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A B S T R A C T  

The Internet of Multimedia Things (IoMT) represents a significant advancement in the evolution of IoT 

technologies, focusing on the transmission and management of multimedia streams. As the volume of data 

continues to surge and the number of connected devices grows exponentially, internet traffic has reached 

unprecedented levels, resulting in challenges such as server overloads and deteriorating service quality. 

Traditional computer network architectures were not designed to accommodate this rapid increase in demand, 

leading to the necessity for innovative solutions. 

In response, Software-Defined Networks (SDNs) have emerged as a promising framework, offering enhanced 

management capabilities by decoupling the control layer from the data layer. This study explores the load 

balancing of servers within software-defined multimedia IoT networks. The Long Short-Term Memory (LSTM) 

prediction algorithm is employed to accurately estimate server loads and fuzzy systems are integrated to 

optimize load distribution across servers. The findings from the simulations indicate that the proposed 

approach enhances the optimization and management of IoT networks, resulting in improved service quality, 

reduced operational costs, and increased productivity. 

Keywords— Internet of Multimedia Things, Software-Defined Network, Long Short-Term Memory Prediction, 

Fuzzy System. 
 

1. Introduction  

The Internet of Multimedia Things (IoMT) has 
led to a significant increase in traffic directed toward 
servers and switches, resulting in congestion and 
overload within the network. In such conditions, the 
controller must effectively distribute the load among 
different servers using load-balancing strategies. 
Server load balancing requires forecasting methods to 
enhance load distribution and save energy. Rather 
than relying on conventional prediction models, this 
study utilizes the Long Short-Term Memory (LSTM) 
network, which has demonstrated superior 
performance in time-series forecasting, particularly 
in dynamic network environments. Time-series-
based forecasting methods are commonly employed 
for load management in software-defined networks, 
as these predictions are frequently made for resource 
management and load balancing. These forecasts rely 

on historical observations and assist in predicting 
future values [1,2,3]. 

The LSTM prediction algorithm, which has been 
shown to outperform traditional methods such as 
NLMS and ANN, is utilized in this study to capture 
complex temporal dependencies. LSTM, a type of 
Recurrent Neural Network (RNN), is specifically 
designed to learn long-term dependencies in 
sequential data. This architecture is particularly 
effective for processing and predicting complex 
temporal data, allowing it to identify server load 
patterns from historical data and provide accurate 
predictions for future loads. By leveraging LSTM, 
more precise estimations of server workload are 
achieved, significantly improving decision-making in 
dynamic environments[4]. 

The LSTM prediction algorithm, which has been 
shown to outperform traditional methods such as 
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NLMS and ANN, is utilized in this study to capture 
complex temporal dependencies. LSTM, a type of 
Recurrent Neural Network (RNN), is specifically 
designed to learn long-term dependencies in 
sequential data. This architecture is particularly 
effective for processing and predicting complex 
temporal data, allowing it to identify server load 
patterns from historical data and provide accurate 
predictions for future loads. Compared to other deep 
learning models such as GRU, CNN-LSTM, and 
Transformer-based architectures, LSTM offers a 
balanced trade-off between accuracy and 
computational efficiency, making it a more practical 
choice for real-time server load forecasting. While 
GRU provides a simpler structure, LSTM 
demonstrates superior performance in capturing 
long-term dependencies. Transformer-based models, 
although powerful, require significantly higher 
computational resources, making them less suitable 
for real-time SDN environments. Additionally, CNN-
LSTM models, which integrate convolutional layers, 
are more suited for spatial feature extraction rather 
than sequential network load prediction. Therefore, 
LSTM is chosen for its robustness in time-series 
forecasting and its ability to optimize dynamic load 
balancing strategies effectively. By leveraging 
LSTM, more precise estimations of server workload 
are achieved, significantly improving decision-
making in dynamic environments [4]. 

Server load can be determined using threshold 
values; if a server's load falls below or exceeds a 
specified amount, it is categorized into a specific 
group. However, this method lacks the necessary 
accuracy due to its reliance on a fixed value and 
disregard for dynamic conditions. Therefore, other 
methods, such as fuzzy systems, are utilized to adapt 
to dynamic changes. In contrast to previous studies 
that implement a three-level fuzzy system [8,13], this 
study introduces a more adaptive four-level fuzzy 
system, which enhances load differentiation and 
optimizes allocation strategies. Fuzzy systems are 
designed as a decision-making framework based on 
fuzzy logic to model and manage uncertainty and 
ambiguity in data. These systems define truth 
continuously from 0 (non-existence) to 1 (complete 
existence), allowing for effective modeling of 
intermediate states [6]. 

With advancements in technology and the 
expansion of the multimedia Internet of Things 
(IoMT), communication between devices and the 
flow of multimedia data have significantly increased. 
This surge necessitates optimization in managing 
server loads. The proposed approach improves load 
distribution by incorporating four key server resource 
metrics: CPU, memory, disk, and bandwidth usage. 
In contrast, most previous studies focused on only 
two or three parameters, thereby lacking a 
comprehensive view of server workload. Improper 
load distribution among servers can lead to decreased 

efficiency and increased costs. Therefore, this study 
aims to improve load distribution among servers in 
software-defined multimedia IoT networks. 

The proposed method first calculates each server's 
resource consumption (CPU, memory, hard disk, and 
bandwidth). Then, resource consumption forecasting 
for the server is conducted using artificial intelligence 
algorithms. By utilizing LSTM’s predictive 
capabilities, the system proactively manages traffic 
allocation before congestion occurs, significantly 
enhancing network efficiency. Based on the obtained 
predictions, the server is categorized at a specific 
level, indicating its position within multiple threshold 
levels. Servers with lower levels are prioritized for 
receiving load. Subsequently, it is assessed whether a 
server is in an overloaded state. If an overload is 
present, the load is transferred from the overloaded 
server to a server with a lower load.The main 
contributions of this paper are as follows: 

1. Utilizing four metrics to calculate server load, 
including CPU usage, memory, disk, and 
bandwidth. 

2. Employing Long Short-Term Memory (LSTM) 
algorithms for predicting server loads. 

3. Using fuzzy systems for accurate categorization 
of servers into four levels. 

The subsequent sections of the paper will include 
a review of related work in Section 2, presentation of 
the proposed system in Section 3, simulation results 
in Section 4, and concluding remarks in Section 5. 

2. Related Works 

Dynamic algorithms for balancing server loads 
initially assess the current conditions of the servers 
before determining which server should handle 
incoming traffic based on its state. Zhang et al. [7] 
introduced a dynamic load-balancing strategy that 
relies on the response time of servers, termed Load 
Balancing Based on Server Response Time 
(LBBSRT). This strategy allocates loads based on 
response times, prioritizing servers that exhibit 
quicker or more consistent response times. Compared 
to traditional approaches, this technique enhances 
overall performance and is more cost-effective, as it 
requires less hardware and allows for software-based 
adaptation. 

Montazerolghaem [8] developed a framework to 
address resource management challenges in 
multimedia Internet of Things (IoMT) networks. This 
framework employs function virtualization 
technology for all servers, enabling the controller to 
adjust the network’s scale. By applying the 
normalized minimum mean square prediction 
method, which analyzes historical resource 
utilization data (including CPU, memory, and disk 
usage), servers are classified into three categories 
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through predictive analysis and fuzzy logic. This 
classification process assists in evaluating the overall 
network condition and facilitates appropriate 
adjustments to network size. 

The research presented in [9] focuses on load 
balancing within software-defined networks by 
utilizing machine learning methods such as artificial 
neural networks (ANN) and reinforcement learning. 
These techniques facilitate server load balancing and 
network traffic routing. The artificial neural network 
learns how to allocate traffic to servers by leveraging 
insights gained from past interactions. 

Article [10] introduces a load-balancing 
algorithm specifically designed for data center 
networks to enhance server efficiency and 
performance. By leveraging software-defined 
networking (SDN) and artificial intelligence 
methods, the study seeks to manage high traffic 
volumes effectively, mitigate data loss, and ensure 
continuous server availability.          

In [11], a PID controller integrated with neural 
networks is proposed to enhance server load 
balancing in SDN environments. This PID controller 
fine-tunes the polling frequency to assess server 
response times, relying on two threshold parameters: 
a low-load threshold and a high-load threshold. These 
thresholds determine the server's load status based on 
variations in response times, categorizing it into low, 
medium, or high-load classes. This adaptive 
classification allows for optimal server selection 
based on response times and load, thereby improving 
the load-balancing process. 

The study presented in [12] explores a hybrid 
approach for balancing loads between servers and 
connections within distributed storage systems via 
software-defined networks (SDN). The load-
balancing algorithm ensures that traffic distribution 
aligns with overall network conditions and storage 
server loads. 

