	432

The instructors ranked *content knowledge* as the least priority in *Training and Support* needed. Similarly, they felt they needed the lowest amount of *Training & Support* in finding high-quality resources and technology-related skills. However, the highest priority was given to effective communication and language-based technology integration, respectively.

4.3. Students' Perception of Online Class

To answer the third question, the students' survey was used to ask them about *comfortability*, *support from instructor* and the *impact* of online classes on their studying. The internal reliability tests were conducted for each variable based on the items and factors (Table 17).

Table 17

Reliability Estimates of the Factors and the Variables

Factors	Statements	Cronbach's alpha	Overall Cronbach's alpha
Impact	I have a positive impression on my studies in online class	0.843	0.849
	Online classes increased my technological knowledge	0.829	
	I think online classes help me gain further knowledge	0.877	
Comfortability	I feel relaxed using online learning devices	0.662	0.702
	I feel online learning is like in-class learning and feel at home in online class	0.721	
	I find it hard to keep a study program of the online classes	0.725	
Support from Instructors	I receive sufficient support from my instructors in online classes.	0.630	0.693
	My instructors inspire debate in online classes.	0.690	
	My instructors set guidelines for effective online communication in online classes.	0.760	

Table 17 shows that the variables of *impact*, *comfortability*, and *support from instructor* factors enjoyed acceptable levels of reliability and the overall reliability of the factors, respectively are 0.849, 0.702, and 0.69 signaling the confirmation of the reliability for the purpose of the current study.

The results in Table 18 show that students said that the online classes did not have a significant *impact* on their learning ($M=2.23$), did not produce enough *support from the instructor* in online classes ($M=2.31$), and did not replace the traditional classroom instruction in terms of *comfortability* ($M=2.24$).

Table 18

Descriptive Statistics of Students' Perception

	N	Minimum	Maximum	Mean	Std. Deviation
Impact	72	1.00	4.00	2.233	0.756
Comfortability	72	1.00	5.00	2.310	0.834
Support from Instructor	72	1.00	4.00	2.243	0.741
Valid N (listwise)	72				

5. Discussion

The main purpose of this study was to investigate English language instructors' and students' perceptions of remote online education via VMLMS in response to the COVID-19 pandemic. The results indicated that neither instructors nor students held positive attitudes toward this specific platform, either generally or within specific domains. Overall, both groups reported low satisfaction across all areas examined, although differences emerged in certain domains, namely scaffolding and technological efficacy. Furthermore, instructors rated the training and support they received as inadequate, while students expressed a preference for face-to-face instruction over VMLMS in terms of impact, comfort, and instructor support.

The probable reason for instructors' and students' low and unfavorable perceptions may lie in the abrupt and compulsory nature of the shift to online education during the COVID-19 pandemic. The global move to virtual learning was unplanned and coercive, and although it was the only viable option for continuing education, it was perceived as unwelcome and disruptive (Watson, 2020).

A key factor in this unanticipated transition was the extent to which instructors and students were willing and able to address the numerous challenges resulting from educational upheaval. Early in the pandemic, teachers around the world lacked the experience and knowledge required to adapt rapidly to distance learning, which underscored the urgent need for professional development and technological training (Eschenbacher & Fleming, 2020).

Similarly, Ilmi et al. (2020) reported that the implementation of e-learning during the COVID-19 outbreak was only 27.74% effective, emphasizing that substantial innovation was needed for online instruction to function effectively. This finding aligns with the current study's results, which may be attributed to the lack of preparedness among higher education institutions and universities to adopt online systems. According to Toquero (2020), the abrupt transition from a long-established traditional education system to e-learning caused major changes in both teaching and learning practices as a result of the pandemic.

Another explanation for the current findings is that online instruction placed substantial demands on instructors, representing a major barrier to successful implementation. As Alzahrani (2019) notes, many instructors lack the necessary skills and expertise to conduct online instruction effectively. In this regard, experts in educational technology have cautioned that online instruction may impose limitations and challenges on teaching and learning processes. Vonderwell (2013), for instance, warns that the lack of interaction between instructors and students, as observed in this study, constitutes a considerable challenge in online environments. Similarly, Pastor (2020) argues that insufficient interaction, the failure to address students' real needs, and delays in providing feedback may lead to misinterpretation, frustration, and stress for both instructors and learners.

