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A B S T R A C T  

Generating dynamic videos from static images and accurately modeling object motion within scenes are 

fundamental challenges in computer vision, with broad applications in video enhancement, photo animation, and 

visual scene understanding. This paper proposes a novel hybrid framework that combines convolutional neural 

networks (CNNs), recurrent neural networks (RNNs) with long short-term memory (LSTM) units, and generative 

adversarial networks (GANs) to synthesize temporally consistent and spatially realistic video sequences from still 

images. The architecture incorporates splicing techniques, the Lucas-Kanade motion estimation algorithm, and a 

loop feedback mechanism to address key limitations of existing approaches, including motion instability, 

temporal noise, and degraded video quality over time. CNNs extract spatial features, LSTMs model temporal 

dynamics, and GANs enhance visual realism through adversarial training. Experimental results on the KTH 

dataset, comprising 600 videos of fundamental human actions, demonstrate that the proposed method achieves 

substantial improvements over baseline models, reaching a peak PSNR of 35.8 and SSIM of 0.96—representing a 

20% performance gain. The model successfully generates high-quality, 10-second videos at a resolution of 

720×1280 pixels with significantly reduced noise, confirming the effectiveness of the integrated splicing and 

feedback strategy for stable and coherent video generation. 

Keywords: Video Generation, Convolutional Neural Networks, Recurrent Neural Networks, Generative 

Adversarial Networks. 
 

 

1. Introduction 

Video is one of the most powerful forms of 
communication, capable of receiving, recording, 
processing, transmitting, storing, and reconstructing 
moving images. It conveys a wealth of information 
by seamlessly integrating multiple media elements 
such as sound, images, and text [1]. Given that 
humans are naturally skilled at processing and 
interpreting visual information and most of their 
sensory input is received through the visual system, 
video has become the most effective medium. By 
engaging multiple senses simultaneously, video 
allows for faster comprehension, stronger 
communication, and makes it an essential tool in 
modern communication [2].  

Computer Vision (CV) attempts to simulate 
human visual perception, enabling machines to 
observe, identify, and analyze objects and their 
relationships in the environment [3]. The ability to 
perceive a scene and its dynamics is one of the 
human-level functions. Although the human visual 
system is not parallel, it has high speed, accuracy, 
and quality that allows it to recognize and 
understand complex scenes. Simulating this visual 
system in computers remains a challenging 
endeavor. Deep learning (DL) algorithms, 
particularly convolutional neural networks (CNNs), 
recurrent neural networks (RNNs) and Generative 
Adversarial Networks (GANs) are employed to 
address this challenge [4].  
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CNNs have transformed CV by automatically 
learning features in images, ranging from simple 
edges to complex patterns such as faces and 
vehicles. Their ability to manage high-dimensional 
data enhances the performance of CV systems, 
making them essential for tasks such as object 
detection, face recognition, and scene understanding 
[5]. RNNs are designed for sequential data, such as 
time series and natural language, and are also useful 
for CV tasks that involve temporal patterns in 
images or videos [6]. RNNs can store past inputs 
and use them to analyze dynamic visual data. 
Applications of RNNs in CV include detecting 
actions such as "running" or "cooking" in video 
clips, tracking moving objects, and creating captions 
for images. GANs are deep learning models 
comprising two competing neural networks: a 
generator that produces fake data (such as images) 
and a discriminator that differentiates between real 
and fake data. This adversarial process enhances the 
quality of the generated content [7]. GANs excel in 
creating realistic images, performing image-to-
image translation, achieving super-resolution, and 
engaging in creative tasks by utilizing adversarial 
training to boost image realism and generate new 
data. 

One of the important tasks in CV is video 
generation (VG) from images or animation of 
images. VG refers to the process of creating or 
combining video content from specific inputs such 
as images or videos. This field is very important due 
to its applications in the fields of artificial data 
generation for training machine learning models, 
future prediction, its applications in augmented 
reality and surveillance and security [2]. Research 
gaps in VG include various areas such as increasing 
temporal stability, motion realism, structural 
correlation, video quality and consistency [8]. A key 
challenge in CV is interpreting body movements and 
scene dynamics. Future image prediction and VG 
from still images remain particularly difficult tasks. 
These issues persist as significant obstacles due to 
the short duration and low quality of existing 
generated videos. Our focus in this paper is on 
improving video quality and correlation. For this, we 
employ a combination of CNN, RNN and GAN in 
proposed architecture. 

A CNN extracts spatial features (edges, textures) 
to understand image structure within each frame. An 
RNN then models temporal dependencies between 
frames, ensuring motion continuity by leveraging 
internal memory to predict frame-to-frame changes. 
A GAN enhances realism by training a generator to 
produce frames that can fool a discriminator, 
overcoming the blurry or noisy outputs of traditional 
methods like Autoencoders. This CNN-RNN-GAN 
architecture addresses the multimodal nature of 
video generation, requiring both spatial and 
temporal processing, unlike existing methods that 

typically focus on only one. By integrating the 
strengths of each network, this hybrid approach 
significantly improves video quality and stability. 
Specifically, the RNN mitigates temporal instability 
by maintaining memory of previous frames, while 
the GAN reduces unnatural motion. CNN preserves 
image detail by extracting high-level features. 
Compared to GAN-alone approaches prone to 
temporal discontinuity or RNN-alone approaches 
resulting in blurred outputs, this combination 
provides both temporal coherence and realism. This 
integrated architecture offers a comprehensive 
solution for video generation, combining spatial 
understanding (CNN), temporal modeling (RNN), 
and realistic rendering (GAN), and applies to motion 
prediction, missing frame completion, and video 
resolution enhancement. 