In [13], the challenges associated with efficient 
resource allocation for multimedia streaming in 
Software-Defined Internet of Vehicles (IoV) 
networks are addressed. Load balancing in IoV 
networks is achieved through the implementation of 
the ELQ2 framework. By employing intelligent 
algorithms and a modular architecture, ELQ2 
dynamically selects physical machines (PMs) with 
the least load for multimedia content delivery, 
thereby optimizing resource distribution across the 
network. 

Article [14] focuses on optimizing software-
defined multimedia frameworks to enhance 
networking capabilities in multimedia-over-IP 
(MoIP) environments. The research outlines various 
load-balancing strategies employed to manage traffic 
across servers within MoIP networks. Three specific 

algorithms for load distribution are highlighted: call-
join-shortest-queue (CJSQ), transaction-join-
shortest-queue (TJSQ), and transaction-least-work-
left (TLWL). These algorithms aim to distribute 
workloads efficiently among servers by directing new 
calls or transactions based on the servers' current load 
conditions. 

The study in [15] presents a framework called 
GreenVoIP, which effectively addresses the issue of 
load balancing among servers in VoIP networks. By 
utilizing cloud computing principles alongside SDN 
and NFV technologies, GreenVoIP enables dynamic 
resource management that responds to fluctuating 
demand in real time. This framework allows for the 
efficient allocation of VoIP servers based on current 
network loads, thereby preventing server overload 
during peak times and minimizing energy 
consumption during periods of lower demand. 
Specifically, when high traffic is detected, additional 
virtualized server resources can be activated to handle 
the load, ensuring that QoS requirements are met 
without compromising service quality. Conversely, 
GreenVoIP can deactivate or allocate less active 
resources during periods of reduced demand, thereby 
conserving energy. This resource management 
adaptability enhances operational efficiency and 
contributes to the goal of green computing by 
reducing the overall energy footprint of VoIP 
services. 

The study in [16] discusses the benefits and 
challenges of implementing Software-Defined 
Networking (SDN), particularly in hybrid 
environments where both SDN-enabled and 
traditional devices coexist. Due to budget constraints 
and technical challenges, many network providers opt 
for incremental SDN deployment rather than full 
implementation. This paper introduces a new load-
balancing scheme called LBORU (Load Balancing 
by Optimizing Resource Utilization), designed 
specifically for hybrid SDN networks. This approach 
utilizes a minimal set of SDN components, including 
a controller and a switch. The proposed load-
balancing scheme continuously monitors server load 
indicators—such as CPU load, I/O read, I/O write, 
link upload, and link download—and employs multi-
parameter metrics to schedule connections 
effectively. This strategy enables more efficient load 
distribution across servers, addressing resource 
overload issues and ensuring better Quality of 
Experience (QoE) for users. The results demonstrate 
that LBORU outperforms traditional load-balancing 
methods, including Random, Round-Robin, and 
Weighted Fair Queuing, as well as existing server 
response time-based schemes. 

The integration of edge and fog computing in 
healthcare systems offers real-time processing 
capabilities, yet load balancing remains a critical 
challenge. Efficient workload distribution across 
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edge servers is essential to prevent bottlenecks, 
reduce latency, and optimize resource utilization. 
Load-balancing techniques in SDN-based healthcare 
networks leverage predictive analytics and dynamic 
traffic management to enhance system performance. 
The combination of static and dynamic load-
balancing strategies, including SDN-driven 
approaches, allows adaptive workload distribution 
that responds to varying network conditions. 
Implementing an effective load-balancing framework 
in edge/fog-based healthcare environments ensures 
improved QoS, reduced system latency, and cost-
efficient resource management, ultimately leading to 
better patient care and optimized healthcare service 
delivery [17]. 

Load balancing in Data Center Networks (DCN) 
is essential for optimizing server performance, 
minimizing latency, and ensuring efficient resource 
utilization, particularly as internet applications grow. 
Software-Defined Networking (SDN) enables 
dynamic load balancing by centralizing control and 
improving traffic management. Various techniques, 
including threshold-based, heuristic, stochastic load 
prediction, and hybrid machine learning algorithms 

like Multiple Regression-Based Searching (MRBS), 
are employed to distribute network traffic efficiently. 
SDN-based approaches, such as controller-driven 
load management and Equal-Cost Multipath (ECMP) 
routing, improve scalability but face challenges like 
real-time decision-making, controller bottlenecks, 
and handling heterogeneous workloads[18]. 

Table 1 provides a summary of the different 
references, detailing their methods for server load 
balancing, the metrics utilized to evaluate server load, 
the prediction algorithms applied, and the types of 
thresholds implemented. 

3. Proposed Framework 

As shown in Figure 1, the software-defined 
network divides the Internet of Things (IoT) network 
into three layers. The first layer is the application 
layer, which includes applications that are added to 
the controller through these applications. The second 
layer is the control layer, which comprises the 
controller, while the third layer is the data layer, 
which includes servers, switches, and links tables and 
Figures.

Table 1. A Review of Article 

Reference 
Server Load 

Measurement Metric 

Prediction 

Algorithm 
Threshold Type Energy Consumption 

[7] Response Time  
Single Threshold - 

Two-Level 
- 

[8] 
CPU, Memory, Disk 

Usage 
NLMS 

Fuzzy System - 

Three-Level 

 

 

[9] CPU, Memory Usage - - - 

[10] 
CPU, Memory Usage, 
Number of Requests 

Processed per Second 

- 
Single Threshold - 

Two-Level 
- 

[11] Response Time - 
Two Thresholds - 

Three-Level 
- 

[12] 
Number of Requests 
Processed per Server 

- - - 

[13] 
CPU, Memory, Disk 

Usage 
NLMS 

Fuzzy System - 

Three-Level 

 

 

[14] CPU, Memory Usage - - - 

[15] CPU, Memory Usage NLMS 
Fuzzy System - 

Three-Level 

 

 

[16] 
CPU, Bandwidth 

Usage 
- 

Single Threshold - 

Two-Level 
- 

[17] Response Time - 
Single Threshold - 

Two-Level 
- 

[18] 
Response Time, 

Bandwidth 
Multiple Regression Multi Threshold - 

Proposed Approach 
CPU, Memory, Disk, 

and Bandwidth Usage 
LSTM 

Fuzzy System - 

Four-Level 

 
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Figure. 1. Software-Defined Multimedia Internet of things 

Network Model 

As illustrated in Figure 2, the proposed method 
algorithm consists of three main components. The 
first component is the load balancing of servers in the 
software-defined IoMT network. To achieve load 
balancing among the servers, the server load is first 
measured based on criteria including CPU usage, 
memory, hard disk, and bandwidth consumption. 
Then, using a long-term short-term memory 
prediction algorithm, the server loads are forecasted. 
With the help of a fuzzy system, the servers are 
classified, and load-balancing operations are carried 
out based on the server's classification level. 

3.1. System Model 

The network comprises switches, servers, 
controllers, and links. Let H={h1,h2,…,hi,…,hM } 
represent the set of servers, where M indicates the 

total number of servers in the network, and hi    denotes 

the ith server. For clarity, Table 2 provides the 
definitions and notations used in this study . 

 Server Load Measurement 

In the first step of server load balancing, the 
controller measures the load of the servers within its 
domain. The controller evaluates the server load 
based on CPU, memory, bandwidth, and hard disk 
consumption. To measure the server load, the current 
CPU usage of the server is divided by the CPU 
resource capacity, resulting in a value between zero 
and one, represented as 𝑥𝑖 as show in Equation (1). 
Similarly, for calculating the memory, hard disk, and 
bandwidth consumption of the server, the same 
approach is applied, with the results denoted as 𝑦𝑖 , 𝑧𝑖, 
and 𝑤𝑖 , as show in Equation (2), (3), and (4), 
respectively. This method ensures a normalized 
representation of resource utilization, facilitating 
effective load-balancing decisions. 

 

Figure. 2. Flowchart of the Proposed Method Algorithm 

Table 2. The Summary of the Notations that are used. 