Consistent with the present findings, Alzahrani (2019) also found that students preferred on-site asynchronous presentations, such as video conferencing with Blackboard technology, over synchronous video conferencing. He attributed these results to factors influencing student

performance, including teaching quality, instructional content, pedagogical style, and instructor confidence. An online environment led by competent instructors who can effectively manage LMS resources can enhance students' knowledge, experiences, and learning outcomes. Nevertheless, technical difficulties can negatively affect performance and discourage students, leading them to perceive LMS platforms as obstacles to interaction with instructors (Pesnell, 2020).

Integrating an LMS into a variety of instructional activities can motivate student learning (Pesnell, 2020) and offer flexibility to both instructors and students (Kehrwald & Parker, 2019). As confirmed in the present study, the development and implementation of efficient LMS platforms are crucial for sustaining education during emergencies. Such systems provide flexibility, allowing learners to engage in group discussions, monitor their grades and progress, participate in online assessments, and maintain access to course materials (Watson, 2020).

6. Conclusion

The prolonged shift to online instruction during the COVID-19-induced crisis marked the first time in history that education systems worldwide simultaneously transitioned to virtual learning. This extended period created opportunities to examine instructors' teaching practices and students' learning outcomes in online environments compared to traditional classroom settings. As Williamson et al. (2020) note, the pandemic made it possible to evaluate how instructors adapted their teaching practices, how students adjusted their learning processes, and how both groups coped with challenges relative to conventional instruction. The current study found that the quality of education was disrupted during the pandemic, and students were not fully engaged in the learning process (AlShlowiy et al., 2021). Although the study did not aim to identify the advantages of online education, some positive outcomes were reported. For instance, students demonstrated increased independence as self-directed learners (He, 2020) and developed greater interest in and awareness of virtual learning skills (Kite et al., 2020).

The study highlighted the situation of Iranian EFL instructors and students during the pandemic, revealing their limited familiarity with virtual tools and insufficient preparation to utilize related technologies during the educational lockdown (Hakami, 2020). Despite having access to VMLMS technologies for an extended period, both instructors and students continued to face persistent Internet connectivity issues. Participants reported frustration when unable to conduct or follow their teaching and learning activities effectively (Watermeyer et al., 2020). Technologies are not only functional tools but also socially and culturally embedded systems. Therefore, the integration of educational technologies requires not just adoption but also institutional support and methodological flexibility to enhance students' engagement and vision in higher education.

With regard to overall perceptions of online classes, instructors expressed mixed opinions influenced by their personal and professional backgrounds, while students generally viewed online classes negatively. Instructors' Internet self-efficacy and beliefs about web-based learning emerged

as critical factors shaping their attitudes toward VMLMS. Previous research has long examined online teaching through the lens of social media-based platforms; however, the distinctive aspect of the present study lies in its focus on online instruction during an emergency context triggered by the pandemic.

Although further investigation is needed to gain a deeper understanding of the variables influencing Iranian EFL learners' engagement in online classes during this period, the findings of the current study may provide educational administrators with insights into the effects of forced immersion in online instruction. This experience could foster greater awareness among both instructors and learners of the importance of becoming technologically adaptive and resilient.

The findings of this study have several implications. First, they offer valuable insight into how instructors respond and adapt to crises, even during regional or temporary closures. The results can raise instructors' awareness of the challenges inherent in distance education and provide guidance for navigating similar future situations. The study also contributes to understanding the integration of technology into English language teaching and distance education. The information gathered can enhance awareness of instructors' preparedness for remote instruction and serve as a valuable resource for future teacher education programs and professional development initiatives.

Moreover, the findings revealed the difficulties that caused students to feel disengaged and disconnected from both peers and instructors in online learning environments. Understanding instructors' experiences and concerns when teaching online can inform the development of practical strategies and pedagogical designs that make online courses more interactive, supportive, and effective in meeting students' learning needs.

Another important implication concerns the orientation of Iranian EFL instruction. As Fathi-Vajargah and Khoshnoodifar (2013) argue, Iran's educational curriculum needs to be more internationalized. Online education should be capable of maintaining course quality regardless of duration or delivery mode, whether under normal or emergency conditions. The COVID-19 pandemic clearly demonstrated that instructors require substantial institutional support and ongoing professional learning opportunities to manage the challenges of teaching during major disruptions (Eschenbacher & Fleming, 2020).