While recent advances in video generation (VG) 
have yielded significant progress, current models 
often suffer from limitations in either temporal 
consistency, spatial fidelity, or overall realism. 
Many approaches focus exclusively on one 
modality—either spatial (using CNNs) or temporal 
(using RNNs or Transformers)—which leads to 
unbalanced performance across key video quality 
dimensions. CNNs are effective at extracting spatial 
features from video frames, identifying crucial 
elements like edges and textures. RNNs model 
temporal dependencies, allowing them to understand 
frame sequences and maintain motion consistency. 
GANs, with their generative and discriminative 
networks, excel at creating high-quality, realistic 
video sequences. To summary, CNNs ensure high 
spatial quality, RNNs provide temporal coherence, 
and GANs enhance overall realism. This 
architecture enables end-to-end learning, allowing 
CNNs, RNNs, and GANs to collaboratively produce 
realistic, high-quality videos. The main 
contributions are listed below: 

• Enhancing Video Quality and Consistency: 
We tackle VG challenges by improving 
video quality, stability, and correlation 
through a hybrid architecture that combines 
CNNs, RNNs, and GANs for more realistic 
video generation.   

• Proposed Hybrid Video Generation 
Framework: Our architecture uses CNNs for 
spatial features, RNNs for temporal 
modeling, and GANs for high-quality 
sequences, ensuring spatial fidelity, temporal 
coherence, and effective end-to-end learning.   

• Key Challenges in CV for Video Creation: 
The paper addresses vital CV issues like 
body movement interpretation, scene 
dynamics, and image-to-video forecasting, 
focusing on realism, quality, and consistency 
essential. 
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This section focused on video processing, 
analysis, and generation using various machine 
learning techniques. We addressed gaps in the 
existing literature and outline our motivation. The 
second section discusses relevant research, the third 
details our proposed method, and the fourth presents 
the results of our approach. 

2. A Review of Research Literature 

In this section, we first review related works. 
Then, we will have a brief overview of CNN, RNN, 
and GAN.  

2.1. Related works 

Generative adversarial networks (GANs) have 
been extensively employed in VG and related 
applications. Xiong et al. [9] proposed a novel 
approach titled "Generating Time-Lapse Videos 
Through Multi-Stage Dynamic Generative 
Adversarial Networks", achieving high-quality 
video synthesis with a resolution enhancement of up 
to 128× for 32 frames. The effectiveness of their 
model was validated through comprehensive 
quantitative and qualitative evaluations, 
demonstrating superiority over state-of-the-art 
methods. Vougioukas et al. [10] leveraged GANs for 
video-driven speech reconstruction, developing a 
model capable of producing intelligible and 
synchronized speech with lifelike quality. Their 
method was tested on the GRID dataset under both 
speaker-dependent and speaker-independent 
conditions, and evaluations included speech quality 
and word accuracy metrics. 

Chen et al. [11] explored domain adaptation in 
videos using GANs, introducing VideoGAN to 
improve segmentation accuracy of colorectal polyps 
on multicenter datasets, achieving a 5% performance 
gain. They further validated their approach on the 
CamVid driving video dataset for a cloudy-to-sunny 
translation task, demonstrating its ability to 
significantly reduce domain gaps through extensive 
testing. Mira et al. [12] presented an end-to-end 
video-to-speech synthesis framework based on 
GANs, capable of generating high-quality speech 
even from small datasets like GRID. Notably, their 
model is the first to produce intelligible speech for 
Lip Reading in the Wild (LRW) dataset, featuring 
naturalistic recordings of diverse speakers. The 
proposed approach outperformed existing methods 
on the GRID and LRW datasets across multiple 
evaluation metrics. 

Lan et al. [13] focused on unsupervised video 
summarization of wireless capsule endoscopy 
(WCE) videos using recurrent GANs. Their model, 
integrates a variational autoencoder-based LSTM 
architecture with pointer networks and dynamic 
memory techniques for summarization. The 
discriminator LSTM adversarial trains alongside the 
summarizer, enhancing the quality of the video 

summaries. Experiments conducted on the WCE-
2019-Video dataset demonstrated that their model 
outperformed existing supervised and unsupervised 
video summarization techniques.  

Singh et al. [14] apply Deep Convolutional 
Generative Adversarial Networks (DCGANs), 
achieving remarkable results with a discriminator 
loss of 0.0003 and a generator loss of 5.8206. These 
outcomes highlight the effectiveness of DCGANs in 
producing high-quality outputs and their 
significance in generative model development. 
Qamar et al. [15] investigate the multidisciplinary 
applications of Generative Adversarial Networks 
(GANs) and the implementation challenges they 
present. They provide a thorough overview of 
GANs' transformative impact across various sectors 
while addressing the difficulties researchers face in 
their deployment. 

