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1|Introduction 

The Minimum Cost Flow (MCF) problem is a general form of the network flow problem, which aims to 

determine the east coast of the shipment of a commodity during a capacitated network to achieve demands 

at certain nodes from supplies at other nodes. The study of MCF can be investigated to enormous other 

network problems, for example, maximum flow, assignment, shortest path, transportation, transshipment 

problems, multi-stage production inventory planning, nurse scheduling, project assignment, mold allocation, 

 Transactions on Quantitative Finance and Beyond 

www.tqfb.reapress.com 

             Trans. Quant. Fin. Bey. Vol. 1, No. 1 (2024) 35-47. 

 Paper Type: Original Article 

Enhancing Possibilistic Fuzzy Goal Programming 

Approach for Solving Multi Objective Minimum 

Cost Flow Problems Coefficients 

Hamiden Abd El- Wahed Khalifa1,2,*   Seyed Ahmad Edalatanah3 

 

1 Department of Mathematics, College of Science and Arts, Qassim University, Al-Badaya 51951 Saudi Arabia; 

Ha.Ahmed@qu.edu.sa. 
2 Department of Operations and Management Research, Faculty of Graduate Studies for Statistical Research, Cairo University, 

Giza 12613, Egypt; hamiden@cu.edu.eg. 
3 Department of Applied Mathematics, AyendangInstitute of Higher Education, Tonkabon, Iran; saedalat@yahoo.com & 

s.a.edalatpanah@aihe.ac.ir. 

Citation: 

Received: 7  August 2023 

Revised: 13 October 2023 

Accepted: 20 March 2024 

Abd El-WahedKhalifa, H., Edalatpanah,S. A. (2024). Enhancing 

possibilistic fuzzy goal programming approach for solving multi-

objective minimum cost flow problems coefficients. Transactions on 

quantitative finance and beyond, 1(1), 35-47. 
 

This study investigates a multi-objective minimum cost flow with probabilistic objective function coefficients 

(Poss- MOMCF). Under using the α −cut set of the possibilistic variables, the Poss-MOMCF problem is 

converted into the corresponding (α-MOMCF) and hence into the (P-MOMCF) problem. A necessary and 

sufficient condition for investigating the α −possibly optimal solution is established. A fuzzy goal programming 

approach is applied to obtain the α −parametric optimal compromise solution. The stability set of the first kid 

under the concept of α −possibly optimal solution is characterized and analyzed without differentiability. 

Finally, a numerical example is given in the sake of the paper to clarify the methodology. 

Keywords: Optimization problem, Minimum cost flow, Multi-objective optimization, Possibilistic variables, 

Fuzzy goal programming approach, α −possibly optimal solution, Goal programming, Decision 
maker, Compromise solution, Parametric analysis. 

mailto:dastam66@gmail.com
mailto:Ha.Ahmed@qu.edu.sa
https://orcid.org/0000-0002-8269-8822


 Enhancing possibilistic fuzzy goal programming approach for solving multi-objective minimum … 

2 

college course assignment, and automobile routing [1]-[4]. Hu et al. [5] proposed an algorithm that holds the 

complementarity slackness at each iteration with the help of a dual approach that is node by updating node 

potential iteratively; they found an augmenting path. 

 Multi-objective MCF problems have been studied in the literature [6], [7]. Bazaraa et al. [8] applied the 

parametric analysis in large-scale linear programming. Steuer [9] decomposed the parametric space of convex 

combination parametric programming using the parametric analysis. Luhandjula [10] studied the multi-

objective linear problem having coefficients represented by possibilistic data. Lee and Moore [11] and 

Hemaida and Kwak [12] reviewed the Multi-Objective Transportation Problem (MOTP) and applied Goal 

Programming (GP) to obtain a satisfactory solution. Tamiz et al. [13] and Romero [14] discussed the 

shortcomings of GP. Many authors applied a fuzzy programming approach to solving MOTP [15]-[22]. Cui 

et al. [23] proposed a novel general MCF model for optimizing the distribution pattern of evacuation flow 

and rescue flow on the same network by introducing the conflict cost. 

This paper introduces a multi-objective MCF problem with probabilistic variables. The parametric study 

corresponding to the α −possibly optimal solution is defined and determined without differentiability. 