The study's findings also offer concepts applicable to future research. Scholars may compare these results with those from other contexts to propose strategies and policies aimed at improving the quality of higher education. Further studies are needed to explore the pandemic's effects on school-level learners, focusing on their instructional experiences and learning outcomes during the crisis. The researcher faced certain limitations, particularly concerning the number of participants, as pandemic restrictions constrained access to respondents and limited the survey's reach.

Investigating online instruction in an EFL context and its response to COVID-19 remains essential for identifying ongoing challenges, obstacles, and possible solutions. Moreover, understanding how instructors use the complex dilemmas of the pandemic to reflect on and reshape their professional learning experiences can inform future teacher education and policy

development. Equally important is exploring students' perspectives on this abrupt transition to online learning. Their experiences can help assess the continuing professional learning needs of both students and instructors in the post-pandemic era.

References

Ali, L., Hatala, M., Gašević, D., & Jovanović, J. (2012). A qualitative evaluation of evolution of a learning analytics tool. *Computers & Education*, 58(1), 470-489.
<http://doi.org/10.1016/j.compedu.2011.08.030>

Allen, I. E., & Seaman, J. (2013). Changing course: Ten years of tracking online education in the United States. <http://www.onlinelearningsurvey.com/reports/changingcourse.pdf>.

AlShlowiy, A., Al-Hoorie, A., & Alharbi, M. (2021). Discrepancy between language learners' and teachers' concerns about emergency: Remote teaching. *Journal of Computer Assisted Learning*, 37(6), 1528-1538. <http://doi.org/10.1111/jcal.12543>

Alzahrani, A. A. (2019). The effect of distance learning delivery methods on student performance and perception. *International Journal for Research in Education*, 43(1), 12. <https://bit.ly/32bUvyq>

Angode, C., & Ressa, T. W. (2021). The impact of COVID-19 pandemic on students with special needs: A case study of Kakamega County, Kenya. *Insights into Learning Disabilities* 18(2), 121-141.

Bandura, A. (2006). Guide for constructing self-efficacy scales. In F. Pajares & T. Urdan (Eds.), *Self-efficacy beliefs of adolescents* (pp. 307-337). Greenwich, CT: Information Age Publishing.

Bijeikiene, V., Rasinskiene, S., & Zutkiene, L. D. (2011). Teachers' attitudes towardss the use of blended learning in general English classroom. *Kalbu, Studijos*, 18(2), 122-127.

Black, E., DiPietro, M., Ferdig, R., & Polling, N. (2009). Developing a survey to measure best practices of K-12 online instructors. *Online Journal of Distance Learning Administration*, 12(1).
<http://www.westga.edu/~distance/ojdla/spring121/black121.html>

Brabazon, T. (2012). The magic of face-to-face teaching. *Times Higher Education*, 4(2), 25-31.

Brown, B. W., & Liedholm, C. E. (2002). Can web courses replace the classroom in principles of microeconomics? *The American Economic Review*, 92(2), 444-448.

Cannon1, C. E. B., Ferreira, R., Buttell, F., & First, J. (2021). COVID-19, intimate partner violence, and communication ecologies. *American Behavioral Scientist*, 65(7), 992-1013.
<http://doi.org/10.1177/0002764221992826>

Carter, L. M., Salyers, V., & Myers, S. (2014). Qualitative insights from a Canadian multi-institutional research study: In search of meaningful online learning. *The Canadian Journal for the Scholarship of Teaching and Learning*, 5(1), 1-21.

Chatterjee, A., & Roy, S. (2020). COVID-19 and its impact on education of preschool students in a developing nation: A viewpoint. *SSRN Electronic Journal*.
<http://doi.org/10.2139/ssrn.3722505>

Child, D. (2006). *The essentials of factor analysis*. (3rd ed.). Continuum.

DiPietro, M. (2010). Virtual school pedagogy: The instructional practices of K-12 virtual school teachers. *Journal of Educational Computing Research*, 42(3), 327-354. <http://doi.org/10.2190/EC.42.3.e>

Elish-Piper, L. (2020). Insights on e-learning at the elementary level. *Illinois Reading Council Journal*, 48(4), 38-42.

Eschenbacher, S., & Fleming, T. (2020). Transformative dimensions of lifelong learning: Mezirow, Rorty and COVID-19. *Int. Rev. Educ.*, 20(3), 1-16.

Esnard, A. M., Lai, B. S., Wyczalkowski, C., Malmin, N., & Shah, H. J. (2017). School vulnerability to disaster: Examination of school closure, demographic, and exposure factors in Hurricane Ike's wind swath. *Natural Hazards (Dordrecht)*, 90(2), 513-535.