Hong et al. [16] introduce a Depth-aware 
Generative Adversarial Network (DaGAN) that 
excels in generating highly realistic human facial 
features, especially for occluded or partially visible 
faces. This innovative approach underscores the 
importance of depth awareness in generative 
models, showcasing significant advancements in 
realism and detail. Wang et al. [17] propose a 
Conditional Video GAN that utilizes fMRI data to 
analyze rapid brain perceptual processes. By linking 
slow blood oxygen-level dependent (BOLD) signals 
with swift brain activity, the model enables new 
insights into neural representations, paving the way 
for advancements in neuroscience and cognitive 
science. Liu et al. [18] demonstrate the creation of 
fake stereo audio for music using GANs, revealing a 
significant drop in detection accuracy from 99% to 
30%, alongside a rise in the false acceptance rate 
from 0.08% to 69%. These results highlight the 
challenges GANs pose to current detection 
mechanisms in audio processing. Zhang et al. [19] 
present a generative adversarial network framework 
that consistently outperforms state-of-the-art 
techniques across diverse scenes and events, 
showcasing its reliability and effectiveness in 
handling complex generative tasks. 

The Continuous Video Process (CVP) approach 
[20] models videos as continuous multi-dimensional 
processes, addressing the limitations of traditional 
discrete generative methods. By introducing a 
unique noise scheduling strategy and modeling 
frame generation as a bidirectional process between 
the start and end frames, CVP significantly enhances 
temporal consistency. On the KTH dataset, it 
achieves PSNR = 29.8 and SSIM = 0.872 for 30-
frame prediction, demonstrating its effectiveness in 
long-range modeling without reliance on attention 
mechanisms. DFDNet [21] proposes a disentangling 
and filtering strategy for improved video prediction. 
It separates spatial dynamics into horizontal and 
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vertical components and applies a Fourier-based 
filter to remove transient high-frequency noise. This 
leads to superior prediction performance, with the 
highest reported PSNR = 35.11 and SSIM = 0.916 
on the KTH dataset, highlighting its strength in 
noise suppression and motion disentanglement. 

The MAUCell model [22] introduces a multi-
attention framework combining temporal, spatial, 
and pixel-wise attention mechanisms within a GAN 
architecture. Despite a relatively low PSNR of 22.5, 
it achieves the highest SSIM of 0.935, emphasizing 
its focus on perceptual realism over traditional pixel-
wise fidelity. A refined version of the CVP model, 
presented in [23], further streamlines diffusion 
sampling by reducing the number of steps by 75%, 
achieving the same metrics (PSNR = 29.8, SSIM = 
0.872) while significantly improving computational 
efficiency. 

Neural SDEs [24] offer a unified framework for 
continuous-domain sequence modeling by 
parameterizing stochastic differential equations with 
neural networks. This method excels in capturing 
complex temporal dynamics and reports PSNR = 
27.55 and SSIM = 0.807 on KTH, favoring 
generalizability across sequential tasks. The RIVER 
model [25] applies sparsely conditioned flow 
matching in the latent space of a pretrained 
VQGAN. By conditioning on few keyframes and 
using warm-start sampling, it balances accuracy and 
efficiency, achieving PSNR = 30.4 and SSIM = 0.86 
while reducing computational cost. 

In [26], a state-space decomposition model is 
introduced to separately predict deterministic 
appearance and stochastic motion. The use of a 
temporal transformer allows modeling of long-term 
motion trends. The model shows strong performance 
with PSNR = 30.3, SSIM = 0.8766, and LPIPS = 
0.0743, indicating both accuracy and perceptual 
quality. Lastly, MOSO [27] proposes a two-stage 
pipeline that decomposes videos into motion, scene, 
and object components. Using VQVAE for 
tokenization and a transformer for sequence 
modeling, MOSO facilitates flexible and modular 
video generation. It attains PSNR = 29.8, SSIM = 
0.822, and LPIPS = 0.083, making it suitable for 
both conditional and unconditional video synthesis 
tasks. 

2.2. Convolutional Neural Networks 

Convolutional neural networks (CNNs) are a 
cornerstone of deep learning, designed to process 
and analyze two-dimensional data such as images 
and videos. They are a specialized subset of 
multilayer neural networks that extract hierarchical 
features through successive layers. Each layer 
applies learnable filters to detect specific 
characteristics of the input data, progressively 
building a detailed representation of the image or 

video [28]. CNNs consist of three primary types of 
layers: convolutional layers, pooling layers, and 
fully connected layers. The configuration of these 
layers is tailored to the complexity and requirements 
of the given task. 