Symbols Description 

S Set of switches 

N Total number of switches 

H Set of servers 

M Total number of servers 

𝑥𝑖 CPU consumption of server i 

𝑦𝑖 Memory consumption of server i 

𝑧𝑖 Hard disk consumption of server i 

𝑤𝑖 Bandwidth consumption of server i 

𝐿𝑑𝐶𝑃𝑈 CPU consumption of server i at time t 

𝐿𝑑𝑚𝑒𝑚 Memory consumption of server i at time t 

𝐿𝑑ℎ𝑑𝑑 Hard disk consumption of server i at time t 

𝐿𝑑𝑏𝑤 Bandwidth consumption of server i at time t 

𝜗𝑖
𝑥 CPU resource capacity of server i 

𝜗𝑖
𝑦

 Memory resource capacity of server i 

𝜗𝑖
𝑧 Hard disk resource capacity of server i 

𝜗𝑖
𝑤 Bandwidth resource capacity of server i 

𝑓𝐶𝑃𝑈 Matrix of CPU consumption by servers 

𝑓𝑚𝑒𝑚 Matrix of memory consumption by servers 

𝑓ℎ𝑑𝑑 Matrix of hard disk consumption by servers 

𝑓𝑏𝑤 Matrix of bandwidth consumption by servers 
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𝑥𝑖 =  
𝐿𝑑𝐶𝑃𝑈

𝜗𝑖
𝑥  

0 ≤ 𝑥𝑖 ≤ 1 (1) 

𝑦𝑖 =  
𝐿𝑑𝑚𝑒𝑚

𝜗𝑖
𝑦  

0 ≤ 𝑦𝑖 ≤ 1 (2) 

𝑧𝑖 =  
𝐿𝑑ℎ𝑑𝑑

𝜗𝑖
𝑧  

0 ≤ 𝑧𝑖 ≤ 1 (3) 

𝑤𝑖 =  
𝐿𝑑𝑏𝑤

𝜗𝑖
𝑤  

0 ≤ 𝑤𝑖 ≤ 1 (4) 

To predict the server load in the next step, the long 
short-term memory (LSTM) prediction algorithm is 
utilized. This requires the calculation of a matrix 
representing the resource consumption of all servers 
within the domain. The metrics for measuring server 
load include CPU usage, memory usage, bandwidth, 
and hard disk consumption. Therefore, the prediction 
of each of these metrics is calculated for all servers. 
The matrix 𝑓ℎ𝑖

, as shown in Formula (5), represents 

the resource consumption of the servers. The size of 
this matrix is P*W, where P = 4 . Each row of the 
matrix corresponds to one of the consumption 
metrics: CPU, memory, hard disk, and bandwidth, 
while W denotes the size of the window. 

This structured approach allows for a systematic 
analysis and forecasting of the resource utilization 
patterns of the servers, facilitating better load-
balancing decisions in the network. 

𝑓ℎ𝑖
=  [

𝑥11 𝑥12 …
… … …

𝑥𝑃1 𝑥𝑃1 …
     

𝑥1𝑊

…
𝑥𝑃𝑊

] 

𝑖𝑓 �́� < 𝑃  𝑡ℎ𝑒𝑛  𝑥𝑃𝑊 = 0  , 𝑝 = 4   , w = 1,2, … , W 
 

(5) 

 Server Load Prediction Using Long Short-

Term Memory (LSTM) 

In the load balancing of software-defined 
networks, forecasting methods are employed to 
predict controller load, server load, and traffic. This 
ultimately leads to load balancing and energy 
savings. In this section, prediction techniques are 
utilized specifically for forecasting server loads. 
Various methods exist for prediction, but time-series-
based forecasting methods are more commonly used 
in software-defined networks. This is because time-
series forecasting samples a specific metric 
periodically at fixed intervals, resulting in a time 
series that includes a sequence of recent observations. 
Time-series methods utilize this sequence to predict 
future values. 

Long Short-Term Memory (LSTM), a specific 
architecture of recurrent neural networks (RNN), is 
employed to predict server loads. LSTM is suitable 

for learning from experience for classification, 
processing, and predicting time series with unknown 
time lags. 

a) Model Architecture Details 

The LSTM model is implemented using a 
sequential structure, consisting of a single LSTM 
layer with five neurons and a Dense output layer with 
one neuron. The number of lookback steps varies 
depending on the predicted metric. For CPU usage, 
disk usage, and bandwidth prediction, a lookback of 
five is used, while for memory prediction, a lookback 
of two is applied. These values were determined 
through a trial-and-error approach to find the most 
suitable configuration. The model is trained using the 
Adam optimizer, with Mean Squared Error (MSE) as 
the loss function. Training is performed with 15 
epochs and a batch size of one. 

The input data is first normalized and then divided 
into two sets: a training set 80% and a testing set 20%. 
The model is trained using time-series data with a 
lookback window of size n. 

The model operates in two phases: training and 
forecasting. In the training phase, the training data is 
fed into the model, and the parameters of the neural 
network are dynamically adjusted to achieve the 
desired output. This process is carried out through the 
backpropagation algorithm, which propagates the 
computed error from the output to the input and 
updates the model weights to minimize the error to 
the lowest possible value. 

In the prediction phase, the model is tested with 
new, previously unseen data. The expected output is 
to predict the resource consumption levels for all 

servers in the domain, represented as �̂�𝑡+1
𝑖 , �̂�𝑡+1

𝑖 , �̂�𝑡+1
𝑖 , 

and �̂�𝑡+1
𝑖 .The LSTM model, with its ability to learn 

complex temporal dependencies, provides a powerful 
tool for predicting load in software-defined networks. 
This model not only aids in improving load balancing 
but also plays a crucial role in optimizing resource 
and energy consumption. Utilizing LSTM for server 
load prediction enables more precise resource 
management and enhances the efficiency of software-
defined systems. 

 Determining Server Load Levels Using Fuzzy 

Systems 

A fuzzy system is a mathematical model based on 
the theory of fuzzy sets, used for modeling and 
analyzing issues that involve a combination of 
uncertainty and continuity. Fuzzy systems can be 
highly effective in situations where the relationships 
among variables require abstraction and innovation. 
Fuzzy algorithms are inspired by human abstract 
reasoning and can effectively model information that 
possesses uncertainty and complexity. 

Server classification using a fuzzy system 
depends on the predicted resource consumption of the 
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server, represented as (�̂�𝑡+1
𝑖 , �̂�𝑡+1

𝑖 , �̂�𝑡+1
𝑖 , �̂�𝑡+1

𝑖 ). 
Servers are categorized into four levels: under-load, 
normal-load, highly-load, and over-load. The input 

for this classification consists of (�̂�𝑡+1
𝑖 , �̂�𝑡+1

𝑖 , �̂�𝑡+1
𝑖 , 

�̂�𝑡+1
𝑖 ), and the output will be one of the four 

mentioned levels. Each step of the process is 
explained in detail below: 

a) Variable Definition: 

At this stage, various features that may be used for 
server classification are identified. In this study, the 
predicted resource consumption of servers is utilized, 
including CPU usage, memory, hard disk, and 
bandwidth. 

b) Membership Functions Definition: 

As shown in Figure 3-6, a fuzzy membership 
function is defined for each feature. These functions 
assist in transforming numerical features into fuzzy 
sets (low, medium, high). 

 

Figure. 3. Membership Function Input for 𝑥𝑡+1
𝑖  in the Range 

[0,1]} 

 

Figure. 4. Membership Function Input for �̂�𝑡+1
𝑖  in the Range 

[0,1]} 

 

Figure. 5. Membership Function Input for �̂�𝑡+1
𝑖  in the Range 

[0,1]} 

 

Figure. 6. Membership Function Input for �̂�𝑡+1
𝑖  in the Range 

[0,1]} 

c) Fuzzy Rules Definition: 

The fuzzy rules necessary for classifying servers 
are defined. These rules encompass conditions that 
depend on the features and their combinations. The 
system comprises 81 rules defined in an "if-then" 
format. These rules represent combinations of input 
states that specify the corresponding outputs. For 
example, if all inputs are in the "low" state, the output 
will also be in the "under-load" state. This fuzzy 
classification system allows for a nuanced 
understanding of server loads, enabling more 
effective load-balancing strategies within the 
network. 

1) When (𝑥𝑡+1
𝑖   is classified as  low ) and (�̂�𝑡+1

𝑖  is classified as 

low  ) and (�̂�𝑡+1
𝑖   is classified as  low  ) and (�̂�𝑡+1

𝑖  is classified 

as low ), then (classk is categorized as  Under-loaded). 

2) When (𝑥𝑡+1
𝑖   is classified as low ) and (�̂�𝑡+1

𝑖  is classified as 

low  ) and (�̂�𝑡+1
𝑖   is classified as   low) and (�̂�𝑡+1

𝑖  is classified 

as Medium ), then (classk is categorized as   Under -loaded). 

3) When (𝑥𝑡+1
𝑖   is classified as low ) and (�̂�𝑡+1

𝑖  is classified as 

low  ) and (�̂�𝑡+1
𝑖   is classified as Medium) and (�̂�𝑡+1

𝑖  is 

classified as low  ), then (classk is categorized as   Under -

loaded). 

4) When (𝑥𝑡+1
𝑖   is classified as low ) and (�̂�𝑡+1

𝑖  is classified as 

Medium  ) and (�̂�𝑡+1
𝑖   is classified as  low  ) and (�̂�𝑡+1

𝑖  is 

classified as low  ), then (classk is categorized as Under  -
loaded). 

5) When (𝑥𝑡+1
𝑖   is classified as Medium  ) and (�̂�𝑡+1

𝑖  is 

classified as  low) and (�̂�𝑡+1
𝑖   is classified as low   ) and (�̂�𝑡+1

𝑖  

is classified as   low), then (classk is categorized as Under  
-loaded). 