Espino-Díaz, L., Fernandez-Caminero, G., Hernandez-Lloret, C. M., Gonzalez-Gonzalez, H., & Alvarez-Castillo, J. L. (2020). Analyzing the impact of COVID-19 on education professionals; toward a paradigm shift: ICT and neuroeducation as a binomial of action. *Sustainability*, 12, 46-56. <http://doi.org/10.3390/su12145646>

FathiVajargah, K., & Khoshnoodifar, M. (2013). Towards a distance education based strategy for internalization of the curriculum in higher education of Iran. The Turkish *Online Journal of Educational Technology*, 2(1), 147-160.

Field, A. (2013). *Discovering statistics using SPSS* (4th ed.) SAGE.

Frazer, C., Sullivan, H. D., Weatherspoon, D., & Hussey, L. (2017). Faculty perceptions of online teaching effectiveness and indicators of quality. *Nursing Research and Practice*, 10(1), 10-18. <https://doi.org/10.1155/2017/9374189>

Gragg, C. E., Dunning, J., & Ellis, J. (2008). Teacher and student behaviors in face-to-face and on-line courses: Dealing with complex concepts. *Journal of Distance Education*, 22(3), 115-128.

Hakami, M. (2020). Using Nearpod as a tool to promote active learning in higher education in a BYOD learning environment. *Jel* 9(1), 119-126. <http://doi.org/10.5539/jel.v9n1p119>

Haleman, K. N., & Yamat, H. (2021). The acceptance of e-learning among ESL primary school students during COVID-19. *Journal of English Language Teaching and Applied Linguistics*, 3(1), 08-18. <http://doi.org/10.32996/jeltal.2021.3.1.2>

Hayton, J. C., Allen, D. G., & Scarpetto, V. (2004). Factor retention decisions in exploratory factor analysis: a tutorial on parallel analysis. *Organizational Research Methods*, 7, 191-205. <http://doi.org/10.1177/1094428104263675>

He, B. (2020). Research on the autonomous learning mode of college English via the Internet in the epidemic situation. The 5th international conference on social sciences and economic development (ICSSED 2020), Macau, China, March 6-8, 2020, 127-130. <http://doi.org/10.2991/assehr.k.200331.027>

Ilmi, I., Z., Rahmayanti, H., Purwanto, A., Sigit, D. V., Ali, A., Kurniawan, E., & Rahman, M (2020). COVID-19 outbreak on environment: Profile of Islamic University students in HOTS-AEP-COVID-19 and PEB-COVID-19. *Tadris: Jurnal Keguruan dan Ilmu Tarbiyah*, 5(1), 167-178. <http://doi.org/10.24042/tadris.v5i1.6283>

Jain, M. (2020). The psychological impact of COVID-19 and social isolation norms on high school students in Delhi Ncr, India. *International Journal of Advanced Research*, 8(9), 1122-1144. <http://doi.org/10.21474/ijar01/11768>

Johnston, J. C., Killion, J. B., & Oomen, J. (2005). Student satisfaction in the virtual classroom. *The Internet Journal of Allied Health Sciences and Practice*, 3(1), 6-13.

Kehrwald, B. A., & Parker, B. (2019). Implementing online learning: Stories from the field. *Journal of University Teaching & Learning Practice*, 16(1), 1-14.

Kite, J., Schlub, T. E., Zhang, Y., Choi, S., Craske, S., & Dickson, M. (2020). Exploring lecturer and student perceptions and use of a learning management system in a postgraduate public health environment. *E-Learning and Digital Media* 17(3), 183-198.
<http://doi.org/10.1177/2042753020909217>

Kulal, A., & Nayak, A. (2020). A study on perception of teachers and students towards online classes in Dakshina Kannada and Udupi District. *Asian Association of Open Universities Journal*, 15(3), 285-296. <http://doi.org/10.1108/AAOUJ-07-2020-0047>

Mastel-Smith, B., Post, J., & Lake, P. (2015). Online teaching: Are you there, and do you care? *Journal of Nursing Education*, 54(3), 145-151.

Means, B., Toyama, Y., Murphy, R., Bakia, M., & Jones, K. (2012). *Evaluation of evidence-based practices in online learning: A meta-analysis and review of online learning studies*. Department of Education. <https://www2.ed.gov/rschstat/eval/tech/evidence-based-practices/finalreport.pdf>

Merriam, S. B., & Berrima, L. L. (2014). *Adult learning: Linking theory and practice*. Jossey Bass.