The above literature analysis clearly shows that the proposed study is novel, more generalized, and flexible 

compared to existing relevant literature. It has the distinction due to the inclusion of the following features 

for the first time in literature: 

I. Possibilistic multi-objective MCF. 

II. Possibilistic in all of the coefficients of the objective functions. 

III. α-pareto optimal solution-based scenario. 

IV. The stability set of the first kind without differentiability. 

The rest of the paper is outlined as follows. 

 

Fig. 1. Layout of remaining paper. 

 



 Abd El- Wahed Khalifa | Trans. Quant. Fin. Bey. 1(1) (2024) 35-47 

3 

2|Preliminaries 

This section introduces some basic concepts and results related to possibilistic variables and its α −level set, 

possibilistic distribution, and support. 

Definition 1 ([24], [25]). A possibilistic variable u on V is a variable characterized by a possibility 

distributionμu(v), which means that if u is a variable taking values in V, then μu corresponding to u may be 

viewed as a fuzzy constraint. Such a distribution is characterized by a possibility distribution function μu: V ⟶

[0, 1], which is associated with each v ∈ V, the degree of compatibility of u with the realization v ∈ V. If  V is 

a Cartesian product of V1, V2, … , Vn, then μu(v1 , v2, … ,  vn) is an n −ary possibility distribution, i.e., 

Definition 2. The α −level set of possibilistic variable u is 

Definition 3 ([24]).  A possibility distribution μu on V is said to be convex if 

Definition 4 ([24]). The support of a possibilistic variable u is 

 

 

3|Problem Statement and Solution Concepts 

Consider the following possibilistic multi-objective MCF problem. 

where 

 M: The set of arcs (i, j), 

V:  The set of nodes, 

xij: The decision variable representing the flow through the arc (i, j), 

Uij = [lij,  uij]: Capacity of arc (i, j), 

c̃ij
r : The possibilistic penalty per unit of flow through the arc (i, j) in the c̃ij 

r  objective function r = 1, 2, … , K, 

b(i): The net flow generated at node i, the values of b(i) being positive, zero, or negative classifies node i as 

a supply node, transshipment node, or demand node, respectively. 

μu(v) = (μu1(v1), μu2(v2),… , μun(vn)).  

uα = {v ∈ V: μu(v) ≥ α}.  

μu(γv
1 + (1 − γ)v2) ≥ min(μu(v

1), μu(v
2)), for all  v1,  v2 ∈ V, γ ∈ [0, 1].  

Supp (u) = {v ∈ V: sup
v∈Nδ(y)

μu(v) > 0, for all δ > 0}, where Nδ(y) = {v ∈ V ∈ : ‖v − y‖ <

δ}. 
 

(Poss MOMCF) min F̃r(x, c̃
r) =∑ c̃ij

r
(i,j)∈M xij , r = 1, 2, … , K, 

s. t. 

x ∈ X = {
∑ xij

j: (i,j)∈M

− ∑ xli
k:(k,i)∈M

= b(i),                           for all i ∈ V,

xij ∈ Uij, for all (i, j) ∈ M, xij ≥ 0, for all (i, j) ∈ M,

} 
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It is noted that the parameters c̃ij
K is vectors of possibilistic variables on ℝ, which is characterized by possibility 

distributions μc̃𝑖𝑗
𝑟 . It is assumed that all possibility distributions in the Poss MOMCF problem are convex 

cones having compact supports and u0 = supp(u). 

Definition 5. x∗ ∈ 𝐺 is an α −possibly efficient solution for Poss MOMCF if there is no x ∈ G such that 

Based on the extension principle, we have 

where 

μc̃r,r = 1, 2, … , K are arcs K(i, j) possibly distributions. 