The convolutional layer, the core component of 
CNNs, uses a set of trainable filters as parameters, 
enabling the network to automatically learn relevant 
features directly from the data [29]. This contrasts 
with traditional methods where features were 
manually designed. Pooling layers reduce spatial 
dimensions while retaining essential information, 
making the network more computationally efficient 
and robust to spatial variations. Fully connected 
layers integrate the extracted features for 
classification or other tasks. CNNs excel in image 
and video processing tasks with minimal 
preprocessing compared to traditional methods [30]. 
Their adaptability also extends to array data, 
including audio signals, RGB images, and time-
series data. This efficiency stems from their ability 
to learn complex patterns with fewer parameters and 
connections than fully connected networks, enabling 
faster training and improved scalability.  

2.3. Recurrent Neural Networks  

Recurrent Neural Networks, commonly referred 
to as RNNs, represent a specialized category of 
neural networks that are specifically engineered to 
handle and process sequential data. These networks 
achieve this by effectively modeling the intricate 
relationships and dependencies that exist between 
individual elements within a sequence. In contrast to 
conventional neural networks, which typically 
operate on fixed-size input data, RNNs are equipped 
with recurrent connections. This unique architectural 
feature enables RNNs to maintain a hidden state, 
which serves as a memory that captures and retains 
contextual information from previous inputs 
encountered in the sequence. As a result, RNNs are 
particularly well-suited for a variety of tasks that 
involve time series analysis, natural language 
processing, or any other type of data that exhibits 
temporal or sequential patterns. Their ability to 
remember and utilize information from earlier points 
in a sequence allows RNNs to perform effectively in 
applications where the order and timing of data 
points are crucial for accurate interpretation and 
prediction. 

2.4. Generative Adversarial Network 

These neural networks consist of two competing 
elements that improve through rivalry, based on a 
game theory approach where an adversarial process 
challenges the Generative deep learning network. A 
discriminator deep network distinguishes between 
outputs from the Generative network and real data. 
This competition enhances the learning and 
performance of both networks. Imagine a novice 
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showing their artwork to a master painter while 
claiming to be a professional. The artist identifies 
flaws, prompting the novice to improve. Over time, 
the differences between their work and that of a 
skilled painter diminish. The master painter, an 
expert in discrimination, collaborates with the 
novice, with the generator aiming to produce outputs 
indistinguishable from real data. The discriminator 
analyzes real and generated data to train a classifier 
to differentiate between them. In this analogy, D is a 
network, and G's role is to create counterfeits, 
learning to differentiate between real and fake 
currency. Both networks learn from each other, with 
the generative network refining its outputs based on 
the discriminator's feedback. The process continues 
until the quality of generative outputs satisfies the 
observer. After processing, input data consists of 
frames refined by a convolutional neural network, 
which enhances the image and prepares it for the 
GAN to generate video by understanding scene 
motion through optical flow. 

3. The Proposed Method 

The proposed method has three main phases that 
combine deep learning techniques to achieve a high-
quality video. 

Data Preprocessing and Feature Extraction: The 
video generation process begins with data 
preprocessing, where the input data is transformed 
into a series of frames. These frames undergo initial 
processing through a convolutional neural network 
(CNN) that improves the background of the image 
spatially and temporally. The CNN also adjusts the 
background to achieve minimum dimensionality and 
prepares the data for input to a Generative 
Adversarial Network (GAN). Optical flow analysis 
is used to extract motion features from the scene, 
enabling the GAN to distinguish between moving 
and stationary objects. This phase emphasizes 
feature extraction, creating a context to create 
realistic motion, and maintaining temporal 
consistency. 

Video Frame Generation Using GAN: In this 
phase, the GAN uses the preprocessed data to 
generate video frames. A GAN based on 
Convolutional Architecture learns scene motion by 
training on a large dataset of unlabeled videos. The 
background is modeled separately to ensure that it 
remains stationary, while the motion of objects 
within the scene is analyzed and combined. Frames 
are fed into the GAN in a circular fashion: the initial 
frame is used to generate a video from which an 
image is extracted before any quality reduction. This 
real image is then fed back into the GAN, enabling 
the network to iteratively refine the generated 
frames. Convolution layers in the generator and 
discriminator models, along with inverse 

convolution layers, ensure that the final output meets 
the desired image dimensions and quality standards. 

Video Assembly and Evaluation: The final stage 
involves assembling the generated frames into a 
coherent video. By combining the refined frames, 
this process ensures temporal consistency and high 
visual quality. The generated video is compared 
with the original video from the dataset to assess its 
accuracy and realism. Motion detection via optical 
flow and the GAN detector model helps validate the 
video quality. The network also learns to distinguish 
between moving objects and static backgrounds, 
ensuring a realistic representation of the scene. 
Finally, the GAN outputs a complete video with 
minimal quality loss, respecting both temporal and 
spatial criteria. 

3.1. Identify the Movement of Objects in the 

Video 

In visual gesture analysis, distinguishing 
between the background and foreground is essential, 
as the accuracy of the results significantly impacts 
effectiveness of VG. The four most common 
methods for motion detection include background 
differentiation, statistical techniques, and assessing 
temporal and sharpness differences. Optical flow, 
capable of tracking moving subjects despite camera 
movement and background noise, is preferred in 
motion detection applications. Thus, the proposed 
system calculates velocity in each frame using 
optical flow.  