6) When (𝑥𝑡+1
𝑖   is classified as  low) and (�̂�𝑡+1

𝑖  is classified as 

low  ) and (�̂�𝑡+1
𝑖   is classified as Medium) and (�̂�𝑡+1

𝑖  is 

classified as Medium  ), then (classk is categorized as 

Under -loaded). 

7) When (𝑥𝑡+1
𝑖   is classified as low  ) and (�̂�𝑡+1

𝑖  is classified as  
Medium) and (�̂�𝑡+1

𝑖   is classified as  Medium ) and (�̂�𝑡+1
𝑖  is 

classified as   low), then (classk is categorized as Under  -
loaded). 

8) When (𝑥𝑡+1
𝑖   is classified as Medium  ) and (�̂�𝑡+1

𝑖  is 

classified as Medium ) and (�̂�𝑡+1
𝑖   is classified as low ) and 

(�̂�𝑡+1
𝑖  is classified as low  ), then (classk is categorized as 

Under -loaded). 

9) When (𝑥𝑡+1
𝑖   is classified as low ) and (�̂�𝑡+1

𝑖  is classified as 

Medium  ) and (�̂�𝑡+1
𝑖   is classified as  low  ) and (�̂�𝑡+1

𝑖  is 

classified as Medium  ), then (classk is categorized as 

Under -loaded). 

10) When (𝑥𝑡+1
𝑖   is classified as  Medium) and (�̂�𝑡+1

𝑖  is 

classified as low ) and (�̂�𝑡+1
𝑖   is classified as  Medium ) and 

(�̂�𝑡+1
𝑖  is classified as low  ), then (classk is categorized as 

Under -loaded). 

11) When (𝑥𝑡+1
𝑖   is classified as Medium  ) and (�̂�𝑡+1

𝑖  is 

classified as low  ) and (�̂�𝑡+1
𝑖   is classified as  low  ) and (�̂�𝑡+1

𝑖  

is classified as Medium  ), then (classk is categorized as 

Under -loaded). 

12) When (𝑥𝑡+1
𝑖   is classified as low  ) and (�̂�𝑡+1

𝑖  is classified as  
low) and (�̂�𝑡+1

𝑖   is classified as  low  ) and (�̂�𝑡+1
𝑖  is classified 

as High ), then (classk is categorized as Normal -loaded). 

13) When (𝑥𝑡+1
𝑖   is classified as low  ) and (�̂�𝑡+1

𝑖  is classified as  
low) and (�̂�𝑡+1

𝑖   is classified as  High  ) and (�̂�𝑡+1
𝑖  is 

classified as low  ), then (classk is categorized as Normal  -
loaded). 

14) When (𝑥𝑡+1
𝑖   is classified as low ) and (�̂�𝑡+1

𝑖  is classified as 

High  ) and (�̂�𝑡+1
𝑖   is classified as  low  ) and (�̂�𝑡+1

𝑖  is 

classified as low  ), then (classk is categorized as Normal  -
loaded). 
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15) When (𝑥𝑡+1
𝑖   is classified as High) and (�̂�𝑡+1

𝑖  is classified as 

low  ) and (�̂�𝑡+1
𝑖   is classified as low  ) and (�̂�𝑡+1

𝑖  is classified 

as low ), then (classk is categorized as Normal -loaded). 

16) When (𝑥𝑡+1
𝑖   is classified as low  ) and (�̂�𝑡+1

𝑖  is classified as   
Medium) and (�̂�𝑡+1

𝑖   is classified as Medium   ) and (�̂�𝑡+1
𝑖  is 

classified as Medium  ), then (classk is categorized as 
Normal -loaded). 

17) When (𝑥𝑡+1
𝑖   is classified as Medium  ) and (�̂�𝑡+1

𝑖  is 

classified as low  ) and (�̂�𝑡+1
𝑖   is classified as Medium) and 

(�̂�𝑡+1
𝑖  is classified as Medium  ), then (classk is categorized 

as Normal -loaded). 

18) When (𝑥𝑡+1
𝑖   is classified as   Medium) and (�̂�𝑡+1

𝑖  is 

classified as Medium ) and (�̂�𝑡+1
𝑖   is classified as low ) and 

(�̂�𝑡+1
𝑖  is classified as Medium  ), then (classk is categorized 

as Normal -loaded). 

19) When (𝑥𝑡+1
𝑖   is classified as Medium  ) and (�̂�𝑡+1

𝑖  is 

classified as Medium  ) and (�̂�𝑡+1
𝑖   is classified as  Medium  

) and (�̂�𝑡+1
𝑖  is classified as low  ), then (classk is categorized 

as Normal -loaded). 

20) When (𝑥𝑡+1
𝑖   is classified as Medium  ) and (�̂�𝑡+1

𝑖  is 

classified as Medium ) and (�̂�𝑡+1
𝑖   is classified as Medium) 

and (�̂�𝑡+1
𝑖  is classified as Medium  ), then (classk is 

categorized as Normal -loaded). 

21) When (𝑥𝑡+1
𝑖   is classified as High  ) and (�̂�𝑡+1

𝑖  is classified 

as low  ) and (�̂�𝑡+1
𝑖   is classified as Medium   ) and (�̂�𝑡+1

𝑖  is 

classified as low ), then (classk is categorized as  Normal -
loaded). 

22) When (𝑥𝑡+1
𝑖   is classified as   High) and (�̂�𝑡+1

𝑖  is classified 

as low  ) and (�̂�𝑡+1
𝑖   is classified as  low  ) and (�̂�𝑡+1

𝑖  is 

classified as  Medium), then (classk is categorized as 

Normal -loaded). 

23) When (𝑥𝑡+1
𝑖   is classified as  Medium) and (�̂�𝑡+1

𝑖  is 

classified as High  ) and (�̂�𝑡+1
𝑖   is classified as  low  ) and 

(�̂�𝑡+1
𝑖  is classified as low  ), then (classk is categorized as 

Normal -loaded). 

24) When (𝑥𝑡+1
𝑖   is classified as  Medium) and (�̂�𝑡+1

𝑖  is 

classified as low  ) and (�̂�𝑡+1
𝑖   is classified as High  ) and 

(�̂�𝑡+1
𝑖  is classified as low  ), then (classk is categorized as 

Normal -loaded). 

25) When (𝑥𝑡+1
𝑖   is classified as Medium  ) and (�̂�𝑡+1

𝑖  is 

classified as low  ) and (�̂�𝑡+1
𝑖   is classified as  low  ) and (�̂�𝑡+1

𝑖  

is classified as High  ), then (classk is categorized as 

Normal -loaded). 

26) When (𝑥𝑡+1
𝑖   is classified as low ) and (�̂�𝑡+1

𝑖  is classified as 

High  ) and (�̂�𝑡+1
𝑖   is classified as  low  ) and (�̂�𝑡+1

𝑖  is 

classified as Medium  ), then (classk is categorized as 

Normal -loaded). 

27) When (𝑥𝑡+1
𝑖   is classified as  low) and (�̂�𝑡+1

𝑖  is classified as  
High) and (�̂�𝑡+1

𝑖   is classified as  Medium  ) and (�̂�𝑡+1
𝑖  is 

classified as low  ), then (classk is categorized as Normal  -
loaded). 

28) When (𝑥𝑡+1
𝑖   is classified as low  ) and (�̂�𝑡+1

𝑖  is classified as  
Medium) and (�̂�𝑡+1

𝑖   is classified as low   ) and (�̂�𝑡+1
𝑖  is 

classified as High ), then (classk is categorized as Normal  
-loaded). 

29) When (𝑥𝑡+1
𝑖   is classified as low ) and (�̂�𝑡+1

𝑖  is classified as 

Medium  ) and (�̂�𝑡+1
𝑖   is classified as  High) and (�̂�𝑡+1

𝑖  is 

classified as   low), then (classk is categorized as Normal  -
loaded). 

30) When (𝑥𝑡+1
𝑖   is classified as low ) and (�̂�𝑡+1

𝑖  is classified as 

low  ) and (�̂�𝑡+1
𝑖   is classified as  Medium  ) and (�̂�𝑡+1

𝑖  is 

classified as High ), then (classk is categorized as Normal  
-loaded). 

31) When (𝑥𝑡+1
𝑖   is classified as low ) and (�̂�𝑡+1

𝑖  is classified as 

low  ) and (�̂�𝑡+1
𝑖   is classified as High  ) and (�̂�𝑡+1

𝑖  is 

classified as Medium  ), then (classk is categorized as 

Normal -loaded). 

32) When (𝑥𝑡+1
𝑖   is classified as High  ) and (�̂�𝑡+1

𝑖  is classified 

as Medium) and (�̂�𝑡+1
𝑖   is classified as low  ) and (�̂�𝑡+1

𝑖  is 

classified as low  ), then (classk is categorized as Normal  -
loaded). 