4|Characterization of 𝛂 −Possibly Efficient Solution for Poss MOMCF 

Problem 

For investigating the α −possibly efficient solutions for the Poss MOMCF problem, let us consider the 

α −parametric multi-objective MCF problem 

where, (c̃ij
r)
α
 is the α −cut of the possibilistic variable cij

r . Based on the convexity assumption μc̃ij
r (cij

r), (i, j) is 

arc, r = 1, K are real intervals denoted by [(cij
r−)

α
, (cij

r+)
α
 ]. Let φα

r  be the set of arcs (i, j) with cij
r ∈

[(cij
r−)

α
, (cij

r+)
α
 ] , r = 1, K. The α −PMOMCF problem can be rewritten as 

Problem (5) can be rewritten as 

Poss (

F1(x, c̃
1) ≤  F1(x̂, c̃

1), F2(x, c̃
2) ≤  F2(x̂, c̃

2),

… , Fr−1(x, c̃
r−1) ≤  Fr−1(x̂, c̃

r−1), Fr(x, c̃
r) ≤  Fr(x̂, c̃

r),

  Fr+1(x, c̃
r+1) ≤  Fr+1(x̂, c̃

r+1), … , FK(x, c̃
K) ≤  FK(x̂, c̃

K)

) ≥ α. (1) 

         Poss (
F1(x, c̃

1) ≤  F1(x̂, c̃
1), F2(x, c̃

2) ≤  F2(x̂, c̃
2),

… , Fr−1(x, c̃
r−1) ≤  Fr−1(x̂, c̃

r−1), Fr(x, c̃
r) ≤  Fr(x̂, c̃

r),

  Fr+1(x, c̃
r+1) ≤  Fr+1(x̂, c̃

r+1),… , FK(x, c̃
K) ≤  FK(x̂, c̃

K)

) 

             = Sup
(c1, c2,…, cK)∈E

min(
μc̃1(c

1), μc̃2(c
2),… , μc̃r−1(c

r−1),

  μc̃r(c
r),   μc̃r+1(c

r+1),… , μc̃K(c
K) 
), 

(2) 

E = {

(c1,  c2, … ,  cK): F1(x, c̃
1) ≤  F1(x̂, c̃

1), F2(x, c̃
2) ≤  F2(x̂, c̃

2),

… , Fr−1(x, c̃
r−1) ≤  Fr−1(x̂, c̃

r−1), Fr(x, c̃
r) ≤  Fr(x̂, c̃

r),

 Fr+1(x, c̃
r+1) ≤  Fr+1(x̂, c̃

r+1),… , FK(x, c̃
K) ≤  FK(x̂, c̃

K) 

}. (3) 

     (α −PMOMCF)   min Fr(x, cr) =∑ cij
r

(i,j)∈M xij , r = 1, 2,… , K, 

s. t. 

x ∈ X = {

∑ xij
j: (i,j)∈M

− ∑ xli
k:(k,i)∈M

= b(i),                                            for all i ∈ V,

  xij ∈ Uij, for all (i, j) ∈ M, xij ≥ 0,   for all (i, j) ∈ M, cij
r ∈ (c̃ij

r)
α
,

} 

(4) 

   min Fr(x, cr) =∑ cij
r

(i,j)∈M xij , r = 1, 2, … , K, 

s. t. 

x ∈ X,  and cr ∈ φα
r , r = 1, K. 

(5) 
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Definition 6. x∗ ∈ G is an α −parametric efficient solution for α −PMOMCF problem if there is no x ∈

G and cr ∈ φα
r  such that Fr(x, c

r) ≤  Fr(x
∗, cr);  ∀r = 1, K and Fr(x, c

r) <  Fr(x
∗, cr) holds for at least one r. 

Definition 7 ([26]). A feasible vector Y° ∈ X is said to be α −parametric compromise solution of 

α −PMOMCF if and only if Y° ∈ H and F(Y) ≤ ⋀ F(Y)Y∈X , where ⋀ stands for the minimum, and H is the set 

of α −parametric efficient solutions. 

Definition 8 ([15]). If the α −parametric compromise solution satisfies the decision makers' preference, the 

solution is called α −preferred parametric compromise solution. 

Theorem 1. x∗ ∈ G is an α −possibly efficient solution for the Poss MOMCF problem if and only if 

α −parametric efficient solution for α −PMOMCF problem. 

Proof: (see [24]). 