Mezirow, J. (1978). *Education for perspective transformation: Women's re-entry programs in community colleges*. Teacher's College, Columbia University.

Mezirow, J. (1991). *Transformative dimensions in adult learning*. San Francisco: Jossey-Bass.

Ortega-Maldonado, A., Llorens, S., Acosta, H., & Coo, C. (2017). Face-to-face vs on-line: An analysis of profile, learning, performance and satisfaction among post graduate students. *Universal Journal of Educational Research*, 5(10), 1701-1706. <http://doi.org/10.13189/ujer.2017.051005>

Pallant, J. (2016). *SPSS survival manual: A step by step guide to data analysis using SPSS program* (6th ed.). McGraw-Hill Education.

Palloff, R. M., & Pratt, K. (2013). *Lessons from the virtual classroom: The realities of online teaching*. John Wiley and Sons.

Pastor, C. K. L. (2020). Sentiment analysis on synchronous online delivery of instruction due to extreme community quarantine in the Philippines caused by COVID-19 pandemic. *Asian Journal of Multidisciplinary Studies*, 3(1), 1-6.

Pesnell, B. (2020). Elementary teachers' experiences with remote learning and its impact on science instruction: Multiple cases from the early response to the COVID-19 pandemic. <https://scholarworks.uark.edu/etd/3893>

Phillips, N. (2020). *Factors impacting on the integration of digital technology in learning and teaching in educational establishments* (MPhil(R) Thesis). School of Education, College of Social Sciences, University of Glasgow.
https://theses.gla.ac.uk/81577/1/_campus.gla.ac.uk_SSD_Home_Data_D_mc7a/Desktop_2020PhillipsNMPHilR.pdf

Richardson, J., & Newby, T. J. (2006). The role of students' cognitive engagement in online learning. *American Journal of Distance Education*, 20(1), 23-37.

Szeto, E. (2011). Transforming learning and teaching in higher education: The impact of ICT on pedagogy, peer interaction and support in a networked virtual learning environment. *International Journal of Learning*, 17(11), 205-214.

Toquero, C. M. (2020). Challenges and opportunities for higher education amid the COVID-19 pandemic. *Pedagogical Research*, 5(4). <https://doi.org/10.29333/pr/7947>

United Nations Educational, Scientific and Cultural Organization (UNESCO) (2020). *Education: From disruption to recovery*. <https://en.unesco.org/covid19/educationresponse>

van der Wal, M. M., Oolbekkink-Marchand, H. W., Schaap, H., & Meijer, P. C. (2019). Impact of early career teachers' professional identity tensions. *Teaching and Teacher Education*, 80, 59-70. <https://doi.org/10.1016/j.tate.2019.01.001>

Vonderwell, S. (2003). An examination of asynchronous communication experiences and perspectives of students in an online course: A case study. *Internet and Higher Education*, 6, 77-90. [https://doi.org/10.1016/S1096-7516\(02\)00164-1](https://doi.org/10.1016/S1096-7516(02)00164-1)

Wang, L., Ertmer, P. A., & Newby, T. J. (2004). Increasing preservice teachers' self-efficacy beliefs for technology integration. *Journal of Research on Technology in Education*, 36(3), 231-250. <http://doi.org/10.1080/15391523.2004.10782414>

Watermeyer, R., Crick, T., Knight, C., & Goodall, J. (2020). COVID-19 and digital disruption in UK universities: afflictions and affordances of emergency online migration. *High Educ. (Dordr)* 81(4), 1-19. <http://doi.org/10.1007/s10734-020-00561-y>

Watson, T. R. (2020). Teachers' perceptions of the shift from the classroom to online teaching. *International Journal of TESOL Studies*, 2(2) 4-16. <https://doi.org/10.46451/ijts.2020.09.02>

Watson, R., & Watson, S. (2012). An argument for clarity: What are learning management systems, what are they not, & what should they become? *Tech Trends*, 51(2), 28-34. <http://doi.org/10.1.1.394.9436&rep=rep1&type=pdf>

Williamson, B., Eynon, R., & Potter, J. (2020). Pandemic politics, pedagogies and practices: Digital technologies and distance education during the coronavirus emergency. *Learn. Media Tech.*, 45(2), 107-114. <http://doi.org/10.1080/17439884.2020.1761641>