33) When (𝑥𝑡+1
𝑖   is classified as  low) and (�̂�𝑡+1

𝑖  is classified as 

High  ) and (�̂�𝑡+1
𝑖   is classified as  Medium  ) and (�̂�𝑡+1

𝑖  is 

classified as Medium  ), then (classk is categorized as 

Normal -loaded). 

34) When (𝑥𝑡+1
𝑖   is classified as low  ) and (�̂�𝑡+1

𝑖  is classified as  
Medium) and (�̂�𝑡+1

𝑖   is classified as  High  ) and (�̂�𝑡+1
𝑖  is 

classified as Medium  ), then (classk is categorized as 
Normal -loaded). 

35) When (𝑥𝑡+1
𝑖   is classified as low  ) and (�̂�𝑡+1

𝑖  is classified as  
Medium) and (�̂�𝑡+1

𝑖   is classified as   Medium) and (�̂�𝑡+1
𝑖  is 

classified as High ), then (classk is categorized as Normal  
-loaded). 

36) When (𝑥𝑡+1
𝑖   is classified as High  ) and (�̂�𝑡+1

𝑖  is classified 

as low  ) and (�̂�𝑡+1
𝑖   is classified as Medium   ) and (�̂�𝑡+1

𝑖  is 

classified as Medium  ), then (classk is categorized as   
Normal -loaded). 

37) When (𝑥𝑡+1
𝑖   is classified as High  ) and (�̂�𝑡+1

𝑖  is classified 

as Medium) and (�̂�𝑡+1
𝑖   is classified as   low) and (�̂�𝑡+1

𝑖  is 

classified as Medium  ), then (classk is categorized as 
Normal -loaded). 

38) When (𝑥𝑡+1
𝑖   is classified as High  ) and (�̂�𝑡+1

𝑖  is classified 

as Medium  ) and (�̂�𝑡+1
𝑖   is classified as  Medium  ) and (�̂�𝑡+1

𝑖  

is classified as low  ), then (classk is categorized as Normal  
-loaded). 

39) When (𝑥𝑡+1
𝑖   is classified as Medium  ) and (�̂�𝑡+1

𝑖  is 

classified as low ) and (�̂�𝑡+1
𝑖   is classified as   Medium) and 

(�̂�𝑡+1
𝑖  is classified as High  ), then (classk is categorized as 

Normal -loaded). 

40) When (𝑥𝑡+1
𝑖   is classified as Medium  ) and (�̂�𝑡+1

𝑖  is 

classified as  low) and (�̂�𝑡+1
𝑖   is classified as High  ) and 

(�̂�𝑡+1
𝑖  is classified as Medium), then (classk is categorized 

as Normal -loaded). 

41) When (𝑥𝑡+1
𝑖   is classified as Medium  ) and (�̂�𝑡+1

𝑖  is 

classified as High  ) and (�̂�𝑡+1
𝑖   is classified as Medium   ) 

and (�̂�𝑡+1
𝑖  is classified as low ), then (classk is categorized 

as  Normal -loaded). 

42) When (𝑥𝑡+1
𝑖   is classified as Medium  ) and (�̂�𝑡+1

𝑖  is 

classified as High  ) and (�̂�𝑡+1
𝑖   is classified as low  ) and 

(�̂�𝑡+1
𝑖  is classified as Medium), then (classk is categorized 

as Normal -loaded). 

43) When (𝑥𝑡+1
𝑖   is classified as Medium  ) and (�̂�𝑡+1

𝑖  is 

classified as Medium  ) and (�̂�𝑡+1
𝑖   is classified as  High  ) and 

(�̂�𝑡+1
𝑖  is classified as low  ), then (classk is categorized as 

Normal -loaded). 

44) When (𝑥𝑡+1
𝑖   is classified as Medium  ) and (�̂�𝑡+1

𝑖  is 

classified as  Medium) and (�̂�𝑡+1
𝑖   is classified as low  ) and 

(�̂�𝑡+1
𝑖  is classified as High  ), then (classk is categorized as 

Normal -loaded). 

45) When (𝑥𝑡+1
𝑖   is classified as low ) and (�̂�𝑡+1

𝑖  is classified as 

low  ) and (�̂�𝑡+1
𝑖   is classified as High  ) and (�̂�𝑡+1

𝑖  is 

classified as High  ), then (classk is categorized as High  -
loaded). 

46) When (𝑥𝑡+1
𝑖   is classified as High  ) and (�̂�𝑡+1

𝑖  is classified 

as High  ) and (�̂�𝑡+1
𝑖   is classified as low  ) and (�̂�𝑡+1

𝑖  is 

classified as low  ), then (classk is categorized as High  -
loaded). 

47) When (𝑥𝑡+1
𝑖   is classified as low ) and (�̂�𝑡+1

𝑖  is classified as 

High  ) and (�̂�𝑡+1
𝑖   is classified as low  ) and (�̂�𝑡+1

𝑖  is 

classified as High  ), then (classk is categorized as High  -
loaded). 

48) When (𝑥𝑡+1
𝑖   is classified as High  ) and (�̂�𝑡+1

𝑖  is classified 

as low  ) and (�̂�𝑡+1
𝑖   is classified as High   ) and (�̂�𝑡+1

𝑖  is 

classified as  low), then (classk is categorized as   High  -
loaded). 
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49) When (𝑥𝑡+1
𝑖   is classified as  High) and (�̂�𝑡+1

𝑖  is classified as 

low  ) and (�̂�𝑡+1
𝑖   is classified as low  ) and (�̂�𝑡+1

𝑖  is classified 

as High ), then (classk is categorized as  High -loaded). 

50) When (𝑥𝑡+1
𝑖   is classified as low  ) and (�̂�𝑡+1

𝑖  is classified as  
High) and (�̂�𝑡+1

𝑖   is classified as High  ) and (�̂�𝑡+1
𝑖  is 

classified as low  ), then (classk is categorized as   High  -
loaded). 

51) When (𝑥𝑡+1
𝑖   is classified as Medium  ) and (�̂�𝑡+1

𝑖  is 

classified as Medium ) and (�̂�𝑡+1
𝑖   is classified as  Medium) 

and (�̂�𝑡+1
𝑖  is classified as High  ), then (classk is categorized 

as  High -loaded). 

52) When (𝑥𝑡+1
𝑖   is classified as Medium  ) and (�̂�𝑡+1

𝑖  is 

classified as Medium  ) and (�̂�𝑡+1
𝑖   is classified as High  ) and 

(�̂�𝑡+1
𝑖  is classified as Medium  ), then (classk is categorized 

as High -loaded). 

53) When (𝑥𝑡+1
𝑖   is classified as  Medium) and (�̂�𝑡+1

𝑖  is 

classified as High  ) and (�̂�𝑡+1
𝑖   is classified as Medium  ) and 

(�̂�𝑡+1
𝑖  is classified as Medium  ), then (classk is categorized 

as High -loaded). 

54) When (𝑥𝑡+1
𝑖   is classified as High  ) and (�̂�𝑡+1

𝑖  is classified 

as Medium  ) and (�̂�𝑡+1
𝑖   is classified as Medium  ) and (�̂�𝑡+1

𝑖  

is classified as Medium  ), then (classk is categorized as 
High -loaded). 

55) When (𝑥𝑡+1
𝑖   is classified as low  ) and (�̂�𝑡+1

𝑖  is classified as  
High) and (�̂�𝑡+1

𝑖   is classified as Medium  ) and (�̂�𝑡+1
𝑖  is 

classified as High  ), then (classk is categorized as High  -
loaded). 

56) When (𝑥𝑡+1
𝑖   is classified as  Medium) and (�̂�𝑡+1

𝑖  is 

classified as low  ) and (�̂�𝑡+1
𝑖   is classified as High   ) and 

(�̂�𝑡+1
𝑖  is classified as High  ), then (classk is categorized as   

High -loaded). 

57) When (𝑥𝑡+1
𝑖   is classified as low ) and (�̂�𝑡+1

𝑖  is classified as 

High  ) and (�̂�𝑡+1
𝑖   is classified as Medium  ) and (�̂�𝑡+1

𝑖  is 

classified as High  ), then (classk is categorized as High  -
loaded). 

58) When (𝑥𝑡+1
𝑖   is classified as High  ) and (�̂�𝑡+1

𝑖  is classified 

as low  ) and (�̂�𝑡+1
𝑖   is classified as Medium  ) and (�̂�𝑡+1

𝑖  is 

classified as High  ), then (classk is categorized as High  -
loaded). 

59) When (𝑥𝑡+1
𝑖   is classified as High  ) and (�̂�𝑡+1

𝑖  is classified 

as  low) and (�̂�𝑡+1
𝑖   is classified as High  ) and (�̂�𝑡+1

𝑖  is 

classified as Medium  ), then (classk is categorized as High  
-loaded). 