5|Fuzzy Goal Programming Approach for Solving Problem (5) 

Based on the three concepts of fuzzy goals (G), fuzzy constraints (C), and fuzzy decision (D) introduced by 

Bellman and Zadeh [27], the fuzzy decision is defined as 

Then 

With the membership Function (8), let us describe the fuzzy goals for the problem under study. The linear 

membership function (MP) [28] is given by 

where, Lr, and Ur are the lower and upper bounds of Fr(x, c
r), Lr ≠ Ur, and can be calculated as 

By applying the fuzzy Decision (8) and membership Function (9), α −PMOMCF can be rewritten as 

Problem (11) can be converted into well-defined linear programming using the auxiliary variable 𝜗 as 

  min Fr(x, cr) =∑ (cij
r−(τ) + τ(i,j)∈M cij

r−(τ))xij , r = 1, 2,… , K,   

s. t. 

x ∈ X,  and cr ∈ φα
r , r = 1, K, τ ∈ [0,1]. 

(6) 

    D = C ∩ G. (7) 

    μD(x) = min(μC(x), μG(x)). (8) 

    μr( Fr(x, cr)) =   {

0,                                Fr(x, c
r) ≤ Lr,

Ur− Fr(x,c
r)

Ur−Lr
, Lr <  Fr(x, c

r) < Ur,

1,                      Fr(x, c
r) ≥ Ur,

 (9) 

         Lr = min
x
 Fr(x, c

r),  and Ur = max
x
 Fr(x, c

r),      r = 1, 2, … , K. (10) 

     max min
r=1,K

(μr( Fr(x, c
r))), 

s. t. 

x ∈ X,  and cr ∈ φα
r , r = 1, K. 

(11) 

    max ϑ (12) 
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In order to formulate Problem (12) as a GP [29], we introduce the negative and positive deviational variables. 

where, Gr is the aspiration level of the objective function r. Now, Problem (12) is reformulated as a mixed 

integer GP problem as 

 

 

 

 

6|Solution Procedure 

In this section, a solution procedure for solving the Poss MOMCF problem can be summarized in the 

following steps: 

Step 1. Consider the Poss MOMCF problem. 

Step 2. Solve each one of the objective function and continue this process K times. If all the resulting solutions 

are equal, select one of them and go to Step 5. 

Step 3. Define the membership function of every one of the objectives and also the aspiration level. 

Step 4. Construct Problem (13), then solve it using any computer package (Say, GAMS). 

Step 5. Stop and then determine the stability set of the first kind S(x°, c°) as 

 

 

7|Numerical Example 

Consider the following problem: 

s. t. 

ϑ ≤ μr( Fr(x, c
r)), r = 1, K, 

x ∈ X,  and cr ∈ φα
r , r = 1, K. 

      Fr(x, cr) − vr+ + vr− = Gr, r = 1, K, (13) 

   max ϑ 

s. t. 

ϑ ≤ μr( Fr(x, c
r)), r = 1, K, 

x ∈ X,  and cr ∈ φα
r , r = 1, K, 

Fr(x, c
r) − vr

+ + vr
− = Gr, 

vr
−, vr

+ ≥ 0, r = 1, K  , 0 ≤ ϑ ≤ 1. 

(14) 

    ωij (cijr − (cijr+)α) = 0, for all  arc (i, j), r = 1, K, 

φij ((cij
r−)

α
− cij

r) = 0, for all  arc (i, j), r = 1, K. 
 

   min F1(x, c1) =∑ c̃ij
1

(i,j)∈M xij, 

min F2(x, c
2) = ∑ c̃ij

2

(i,j)∈M

xij, 

s. t. 

x12 + x13 = 10, 

x24 + x25 − x12 = 0, 

(15) 
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Fig. 2. A network with 5 nodes and 7 arcs ([6]). 

The possibilistic variables c̃ij
1, and c̃ij

2 are represented by a possibility distributions μc̃ij
1 (. ), and μc̃ij

2 (. ) In Fig. 1 

and Fig. 2. The supports of the possibilistic variables c̃ij
1, and c̃ij

2 are[3,12], and [2, 10]. Hence, for the 

parametric functions0 ≤ τ ≤ 1, the supports are 

Supp (ã1) = 1 + 4ϑ,     μã1(1) = μã1(5) = 0, 

Supp (ã2) = 10 − 4ϑ,     μã2(10) = μã2(6) = 0. 