Optical flow analysis detects motion between 
consecutive frames, allowing for the separation of 
moving foreground objects from the static 
background during the preprocessing phase. These 
extracted motion vectors are then fed into the GAN, 
which helps create realistic object movements in the 
generated frames, thereby avoiding unnatural 
artifacts such as sudden jumps. 

The Horn-Schunck and Lucas-Kanade formulas 
are frequently utilized for this purpose. While Lucas 
is a local approach and Horn is global, Lucas 
operates faster and is less affected by noise due to its 
local computations, making it the method of choice 
for calculating sharpness. Lucas-Kanade was 
selected for its KTH dataset compatibility. Its 
accuracy in detecting foreground motion with strong 
gradients (e.g., walking) and lower computational 
cost (40% faster than Horn-Schunck) enabled 
training on limited hardware. Its noise resistance 
allowed accurate tracking of moving objects in 
dynamic KTH scenes, improving video frame 
realism and RNN stability. Horn-Schunck's 
complexity made it less suitable for long videos and 
non-uniform motion. 

The previous frame is required to calculate the 

derivatives Ix, Iy and It. The previous frame is 
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maintained and updated with each frame entry. In 

Lucas, the optical flow is assumed to be fixed in the 

horizontal and vertical directions (Vx and Vy) in a 

small image window of size M * M. Therefore, the 

matrices Ix, Iy and It are windowed with dimensions 

N= M * M, Equation (1) is obtained from each 

window. Where Vx and Vy can be calculated by 

Equation (2) for each window [29]. 
 

Ix1 Vx + Iy1Vy = -It1  

Ix2 Vx + Iy2Vy = -It2                                      (1) 

Ixd Vx + IydVy = -Itd  

 

 

(2) 

For each pixel in the input frame, two integers are 

generated to indicate its horizontal and vertical 

displacement, stored in matrices OFx and OFy. 

These matrices match the input frame's dimensions, 

ensuring a direct correlation between pixel 

movements and their locations. By analyzing these 

displacement values, the system can detect frames 

with little or no motion. A frame is considered 

stationary if the maximum values in both OFx and 

OFy are below zero, indicating no movement. This 

identification of motionless frames is crucial for the 

system's operation, facilitating smoother transitions 

to processing the next frame against a static 

background. 

3.2. Convolutional Generative Adversarial 

Networks  

Using a combination of convolutional neural 
networks (CNN) and generative adversarial 
networks (GAN) for image generation leverages the 
strengths of both architectures effectively. CNNs are 
frequently utilized for feature extraction in images. 
They consist of layers that apply convolution 
operations to identify patterns like edges, textures, 
and more complex structures. Additionally, CNNs 
can be integrated into encoder-decoder architectures 
for image processing and transformation. 

A GAN comprises two neural networks: a 
generator and a discriminator. The generator aims to 
create realistic images from random noise or low-
dimensional input, learning to mimic real data. 
Meanwhile, the discriminator's role is to 
differentiate between real and fake images, 
determining whether an image comes from the 
dataset or is generated. This creates a competitive 

dynamic where the generator attempts to deceive the 
discriminator, while the discriminator enhances its 
ability to identify fakes. Over time, both networks 
improve, with the generator producing more realistic 
images as the discriminator becomes better at 
detecting them. 

CNNs are utilized in both the generator and 
discriminator of GANs. The generator employs 
CNN layers to transform input noise into high-
quality images, while the discriminator uses CNNs 
to extract hierarchical features and determine the 
authenticity of the images. This synergy harnesses 
the feature extraction capabilities of CNNs alongside 
the adversarial training of GANs to generate realistic 
images. Figure 1 depicts CGAN architecture. 

3.3. Circular Network  

After the CGAN generates a sequence of images, 
the RNN comes into play to add temporal 
coherence. RNNs are great at capturing temporal 
dependencies and patterns. By processing the frames 
produced by the CGAN as a sequence, the RNN 
learns to predict temporal dynamics, such as 
movement and transitions between frames. This 
ensures that the resulting video is not only visually 
consistent, but also displays a realistic time flow, 
mimicking how events occur in real-world 
scenarios.  

To achieve this goal, we employ the circular 
network approach. If the distinguishing error 
percentage increases with the generated sample, the 
Generative model is also updated in response to this 
change. Each time an input image is fed into the 
generative adversarial network, a movie will be 
created following the training of the network 
through the circular network technique. This process 
aligns with the proposed concept utilized in this 
problem, integrating the circular network within the 
overall framework of the network. It is essential to 
capture the previous image and reintroduce it to the 
network to prevent any loss in video quality and to 
avoid any potential blurring effects that may occur 
over time. The evaluation criteria that will be 
elaborated on in the subsequent section are 
employed to assess and measure the quality of the 
images produced. Ultimately, this technique results 
in the creation of a video, which is enhanced 
in duration through multiple   repetitions  and  

 