60) When (𝑥𝑡+1
𝑖   is classified as low ) and (�̂�𝑡+1

𝑖  is classified as 

High  ) and (�̂�𝑡+1
𝑖   is classified as High  ) and (�̂�𝑡+1

𝑖  is 

classified as Medium  ), then (classk is categorized as High  
-loaded). 

61) When (𝑥𝑡+1
𝑖   is classified as Medium  ) and (�̂�𝑡+1

𝑖  is 

classified as High  ) and (�̂�𝑡+1
𝑖   is classified as  low  ) and 

(�̂�𝑡+1
𝑖  is classified as  High), then (classk is categorized as 

High -loaded). 

62) When (𝑥𝑡+1
𝑖   is classified as Medium  ) and (�̂�𝑡+1

𝑖  is 

classified as High  ) and (�̂�𝑡+1
𝑖   is classified as High  ) and 

(�̂�𝑡+1
𝑖  is classified as low  ), then (classk is categorized as 

High -loaded). 

63) When (𝑥𝑡+1
𝑖   is classified as High  ) and (�̂�𝑡+1

𝑖  is classified 

as Medium  ) and (�̂�𝑡+1
𝑖   is classified as low  ) and (�̂�𝑡+1

𝑖  is 

classified as High  ), then (classk is categorized as High  -
loaded). 

64) When (𝑥𝑡+1
𝑖   is classified as  High) and (�̂�𝑡+1

𝑖  is classified as 

Medium  ) and (�̂�𝑡+1
𝑖   is classified as High  ) and (�̂�𝑡+1

𝑖  is 

classified as low  ), then (classk is categorized as High  -
loaded). 

65) When (𝑥𝑡+1
𝑖   is classified as High  ) and (�̂�𝑡+1

𝑖  is classified 

as High  ) and (�̂�𝑡+1
𝑖   is classified as low  ) and (�̂�𝑡+1

𝑖  is 

classified as Medium  ), then (classk is categorized as High  
-loaded). 

66) When (𝑥𝑡+1
𝑖   is classified as High  ) and (�̂�𝑡+1

𝑖  is classified 

as  High) and (�̂�𝑡+1
𝑖   is classified as Medium  ) and (�̂�𝑡+1

𝑖  is 

classified as low  ), then (classk is categorized as High  -
loaded). 

67) When (𝑥𝑡+1
𝑖   is classified as High  ) and (�̂�𝑡+1

𝑖  is classified 

as Medium  ) and (�̂�𝑡+1
𝑖   is classified as Medium  ) and (�̂�𝑡+1

𝑖  

is classified as High  ), then (classk is categorized as High  
-loaded). 

68) When (𝑥𝑡+1
𝑖   is classified as High  ) and (�̂�𝑡+1

𝑖  is classified 

as High  ) and (�̂�𝑡+1
𝑖   is classified as Medium) and (�̂�𝑡+1

𝑖  is 

classified as Medium  ), then (classk is categorized as High  
-loaded). 

69) When (𝑥𝑡+1
𝑖   is classified as Medium  ) and (�̂�𝑡+1

𝑖  is 

classified as High  ) and (�̂�𝑡+1
𝑖   is classified as High   ) and 

(�̂�𝑡+1
𝑖  is classified as Medium  ), then (classk is categorized 

as High -loaded). 

70) When (𝑥𝑡+1
𝑖   is classified as Medium  ) and (�̂�𝑡+1

𝑖  is 

classified as Medium  ) and (�̂�𝑡+1
𝑖   is classified as High   ) 

and (�̂�𝑡+1
𝑖  is classified as  High), then (classk is categorized 

as High -loaded). 

71) When (𝑥𝑡+1
𝑖   is classified as High  ) and (�̂�𝑡+1

𝑖  is classified 

as Medium ) and (�̂�𝑡+1
𝑖   is classified as High ) and (�̂�𝑡+1

𝑖  is 

classified as Medium  ), then (classk is categorized as High  
-loaded). 

72) When (𝑥𝑡+1
𝑖   is classified as Medium) and (�̂�𝑡+1

𝑖  is 

classified as High  ) and (�̂�𝑡+1
𝑖   is classified as Medium) and 

(�̂�𝑡+1
𝑖  is classified as High  ), then (classk is categorized as 

High -loaded). 

73) When (𝑥𝑡+1
𝑖   is classified as  low) and (�̂�𝑡+1

𝑖  is classified as  
High) and (�̂�𝑡+1

𝑖   is classified as High) and (�̂�𝑡+1
𝑖  is 

classified as High  ), then (classk is categorized as Over  -
loaded). 

74) When (𝑥𝑡+1
𝑖   is classified as High  ) and (�̂�𝑡+1

𝑖  is classified 

as low  ) and (�̂�𝑡+1
𝑖   is classified as High   ) and (�̂�𝑡+1

𝑖  is 

classified as  High), then (classk is categorized as Over  -
loaded). 

75) When (𝑥𝑡+1
𝑖   is classified as  High) and (�̂�𝑡+1

𝑖  is classified as 

High  ) and (�̂�𝑡+1
𝑖   is classified as  low  ) and (�̂�𝑡+1

𝑖  is 

classified as High  ), then (classk is categorized as   Over  -
loaded). 

76) When (𝑥𝑡+1
𝑖   is classified as High  ) and (�̂�𝑡+1

𝑖  is classified 

as High  ) and (�̂�𝑡+1
𝑖   is classified as High) and (�̂�𝑡+1

𝑖  is 

classified as low  ), then (classk is categorized as Over  -
loaded). 

77) When (𝑥𝑡+1
𝑖   is classified as High  ) and (�̂�𝑡+1

𝑖  is classified 

as High  ) and (�̂�𝑡+1
𝑖   is classified as  High  ) and (�̂�𝑡+1

𝑖  is 

classified as Medium  ), then (classk is categorized as Over  
-loaded). 

78) When (𝑥𝑡+1
𝑖   is classified as High  ) and (�̂�𝑡+1

𝑖  is classified 

as  High) and (�̂�𝑡+1
𝑖   is classified as  Medium  ) and (�̂�𝑡+1

𝑖  is 

classified as  High), then (classk is categorized as   Over  -
loaded). 

79) When (𝑥𝑡+1
𝑖   is classified as High  ) and (�̂�𝑡+1

𝑖  is classified 

as Medium ) and (�̂�𝑡+1
𝑖   is classified as High ) and (�̂�𝑡+1

𝑖  is 

classified as High  ), then (classk is categorized as Over  -
loaded). 

80) When (𝑥𝑡+1
𝑖   is classified as Medium  ) and (�̂�𝑡+1

𝑖  is 

classified as High  ) and (�̂�𝑡+1
𝑖   is classified as High  ) and 

(�̂�𝑡+1
𝑖  is classified as High  ), then (classk is categorized as   

Over -loaded). 

81) When (𝑥𝑡+1
𝑖   is classified as High) and (�̂�𝑡+1

𝑖  is classified as 

High  ) and (�̂�𝑡+1
𝑖   is classified as High  ) and (�̂�𝑡+1

𝑖  is 

classified as  High), then (classk is categorized as   Over  -
loaded). 

d) Fuzzy Logic Application: 

Once the server data is input into the system, 
fuzzy logic utilizes the defined rules and membership 
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functions to generate fuzzy outputs for each data 
point, as illustrated in Figure 7. These outputs 
typically include the membership percentages of the 
server in each fuzzy category. 

e) Final Classification: 

 By combining various fuzzy outputs and 
employing post-processing logic, servers are 
categorized into different groups. The fuzzy system 
classifies servers into four levels: under-load, normal-
load, highly-load, and over-load. Ultimately, the 
selection of the algorithm and settings for the fuzzy 
system in server classification depends on the 
environment and specific requirements of the system. 
In this fuzzy system, the Mamdani method has been 
utilized. This structured approach to classification 
ensures that server loads are accurately assessed, 
enabling effective load balancing and resource 
management within the network. 

 Load Distribution Among Servers 

In the final stage of balancing server loads, as 
indicated in the Algorithm 1, load distribution is 
performed among the servers present in the domain. 
Initially, as described in lines 1 to 3 of the algorithm, 
the consumption levels of CPU, memory, hard disk, 
and bandwidth for the servers are collected. Then, 
using the Long Short-Term Memory (LSTM) 
prediction algorithm, the estimated consumption of 
CPU, memory, hard disk, and bandwidth for each 
server is forecasted. The fuzzy system is then used to 
determine the load levels of the servers. 

When a traffic flow enters the network, as shown 
in lines 8 to 13, servers classified as under-load are 
prioritized for receiving the traffic. Following that, 
servers at the normal-load level have a lower priority 
than under-load servers for traffic reception. Finally, 
servers at the highly-load level are selected as target 
servers, provided they do not fall into the over-load 
category. 