 

Fig. 3. Possibility distributions 𝛍(. ) for 𝐜𝐢𝐣
𝟏. 

 

 

Fig. 4. Possibility distributions 𝛍(. ) for 𝐜𝐢𝐣
𝟐. 

 

x34 + x35 − x13 = 20, 

x45 − x24 − x34 = −15, 

−x25 − x35 − x45 = −15, 

x12 ∈ [0, 20], x13 ∈ [0, 10], x24 ∈ [0, 20], x25 ∈ [0,10], 

x34 ∈ [0, 30], x35 ∈ [0,25], x45 ∈ [0, 50]. 

μc̃𝑖𝑗
1  

ℝ 

μc̃𝑖𝑗
1  

ℝ 
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Supp (c̃12
1 ) = 3 + 4τ,          μc̃121 (3) = μc̃121 (7) = 0, 

Supp (c̃13
1 ) = 6 − 2τ,          μc̃131 (4) = μc̃131 (6) = 0, 

Supp (c̃24
1 ) = 5 + 4τ,          μc̃241 (5) = μc̃241 (9) = 0, 

Supp (c̃25
1 ) = 7 + τ,            μc̃131 (7) = μc̃131 (8) = 0, 

Supp (c̃34
1 ) = 9 + 2τ,          μc̃341 (9) = μc̃341 (11) = 0, 

Supp (c̃35
1 ) = 10 + 2τ,        μc̃351 (10) = μc̃351 (12) = 0, 

Supp (c̃45
1 ) = 1 + τ,             μc̃451 (1) = μc̃451 (2) = 0, 

Supp (c̃12
2 ) = 13 − 4τ,         μc̃122 (13) = μc̃122 (9) = 0, 

Supp (c̃13
2 ) = 4 + 4τ,           μc̃132 (4) = μc̃132 (8) = 0, 

Supp (c̃24
2 ) = 7 − 4τ,            μc̃242 (7) = μc̃242 (3) = 0, 

Supp (c̃25
2 ) = 4 + 4τ,            μc̃252 (4) = μc̃252 (8) = 0, 

Supp (c̃34
2 ) = 7 − 2τ,            μc̃342 (5) = μc̃342 (7) = 0, 

Supp (c̃35
2 ) = 4 + 2τ,            μc̃352 (4) = μc̃352 (6) = 0, 

Supp (c̃45
2 ) = 10 − 4τ,          μc̃452 (6) = μc̃452

(10) = 0. 

 L1 = 265, U1 = 375, L2 = 250, U1 = 425,  

At τ =0, the GP for the problem becomes 

     Min F1(τ) =(3 + 4τ)x12 + (6 − 2τ)x13 + (5 + 4τ)x24 + (7 + τ)x25 + (9 + 2τ)x34 

+(10 + 2τ)x35 + (1 + τ)x45, 

Min F2(τ) =(13 − 4τ)x12 + (4 + 4τ)x13 + (7 − 4τ)x24 + (4 + 4τ)x25 + (7 − 2τ)x34 

+(4 + 2τ)x35 + (10 − 4τ)x45, 

s. t. 

    x12 + x13 = 10, 
              x24 + x25 − x12 = 0, 
              x34 + x35 − x13 = 20, 
             x45 − x24 − x34 = −15,                                                                                    

              −x25 − x35 − x45 = −15, 
             x12 ∈ [0, 20], x13 ∈ [0, 10], x24 ∈ [0, 20], x25 ∈ [0,10], 

                x34 ∈ [0, 30], x35 ∈ [0,25], x45 ∈ [0, 50], and 𝜏 ∈ [0,1]. 

(16) 

  maxϑ 

s. t. 

    3x12 + 6x13 + 5x24 + 7x25 + 9x34 + 10x35 + x45 + ϑ110 ≤ 375, 
 13x12 + 4x13 + 7x24 + 4x25 + 7x34 + 4x35 + 10x45 + ϑ175 ≤ 425, 

              x12 + x13 = 10, 
              x24 + x25 − x12 = 0,                                                                                     

(17) 
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Using the GINO software, the optimal compromise solution is 

To determine the stability set S (x12
° , x24

° , x13
° , x25

° ,  x45
°  , x34

° , x35
° , cij

1°, cij
2°), 

We get I1 ⊆ {1, 2}. 