Figure. 1. Content clustering of movies 
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combinations of frames, ensuring a richer viewing 
experience. The careful integration of these elements 
not only preserves the integrity of the visuals but 
also contributes to a more cohesive and polished 
final product. The architecture iteratively refines the 
generated frames using a feedback loop to increase 
quality and reduce temporal/spatial anomalies. Each 
frame is evaluated using PSNR and SSIM. If its 
quality falls below a threshold (e.g., PSNR < 30), it 
is returned to the network as a new input. This 
dynamic iteration continues until the desired quality 
is achieved, up to 10 iterations. Low-quality frames 
are reprocessed with modifications, including 
trimming to correct for unnatural motion via GAN 
weight settings and updated input noise to increase 
output diversity. This process is repeated, producing 
improved frames until the quality criteria are met. 
The number of iterations is adaptive and determined 
by the quality criteria. To avoid overfitting, a 
maximum of 10 iterations is applied, and an early 
stop is initiated if the PSNR improvement between 
iterations is less than 0.5 or if Sharp.diff remains 
constant for three consecutive iterations. Figure 2 
shows the proposed architecture. 

Figure 2. The architecture of a Conditional 
Generative Adversarial Network (CGAN), which 
combines convolutional neural networks (CNNs) 
and generative adversarial networks (GANs) for 
realistic image generation. CNNs are used in both 
the generator—for transforming input noise into 
images—and the discriminator—for extracting 
hierarchical features to distinguish real from 
generated images. 

The networks were pre-trained separately: the 
CNN on KTH for image feature extraction, the RNN 
on real frame sequences for temporal pattern 
learning, and the CGAN on static image generation 
for realism. End-to-end joint training then integrated 
the system, initialized with random noise. The CNN 
extracted features, the GAN generated frames from 
features and noise, and the RNN analyzed these 
frames for temporal stability. A hybrid loss function, 
combining mean squared error (pixel quality) and 
SSIM (adversarial loss for visual coordination), 
improved GAN realism. We used Wasserstein GAN 
with a gradient penalty to stabilize joint training and 
prevent equilibrium collapse. Adam optimization 
with an adaptive learning rate (initial rate 0.0001, 
gradually reduced) and Batch Normalization 
addressed slow convergence and reduced 
initialization sensitivity. To bridge CNN-extracted 
features and RNN requirements, Fully Connected 
layers converted spatial features to temporal data, 
and stepwise training prioritized RNN training after 
CNN stabilization. These solutions – WGAN, batch 
tuning, and hybrid loss – overcame the challenges of 
joint CNN, RNN, and GAN training, resulting in 
improved video quality, temporal stability, and 
motion realism. 

 

Figure. 2. The architecture of a Conditional Generative 

Adversarial Network (CGAN), which combines convolutional 

neural networks (CNNs) and generative adversarial networks 
(GANs) for realistic image generation. CNNs are used in both 

the generator—for transforming input noise into images—and 

the discriminator—for extracting hierarchical features to 

distinguish real from generated images.  

4. Evaluating the Results 

All implementations were carried out in Python, 
with a focus on generating the final video through 
the creation of successive frames, motion detection, 
and motion separation using optical flow and a 
Circular Generative Network (CGN). The Python 
implementation leverages libraries such as 
TensorFlow, OpenCV, NumPy, and Scikit-image. 
The computations were performed on a system 
configured with 32 GB of RAM, a Core i7 CPU, and 
a GeForce GTX 1050 Ti GPU.  

Peak Signal-to-Noise Ratio (PSNR) and 
Structural Similarity Index (SSIM) and Sharpens are 
used to compare the methods [32]. PSNR, often 
regarded as the most common metric for assessing 
image quality, is defined by Equation (3). 

 

(3) 

Where, MAX is maximum possible pixel value, 
MSE is calculated by Equation (4). 

 
(4) 

 Where, I is reference image, H denotes distorted 
image and   M, N are dimensions of the image. SSIM 
is a perceptual metric that evaluates image quality 
by comparing structural information, luminance, and 
contrast. It’s designed to better align with human 
visual perception compared to PSNR. SSIM denotes 
by Equation (5).   

           (5) 
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Sharpness criterion compares the sharpness of 
the projected image to the original (sharp.diff) by 
assessing the gradient difference between the two 
images, X and Y, as defined in Equation (6). 

 

 

(6) 

  

4.1. Dataset 

The KTH dataset is a prominent resource for 
activity identification, utilized in papers [31, 32]. It 
encompasses various actions, including Walking, 
Jogging, Running, Boxing, Hand Waving, and Hand 
Clapping. The dataset features 25 participants 
performing exercises across four scenarios: an open 
environment, an outdoor setting with variable scale, 
an open space with changing clothing and light 
intensity, and an indoor area. Each video showcases 
a single individual, and the camera may shake, zoom 
in, or out. The KTH dataset consists of 600 videos, 
all captured at 25 frames per second with a 
stationary camera in static surroundings. Each 
sequence has a spatial resolution of 120x160 pixels 
and an average duration of four seconds. Table 1 
shows the features of the KTH dataset, and Figure 3 
depicts activities from this dataset, which includes 
videos of specific activities. The dataset can also 
incorporate other similar datasets. It comprises 100 
video segments, each titled with the person's 
number, the walking activity, and the relevant 
scenario number. To prepare the dataset for network 
processing, each video must be converted into 
frames. This conversion ensures the accuracy of the 
generated videos, which can be verified against the 
original until the network has processed the images 
and produced the final movie. The walking activity 
class has been utilized in this section.  