Load distribution among servers requires 
transferring load from one server to another. If any 
server in the domain is at the over-load level, as 
described in lines 14 to 35, the load transfer will occur 
if the destination server meets one of the following 
conditions: 

• The destination server is under-loaded and 
remains so after receiving the load. Servers 
meeting this condition have the highest 
priority for load reception. 

• The destination server is under-load and, 
after the load transfer, transitions to a normal-
load level. This condition, being the second 
highest priority, applies if no server meets the 
first condition. 

• The destination server is at normal-load and 
remains at the same normal-load level after  

 

Figure. 7. Output Membership Function for Class Range          

[-0.6, 0.4]} 

receiving the load. Finally, servers meeting 
this condition have the lowest priority. 

If no servers meet these conditions and there are 
powered-off servers within the domain that can save 
energy, those servers will be powered on again, and 
the load from the over-load server will be transferred 
to the newly activated server. If other domains are 
available for load transfer, traffic will be redirected to 
another domain. If no powered-off servers are 
available and no servers in other domains can receive 
load, a new server will be added to the domain based 
on the controller's capacity. 

If a server in the domain is at the highly-load 
level, it indicates that the server is on the verge of 
becoming overloaded. As described in the algorithm, 
load transfer from one server to another is performed 
similarly to when a server is in the over-load state. 
However, if no powered-off servers are available and 
no servers in other domains can receive load, the load 
transfer operation will not occur, and the domain will 
not be expanded. 

If a server is under-load and another server in the 
domain is also under-load and can remain under-load 
after receiving the load, the load transfer will occur, 
and the source server will be powered off. This 
process also contributes to energy savings. 

If a server is at normal-load, it indicates that the 
server is operating at its optimal state. The goal is to 
maintain all servers in the domain at this level 
through effective load distribution. 

For example, in the case of server load balancing, 
as illustrated in Figure 1, we have four servers:  
(server1, server2, server3, server4). Let's consider a 
scenario where the load levels of the servers (server1, 
server2, server3, server4) are (under-load, normal-
load, highly-load, over-load ), respectively. In this 
situation, we first examine the server that is in the 
over-load state, as servers in the over-load state have 
higher priority for assessment. To transfer the load 
from this server to the others, servers two and three, 
which are in the under-load and normal-load states, 
respectively, are considered target servers. After 
transferring the load from the source server (server 
four) to the target servers (servers one and two), the 
load levels of these target servers are measured. The 
load levels of the target servers (servers one and two) 
after the transfer are both at normal-load. 
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Algorithm 1. Server Load Balancing: 

Input: 𝐶𝑗  , 𝐿𝑑𝐶𝑃𝑈, 𝐿𝑑𝑚𝑒𝑚, 𝐿𝑑ℎ𝑑𝑑, 𝐿𝑑𝑏𝑤,  ℎ𝑖    

Output: D, T 

 

1.  For  each server ℎ𝑖 in the set of all servers 

2.  𝑥𝑖 =  
𝐿𝑑𝐶𝑃𝑈

𝜗𝑖
𝑥 ,    0≤ 𝑥𝑖 ≤1 

 𝑦𝑖 =  
𝐿𝑑𝑚𝑒𝑚

𝜗
𝑖
𝑦  ,  0≤ 𝑦𝑖 ≤1 

 𝑧𝑖 =  
𝐿𝑑ℎ𝑑𝑑

𝜗𝑖
𝑧 ,  0≤ 𝑧𝑖 ≤1 

 𝑤𝑖 =  
𝐿𝑑𝑏𝑤

𝜗𝑖
𝑤 ,  0≤ 𝑤𝑖 ≤1 

3.  End for  

4.  Calculate 𝑓𝐶𝑃𝑈 using formula 5. 

5.  Input 𝑓𝐶𝑃𝑈 into the LSTM algorithm. Forecast output for 

all domain servers:  

𝑥𝑡+1
𝑖   ,  �̂�𝑡+1

𝑖  ,  �̂�𝑡+1
𝑖 ,  �̂�𝑡+1

𝑖 . 

6.  Classify servers using a fuzzy system based on predicted 

consumption: 

𝑥𝑡+1
𝑖   ,  �̂�𝑡+1

𝑖  ,  �̂�𝑡+1
𝑖  ,  �̂�𝑡+1

𝑖 . 

7.  Classification levels: under-load, normal-load, highly-load, 

over-load. 

8.  For each server ℎ𝑖   in under-load, normal-load, or highly-

load class 

9.  Add traffic to the server and calculate the load after 

migration ℎ�̅� 

10.  If ℎ�̅� belongs to under-load, normal-load, or highly-

load class normal-load. 

11.  Direct new flow to server ℎ𝑖. 

12.  End if 

13.  End for 

14.  If  level of ℎ𝑖 == over-load 

15.  For each server ℎ𝑖 in the set of all servers H 

16.   If  level of ℎ𝑖 == under-load or normal-load 

17.   τ ← ℎ𝑖              

18.  End if 

19.  End for 

20.  For each server ℎ𝑖 in τ 

21.  Calculate CPU, memory, hard disk, and 

bandwidth consumption based on formulas 1-4 

and determine new levels.              

22.   If   ℎ𝑖== under-load  and  ℎ�̅�== under-load  

23.   T=ℎ𝑖             

24.  End if 

25.  If   ℎ𝑖== under-load  and  ℎ�̅�== normal-load 

26.  T=ℎ𝑖             

27.  End if 

28.  If   ℎ𝑖== normal-load  and  ℎ�̅�== normal-load 

29.  T= ℎ𝑖          

30.  End if 

31.  Else  

32.  Finally, turn on one of the domain servers. If 

none exist, add a new server. 

33.  End if 

34.  End for 

35.  End if 

36.  If level of ℎ𝑖== highly-load 

37.  Repeat steps (14 to 35) for normal servers. If a server 

is off, turn it on; otherwise, do not transfer the load. 

38.  End if 

 
39.  If level of ℎ𝑖== under-load 

40.  For  each serverℎ𝑖 in the set of all servers H 

41.  If level  ℎ𝑖  == under-load or normal-load 

42.  τ ← ℎ𝑖 

43.  End if 

44.  End for 

45.  For  ℎ𝑖  ∈ τ 

46.  Calculation of CPU, memory, hard disk and 

bandwidth consumption according to formulas 1-4 

for selected servers and determining the level of 

servers after load transfer. 

47.  If   ℎ𝑖== under-load  and  ℎ�̅� == under-load  

48.   T=ℎ𝑖     

49.  End if 

50.  End for 

51.  End if 

According to the algorithm and the three 
conditions, since server one transitions from under-
load to normal-load, it is selected as a target server. 
After the load transfer, the load levels of the servers 
in the domain become (normal-load, normal-load, 
highly-load, normal-load). In this state, since server 
three is at the highly-load level, it is designated as the 
source server for load transfer. Servers one, two, and 
three are then considered target servers. After the load 
transfer and determining the levels of these three 
servers, the load levels become (highly-load, normal-
load, highly-load). As a result, only server two is 
considered the target server for the next transfer. 
After this transfer, the load status of the servers in the 
domain is equal to (normal-load, normal-load, 
normal-load, normal-load).  This example illustrates 
the dynamic process of load balancing among 
servers, demonstrating how the load is redistributed 
to achieve optimal performance across the system. 

4. Performance Evaluation 

To simulate the proposed method, the Mininet 
emulator and the Floodlight controller were utilized. 
The OpenFlow protocol was employed for 
communication between the controller and the 
switches. Mininet [19] is a virtual testing platform 
that facilitates the development and testing of 
network tools and protocols. It effectively 
implements software-defined networks using Open 
vSwitch, allowing for the definition of multiple 
switches, each capable of running Open vSwitch. 

Floodlight [20] is a widely used open-source 
software-defined networking (SDN) controller in 
research, education, and industry. Implemented in 
Java, it provides a modular and extensible platform 
for building software-defined network applications. 
The Floodlight controller uses the OpenFlow 
protocol for communication with switches and for 
managing packet forwarding in the data plane. It 
offers various features and capabilities for network 
traffic control, including flow-based transport, traffic 
engineering, monitoring, and security. 
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OpenFlow is a protocol standardized by the Open 
Networking Foundation (ONF) for software-defined 
networking. In this simulation, Floodlight 
communicates with switches using OpenFlow 1.3. 
sFlow is a network monitoring technology used to 
collect information from network devices. This 
technology is typically employed for monitoring 
network traffic, analyzing system performance, and 
identifying network issues. sFlow collects data 
directly from network equipment such as switches 
and routers. 

sFlow-RT is a real-time analytics system that 
provides reliable information for executing DevOps, 
orchestration, and SDN operations. This system 
leverages sFlow technology to enable scalable 
monitoring of network infrastructures, computing 
resources, and applications using industry-standard 
sFlow tools. 