For I1 = ∅,ω12
1 , ω13

1 , ω24
1 , ω25

1 , ω34
1 , ω35

1 , ω45
1 , ω12

2 , ω13
2 , ω24

2 , ω25
2 , ω34

2 , ω35
2 , ω45

2 = 0. Then 

For I2 = {1}, ω12
1 , ω13

1 , ω24
1 , ω25

1 , ω34
1 , ω35

1 , ω45
1 > 0;ω12

2 , ω13
2 , ω24

2 , ω25
2 , ω34

2 , ω35
2 , ω45

2 = 0. Then 

For I3 = {2}, ω12
1 , ω13

1 , ω24
1 , ω25

1 , ω34
1 , ω35

1 , ω45
1 = 0;ω12

2 , ω13
2 , ω24

2 , ω25
2 , ω34

2 , ω35
2 , ω45

2 > 0. Then 

              x34 + x35 − x13 = 20, 
             x45 − x24 − x34 = −15, 

              −x25 − x35 − x45 = −15, 
             x12 ∈ [0, 20], x13 ∈ [0, 10], x24 ∈ [0, 20], x25 ∈ [0,10], 

               x34 ∈ [0, 30], x35 ∈ [0,25], x45 ∈ [0, 50], 

                3x12 + 6x13 + 5x24 + 7x25 + 9x34 + 10x35 + x45 − v1+ + v1− = 265, 
 13x12 + 4x13 + 7x24 + 4x25 + 7x34 + 4x35 + 10x45 − v2

+ + v2
− = 250, 

                     v1+, v1−, v2+, v2− =  and ϑ ∈ [0,1]. 

x12
° = x24

° = 8.56, x13° = 1.44, x25
° =  x45

° = 0,  x34° = 6.44, x35
° = 15, v1

+ = 20.11, 

 

v1
− = v2

− = 0, v2
+ = 32,  ϑ° = 0.82. 

 

ω12
1 (3 − (c12

1+)0) = 0,ω13
1 (6 − (c13

1+)0) = 0,ω24
1 (5 − (c24

1+)0) = 0,ω25
1 (7 − (c25

1+)
0
) = 0, 

 ω34
1 (9 − (c34

1+)0) = 0,ω35
1 (10 − (c35

1+)
0
) = 0,ω45

1 (1 − (c45
1+)

0
) = 0,ω12

2 (13 −

(c12
2+)0) = 0,   

 ω13
2 (4 − (c13

2+)0) = 0,ω24
2 (7 − (c24

2+)0) = 0,ω25
2 (4 − (c25

2+)
0
) = 0,ω34

2 (7 − (c34
2+)0) =

0,ω35
2 (4 − (c35

2+)
0
) = 0,ω45

2 (10 − (c45
2+)

0
) = 0,  

ω12
1 , ω13

1 , ω24
1 , ω25

1 , ω34
1 , ω35

1 , ω45
1 , ω12

2 , ω13
2 , ω24

2 , ω25
2 , ω34

2 , ω35
2 , ω45

2 ≥ 0.    

 

SI1 (x12
° , x24

° , x13
° , x25

° ,  x45
°  , x34

° , x35
° , cij

1°, cij
2°)

=

{
 
 

 
 cij

r : (c12
1+)0 ≥ 3, (c13

1+)0 ≥ 6, (c24
1+)0 ≥ 5,

(c25
1+)

0
≥ 7, (c34

1+)0 ≥ 9, (c35
1+)

0
≥ 10, (c45

1+)
0
≥ 1, (c12

2+)0 ≥ 13,

(c13
2+)0 ≥ 4, (c24

2+)0 ≥ 7, (c25
2+)

0
≥ 4, (c34

2+)0 ≥ 7, (c35
2+)

0
≥ 4, (c45

2+)
0
≥ 10  

    }
 
 

 
 

. 
 