KTH's widespread use allows direct comparison 
with existing research. Key features include static 
backgrounds and efficient video specifications 
(160x120, 25 FPS), simplifying motion analysis. 
Datasets like UCF-101 (too diverse), Hollywood2 
(cinematic, inaccurate labels), and DAVIS 
(segmentation-focused) were deemed unsuitable. 
KTH's simplicity, structure, and comparability make 
it optimal for focusing on basic movement 
generation. More complex datasets can be 
considered for model development. 

4.2. The Results 

In this study, we designed an experiment to 
evaluate the impact of network loop configurations 
and output frame counts on video frame generation 
quality. Two primary scenarios were tested: one 
with 6 loops and 5 output frames, and another with 5 

loops and 3 output frames. The dataset comprising 
25 course-related videos was used, each processed 
into 14,090 individual frames using the get-frame 
method for frame extraction. 

For manageability and analysis consistency, each 
video was segmented into multiple parts, with each 
segment containing a minimum of 400 frames. 
During the initial experimental phase, we applied 
both configurations (6×5 and 5×3) across the 
segmented videos. The results from this phase are 
presented in Table 2. 

Training was conducted with a learning rate of 
0.00004 for 100 iterations. Preliminary findings 
suggest that increasing the number of loops while 
decreasing the number of output frames per loop 
contributes to improved frame quality and 
resolution. Based on these insights, future iterations 
of the experiment will involve adjusting the network 
architecture to support a greater number of loops, to 
generate longer sequences of high-quality frames. 

4.3. Sensitivity Analysis 

We trained the network for 100 iterations using 
learning rates of 0.04, 0.00004, and 0.000004, along 
with various neuron configurations for the hidden 
layer. The findings indicated that 0.00004 was the 
optimal learning rate This learning rate is ideal for 
the Generative network and should be compact 
enough to fit within the discriminator network for 
simultaneous training. Due to the wide range of  

Table 1.  Specifications for the KTH dataset  

Property Value 

Count of activity classes present in the dataset 6 

Mean number of samples for each class 100 

Maximum resolution (pixels) 120 × 160 

Point of view type Side-Front 

Minimum and maximum video length  204-1492 

Sampling rate (FPS) 25 

Table 2.  The results 

Scenarios PSNR 
Sharp. 

diff 
Ds 

#1 
21.44 10.73 

6 loops and 5 production 
frames 

#2 
22.32 11.21 

5 loops and 3 production 

frames 

 

Figure. 3. Activities in the dataset  
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values, results are presented in a logarithmic format. 
Figure 4 shows the PNSR at different learning rates 
for experiences #1 and #2.  

Figure 5 shows the sharpness at different 
learning rates for experiences #1 and #2. 

With a learning rate of 0.00004, we have trained 
the network using a variety of repetitions. The 
Cross-Entropy function has also been utilized as a 
loss function. The findings, whose values are in 
Table 3, show that the loop generative network's 
optimum state necessitates a match between its 
several key parameters including the number of 
iterations, the learning rate, and the number of loops, 
as well as the total number of generated frames. 

Increased iterations enhance network learning of 
motion and detail through feedback. PSNR reaches 
35.8 at 1 million iterations, indicating reduced noise 
and increased sharpness. Table 2 shows improved 
PSNR and Sharp.diff with more iterations due to:  

1) Progressive GAN learning: Early iterations 
produce blurry/noisy frames (low PSNR), while 
later iterations learn subtle features, increasing 
clarity (PSNR ~35.8).  

 

Figure. 4. PSNR results from different learning rates 

 

Figure. 5. Sharpness results from different learning rates 

Table 3.  Results of VG with different repetitions 

SSIM Sharp.diff PSNR iteration 

0/32 10/21199 16/04973 10 

0/47 10/86214 18/56934 100 

0/68 13/54955 19/26552 1000 

0/78 13/75139 22/65245 10000 

0/89 20/56588 28/65246 100000 

0/96 25/51526 35/86234 1000000 

2) Enhanced RNN temporal coordination: Low 
iterations yield discontinuous changes; high 
iterations create smooth, realistic motion patterns by 
modeling long-term dependencies.  

3) Circular CGAN feedback loop: Corrects 
blurring/incoherence. Visually, higher iterations 
improve facial/hand detail clarity, and clothing 
texture. Temporal stability is established, 
transitioning from abrupt changes to smooth 
movements. Motion realism improves (e.g., KTH 
punching). Realism score increases from 2.1 (100 
iterations) to 4.3 (1,000,000 iterations). Motion 
stability rises from 1.2s to 4.5s. Improved 
PSNR/Sharp.diff aligns with visual clarity, stability, 
and realism. 

The CGAN feedback loop enhances frame 
quality by iteratively refining generated frames. 
Each frame is evaluated based on PSNR, SSIM, and 
detail sharpness. If any metric falls below a 
threshold, the frame is fed back into the network for 
correction, which includes detecting abnormal joint 
motion and adjusting GAN weights and input noise 
to promote output variation. This dynamic 
evaluation, corrective unwrapping, and smart 
stopping mechanism prevent poor quality and 
blurring, ensuring both high-quality frames and 
efficient resource utilization for spatially and 
temporally stable, realistic videos. 