Questionnaires

Teachers' survey

Section one: Teaching practice

Please indicate how much you agree or disagree with each of the following statements using the scale below:

1 – Strongly disagree (SD)

2 – Disagree (D)

3 – Neutral (N)

4 – Agree (A)

5 – Strongly agree (SA)

1. Gender:	Female <input type="checkbox"/>	Male <input type="checkbox"/>			
2. Age range:	25–30 <input type="checkbox"/>	31–35 <input type="checkbox"/>	36–40 <input type="checkbox"/>	41–45 <input type="checkbox"/>	+46 <input type="checkbox"/>
3. Major:	Teaching <input type="checkbox"/>	Translation <input type="checkbox"/>	Literature <input type="checkbox"/>		
4. Degree:	BA <input type="checkbox"/>	MA <input type="checkbox"/>			

1. Effective Communication		SA	A	N	D	SD
1) I communicate with my students regularly in order to engage them.						
2) My online communication practices make students feel as connected to me as they would be to a face-to-face teacher.						
3) I self-monitor my communications to avoid miscommunication with my students.						
4) I model expectations for appropriate student communication.						
5) I facilitate students' use of constructive communication.						
6) I set guidelines for communication and interaction.						
2. Scaffolding		SA	A	N	D	SD
1) I adapt the course to accommodate students' self-pacing.						
2) I create an organized environment.						
3) I outline expectations to foster student responsibility.						
4) I use the course tools to adapt course structure.						
5) I use multiple forms of assessment to evaluate student progress.						
6) I use multiple teaching strategies to introduce and teach the content knowledge.						
3. Instructional self-efficacy		SA	A	N	D	SD
1) I feel confident that I can keep students on task on difficult assignments.						
2) I feel confident that I can increase students' retention of the language.						
3) I feel confident that I can motivate students who show low interest in language learning.						
4) I encourage students to share resources.						
5) I use different practices based on student needs.						
4. Technological self-efficacy		SA	A	N	D	SD
1) I feel confident that I can successfully teach relevant language content using appropriate technology.						
2) I feel confident that I can help students when they have difficulty with the computer.						
3) I feel confident that I can motivate my students to participate in technology-based projects to support language acquisition.						
4) I feel confident about assigning and grading technology-based projects.						
5) I tailor resources and support for student individually.						

Section two: Training and supportUsing the scale below, how would you rate the support and training you receive?

- 1 – None (N)
- 2 – Below Average (BA)
- 3 – Average (A)
- 4 – Above Average (AA)
- 5 – Excellent (E)

		N	BA	A	AA
1) Professional development on content/language specific knowledge					
2) Professional development on technology-based skills					
3) Professional development on online classroom management					
4) Professional development on effective communication with online students					
5) Professional development on organizing and structuring instructional content					
6) Professional development on strategies for accommodating different learning styles					
7) Professional development on finding and evaluating quality resources for my online classes					
8) Professional development on content-/language-based technology integration					
9) Instructional support (ongoing support for incorporating technologies into your online courses)					
10) Technical support (e.g., network, software, hardware)					

Section Three:

Please select three professional development areas you believe you need additional training in, and prioritize them (1-3) in order of importance, with 1 being most important.

- 1) Content/language-specific knowledge
- 2) Technology-based skills
- 3) Online classroom management
- 4) Effective communication with online students
- 5) Organizing and structuring instructional content
- 6) Strategies for accommodating different learning styles
- 7) Finding and evaluating quality resources for my online classes
- 8) Language-based technology integration

Students' survey

Please indicate how much you agree or disagree with each of the following statements using the scale below:

- 1 – Strongly disagree (SD)
- 2 – Disagree (D)
- 3 – Neutral (N)
- 4 – Agree (A)
- 5 – Strongly agree (SA)

Impact	SA	A	N	D	SD
I have a positive impact on my studies due to online class.					
Online classes have increased my technological literacy.					
I feel online classes help me to gain more knowledge.					
Comfortability	SA	A	N	D	SD
I feel comfortable using online learning tools.					
I feel learning is same in class and at home on the Internet.					
I find it hard to stick to a study schedule of the online course.					
Support from Teacher	SA	A	N	D	SD
I receive enough support and resources from my teacher.					
My teacher encourages discussion in an online class.					
My teacher sets guidelines for effective communication and interaction in an online class.					