SI2 (x12
° , x24

° , x13
° , x25

° ,  x45
°  , x34

° , x35
° , cij

1°, cij
2°)

=

{
 
 

 
 cij

r : (c12
1+)0 = 3, (c13

1+)0 = 6, (c24
1+)0 = 5,

(c25
1+)

0
= 7, (c34

1+)0 = 9, (c35
1+)

0
= 10, (c45

1+)
0
= 1, (c12

2+)0 ≥ 13,

(c13
2+)0 ≥ 4, (c24

2+)0 ≥ 7, (c25
2+)

0
≥ 4, (c34

2+)0 ≥ 7, (c35
2+)

0
≥ 4, (c45

2+)
0
≥ 10  

    }
 
 

 
 

. 
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For I4 = {1,2}, ω12
1 , ω13

1 , ω24
1 , ω25

1 , ω34
1 , ω35

1 , ω45
1 > 0;ω12

2 , ω13
2 , ω24

2 , ω25
2 , ω34

2 , ω35
2 , ω45

2 > 0. Then 

Hence 

 

 

8|Discussion 

In this section, the proposed study is compared with some existing relevant literature to carve out the 

advantageous aspect of the proposed research. Table 1 presents this comparison under specific parameters. 

It's evident that the result obtained by the proposed approach is less than that obtained by Alharbi et al. [30]. 

Table 1. Comparisons of different researcher's contributions. 

 

9|Conclusion 

This paper introduces a multi-objective MCF problem with possibilistic variables. A fuzzy GP approach has 

been applied to the possibilistic MCF problem. The advantage of this approach is the utilization to allow 

conflicting goals and permit the consideration of the decision environment. The GAMS software has been 

applied to obtain the solution. The parametric study corresponding to the α −possibly optimal solution is 

defined and determined without differentiability. Future work may include extending this study to other fuzzy-

like structures (i. e., interval-valued fuzzy set, Neutrosophic set, Pythagorean fuzzy set, Spherical fuzzy set, 

etc., with more discussion and suggestive comments. 

Author Contribution 
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The  authors  have  read  and  agreed  to  the  published  version  of  the manuscript. 

SI3 (x12
° , x24

° , x13
° , x25

° ,  x45
°  , x34

° , x35
° , cij

1°, cij
2°)

=

{
 
 

 
 cij

r : (c12
1+)0 ≥ 3, (c13

1+)0 ≥ 6, (c24
1+)0 ≥ 5,

(c25
1+)

0
≥ 7, (c34

1+)0 ≥ 9, (c35
1+)

0
≥ 10, (c45

1+)
0
≥ 1, (c12

2+)0 = 13,

(c13
2+)0 = 4, (c24

2+)0 = 7, (c25
2+)

0
= 4, (c34

2+)0 = 7, (c35
2+)

0
= 4, (c45

2+)
0
= 10  

    }
 
 

 
 

. 
 

SI4 (x12
° , x24

° , x13
° , x25

° ,  x45
°  , x34

° , x35
° , cij

1°, cij
2°) =

{
 
 

 
 cij

r : (c12
1+)0 = 3, (c13

1+)0 = 6, (c24
1+)0 = 5,

(c25
1+)

0
= 7, (c34

1+)0 = 9, (c35
1+)

0
= 10, (c45

1+)
0
= 1, (c12

2+)0 = 13,

(c13
2+)0 = 4, (c24

2+)0 = 7, (c25
2+)

0
= 4, (c34

2+)0 = 7, (c35
2+)

0
= 4, (c45

2+)
0
= 10  

    }
 
 

 
 

. 
 

S (x12
° , x24

° , x13
° , x25

° ,  x45
°  , x34

° , x35
° , cij

1°, cij
2°)

=⋃SIp (x12
° , x24

° , x13
° , x25

° ,  x45
°  , x34

° , x35
° , cij

1°, cij
2°)

4

P=1

. 
 

Author's Name 𝛂 −Efficient 
Solution 

𝛂 −Parametric 
Compromise Solution 

Fuzzy Goal 
Programming 

Stability Set of 
the First Kind 

Environment 

Ghatee and Hashemi 
[31] 

× × × × Fuzzy 

Bustos et al. [32] × × × × Stochastic 
Alharbi et al. [30] √ √ √ √ Fuzzy 
Our proposed 
approach 

√ √ √ √ Possibilistic 
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