As Table 4 demonstrates, our proposed method 
outperforms all existing approaches across key 
video metrics, including PSNR and SSIM. Unlike 
prior models that often trade off temporal coherence 
for spatial quality—or vice versa—our architecture 
integrates convolutional, recurrent, and generative 
adversarial components alongside a novel splicing 
and loop feedback mechanism. This design ensures 
both high-fidelity frame generation and stable 
motion continuity over longer sequences. On the 
KTH dataset, our model achieves a PSNR of 35.8 
and SSIM of 0.96, representing a significant 
performance gain of up to 20% over previous state-
of-the-art methods. Moreover, our model generates 
10-second videos at a resolution of 720×128 with 
minimal perceptual noise, setting a new benchmark 
in realistic and coherent video prediction. 

Table 4.  Compare the results 

PSNR SSIM Year #Ref 

29.8 (30 frames) 0.872 2024 [20] 

35.11 (20 frames) 0.916 2025 [21] 

22.5 0.935 2025 [22] 

29.8 0.872 2024 [23] 

27.55 0.807 2025 [24] 

30.4 0.86 2023 [25] 

30.3 0.8766 2024 [26] 

29.8 (40 frames) 0.822 2023 [27] 

35/86234 0/96 2025 Proposed 
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Figure 6 for signal-to-noise ratio, Figure 7 for 
image resolution, and Figure 8 for structural 
similarity demonstrate the outcomes of our studies 
on the specified dataset with various iterations. As 
can be observed, the evaluation criteria in all three 
parts improve when the number of repetitions rises. 
This improvement will naturally grow somewhat as 
the evaluation criteria are evaluated from one value 
onward and in high repetitions. The convolutional 
generative network research revealed that 1,000,000 
iterations is the ideal number of iterations for 
modeling.  

 

Figure. 6. PSNR evaluation benchmark results 

 

 

Figure. 7. Sharpness evaluation benchmark results 

 

 

Figure. 8. SSIM evaluation benchmark results 

The proposed network provides the production 
frames, which are high-quality as illustrated in 
Figure 9. The show frame function is used in this 
stage to turn a series of frames into a video. It should 
be mentioned that this movie may now be evaluated 
for quality and accuracy by comparing it to REAL 
footage. The original video contains visuals referred 
to as gt stands for round truth (REAL imagery). In 
other words, non-simulation-generated photographs 
were included for better comparison. Images 
produced by the Circular Generative Network are 
likewise images produced by the term (generated). 

5. Conclusion 

This research investigated the integration of 
generative systems and motion detection within a 
comprehensive framework for video generation and  

 

Figure. 9. An example of the frames produced 
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object motion analysis. The basic concepts, 
terminology, and architectural principles of 
generative networks and motion detection are first 
introduced, followed by an in-depth review of 
existing methods for motion detection and video 
synthesis using generative networks. 

The key contribution of this work is the use of a 
generative circular network that uses optical flow 
detection and repeated frame retrieval to analyze 
object motion and generate video content. The 
process began with optical flow detection to capture 
motion, followed by the use of repeated loops to 
extract consecutive frames. A random vector was 
used as input to the neural networks, which allowed 
for the generation of coherent video sequences. The 
KTH dataset served as the main source of images, 
which underwent various stages of processing to 
produce realistic video outputs. 

The generative adversarial network (GAN) was 
trained on a sequence of consecutive frames 
generated in the initial phase. After scene 
perception, the image was segmented into 
foreground and background to facilitate motion 
detection, separating moving objects. The 
background remained static, while the foreground 
was dynamically processed. This iterative process 
involved evaluating the image quality using 
predefined criteria, modifying the output frame, and 
feeding it back to the network as the initial frame for 
subsequent iterations. The final output demonstrated 
the effectiveness of the model, with the generated 
videos exhibiting high-quality motion composition 
and alignment with theoretical expectations. 

The proposed model, trained on the KTH 
dataset, exhibited superior performance in video 
generation, validating the effectiveness of the 
approach. This research not only advances the 
understanding of generative networks in video 
generation, but also provides a practical framework 
for future applications in motion analysis and 
artificial media creation. Further exploration and 
optimization of this model could yield more robust 
solutions to complex video generation challenges. 

The primary limitation is video quality 
degradation in sequences exceeding 10 seconds, 
resulting from accumulated frame errors and the 
model's struggle to maintain long-term coherence in 
complex movements. Furthermore, the model is 
suboptimal for scenes with dynamic lighting or rapid 
motion, potentially introducing noise or blur. Future 
research should focus on incorporating Multi-Head 
Attention into the RNN to better capture long-term 
dependencies and leveraging transfer learning to 
enhance adaptability to diverse scenes. A 
Reinforcement Learning-based optimization 
framework could also improve training stability and 
output quality by automatically adjusting GAN and 
RNN parameters. Finally, extending the method to 

virtual reality and interactive video generation with 
user input presents a promising research avenue. 
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