For simulating multimedia flow in a software-
defined Internet of Things (IoT) network, the Iperf 
tool was utilized. Iperf is a widely used open-source 
network performance testing tool that measures the 
maximum achievable bandwidth and throughput 
between two network endpoints. In Figure 8, a script 
depicting the network topology designed for load 
balancing is shown. This topology consists of four 
switches, one client, and four servers, with the 
primary goal of establishing load balancing among 
these four servers. 

The simulation was conducted using Mininet, 
which is connected to the Floodlight controller. The 
Floodlight controller communicates with the 
switches via OpenFlow 1.3. Iperf was also employed 
to generate traffic in the network. In this network, the 
different servers have varying capacities. The load on 
the servers in this research was measured using 
sFlow. This comprehensive setup allows for a 
thorough evaluation of the proposed load-balancing 
method, ensuring its effectiveness in real-world 
scenarios within a controlled environment 

In this section, as illustrated in Figure 9, a 
scenario has been devised for simulating and 
evaluating server load balancing methods in 
software-defined Internet of Things (IoT) networks. 
This scenario consists of 26 streams, where the 
network streams begin at a volume of 10 megabytes 
and increase in increments of 10 megabytes until 
reaching a final stream size of 260 megabytes. By 
applying this scenario, the performance of various 
server load balancing methods can be tested under 
different conditions and scales. These experiments 
contribute to a more effective evaluation and 
comparison of different methods for achieving load 
balancing in servers and improving overall network 
performance. 

In this section, to simulate multimedia flow in 
software-defined IoT networks, the Iperf tool was 

used to establish a UDP connection from the client to 
the other servers. Using this method, multimedia 
flows are sent from the server to other servers based 
on different algorithms. In a UDP connection, the size 
of the flow depends on the number of datagrams sent. 
Figure 10 displays the number of datagrams sent for 
each flow in the scenario described in the previous 
section 

In this network, the servers have different 
capacities. Table 3 shows the capacity of each server. 

In the evaluation, traffic generation and server 
sizes were selected as key parameters to analyze the 
effectiveness of the proposed load-balancing 
approach. Traffic generation follows a progressive 
increase in flow sizes, simulating real-world network  

 
Figure. 8. Network Topology for Performance Evaluation of the 

Server Load Balancing Algorithm 

 

Figure. 9. flow size Distribution in the  Server Load Balancing 

Scenario. 

 

Figure. 10. Number of Datagrams Sent per flow. 
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Table 3. Specifications and Capacities of the Servers Used 

in the Simulation 

Band 

Width 
Hard 

Disk 
Memory CPU Servers 

20MB 900MB 500MB 1GHz Server1 

20MB 2GB 550MB 2GHz Server2 

20MB 800MB 420MB 1GHz Server3 

20MB 700MB 450MB 1GHz Server4 

demand variations and enabling a systematic 
assessment of load distribution strategies under 
increasing stress conditions. Additionally, server 
sizes were defined to represent a heterogeneous 
computing environment, reflecting the diverse 
resource capacities commonly found in cloud and 
edge computing infrastructures. This heterogeneity 
ensures a realistic evaluation of how different load-
balancing methods adapt to varying computational 
resources. These criteria provide a robust framework 
for assessing both the adaptability and efficiency of 
the proposed method in dynamic network conditions.  

After executing the load balancing algorithms on 
the scenario, as shown in Figure 11, the servers that 
are at the under-load level and are not receiving any 
traffic are marked with an asterisk (*). The servers 
indicated with an arrow are designated as target 
servers for receiving traffic. 

Initially, all four servers are in an under-load state, 
active, and operational. According to the load 
balancing algorithm, since there is more than one 
under-loaded server, two of the servers with the 
lowest load will be turned off. Consequently, two 
servers remain active, and the network manages with 
this reduced number of servers. As network traffic 
increases, the servers gradually reach the normal-load 
level. However, at the beginning of this scenario, 
none of the servers ever reach the over-load or highly-
load levels, so there is no need to turn on the inactive 
servers. Thus, until the seventeenth stream, turning 
off two servers not only saves energy but also 
deactivates the four switches connected to those 
servers, contributing to energy efficiency in the 
network. 

In flow 18, the second server reaches the highly-
load level, and based on previous predictions, the 
third server is turned on to prepare for load transfer 
from the overloaded server. With the transfer of flow 
19 to the first server, the excess load from the second 
server is shifted to the third server, achieving balance, 
while the first server also becomes overloaded. flow 
20 is directed to the third server, which also reaches 
the highly-load level upon accepting the traffic, and 

since this situation was anticipated, the fourth server 
is turned on. Concurrently, traffic is transferred from 
the first server to the third, resulting in the first server 
returning to normal-load, while the second server 
remains at the same level. 

Flow 21 moves towards the second server, 
causing it to reach the highly-load level. 
Simultaneously, as new traffic is sent to the second 
server, excess traffic from the third server is 
transferred to the fourth server, allowing the third 
server, which was at the highly-load level, to return 
to normal-load, while the fourth server, which was 
under-load, reaches normal-load. flow 22 is directed 
towards the fourth server, which then reaches the 
highly-load level after receiving the traffic. At the 
same time, excess traffic from the second server is 
initially transferred to the third server; however, 
despite this transfer, the second server remains at the 
highly-load level. Therefore, a second transfer from 
the second server to the first takes place, ultimately 
bringing the second server down to normal-load. 

Flow 23 heads towards the second server, causing 
it to reach the highly-load level after accepting this 
stream. Concurrently, excess traffic from the fourth 
server is initially transferred to the third server; 
however, the fourth server remains at the highly-load 
level. Thus, a second transfer from the fourth server 
to the second server occurs, and eventually, the fourth 
server returns to normal-load. With the arrival of flow 
24 at the third server, this server reaches the highly-
load level. Concurrently, since the first server has 
reached the highly-load level after accepting flow 23 
and requires load transfer, but there are no target 
servers available to accept the excess load (as servers 
two and four would also reach the highly-load level 
with this traffic), the first server remains at the highly-
load level. Upon the arrival of flow 25 at the second 
server, this server also reaches the highly-load level. 
At the same time, load balancing for the third server 
is not feasible, similar to the first server. Furthermore, 
with flow 26 directed to the fourth server, this server 
also reaches the highly-load level. At this point, all 
four servers are at the highly-load level, yet none of 
them have reached the over-load level. 

At this stage, the proposed scheme is compared with 
two other methods for server selection: random 
selection and round-robin selection. These methods 
were chosen due to their widespread use as baseline 
techniques in load balancing. Random selection 
provides a simple yet uncontrolled distribution of 
traffic, while round-robin ensures fairness but does 
not consider real-time server load. Evaluating our 
proposed method against these well-established 
approaches highlights its advantages in dynamic load 
prediction and energy efficiency. Additionally, these 
methods are commonly used in practical SDN and 
cloud environments, ensuring a relevant and 
meaningful comparison. Figure 12 illustrates the 
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server levels after executing the random selection 
scheme. As seen in this figure, after server four 
receives flow 12, it reaches the over-load level but is 
still selected as the target server for accepting flows. 
Ultimately, with the arrival of flow 26, three servers 
reach the over-load level, while the third server 
remains at the normal-load level. 

Figure 13 also shows the server levels after 
executing the round-robin selection scheme. Server 
four reaches the over-load level after processing flow 
13; however, despite this status, three other streams 
are sent to this server. In the final stream, which is 
flow 26, both the third and fourth servers are at the 
over-load level, while the first and second servers are 
at the normal-load level   

 

Figure. 11. Server Levels in the Load Balancing Scenario 

 

Figure. 12. Server Load Levels in the Round-Robin Selection Scheme 

 

Figure. 13. Server Load Levels in the Round-Robin Selection Scheme 
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In the proposed framework, the Long Short-Term 
Memory (LSTM) algorithm is utilized for prediction, 
as this algorithm is suitable for forecasting time series 
with unknown lag sizes. Moreover, LSTM allows us 
to access information from multiple previous time 
steps instead of just the immediate past, thanks to its 
use of recurrent deep networks. The number of steps 
to look back can be adjusted based on the type of 
input data. 

In the proposed approach, predictions are made 
for the CPU, memory, hard disk, and bandwidth 
utilization of each server. For each metric being 
predicted, the number of steps to look back varies. 
For predicting CPU usage, hard disk usage, and 
bandwidth, a look-back of 5 is considered, while for 
memory prediction, a look-back of 2 is applied. The 
look-back values were fine-tuned using a trial-and-
error method to determine the most suitable settings. 

In Figure 14, you can observe the predicted CPU 
usage of the second server using the LSTM prediction 
algorithm. In this figure, the blue lines represent 
actual CPU usage, while the orange and green lines 
indicate the predicted values. 

For the predictions made using the LSTM 
algorithm, three metrics are employed to demonstrate 
the accuracy of the predictions. The first metric is the 
Root Mean Square Error (RMSE); a lower RMSE 
value indicates better predictions. The second metric 
is the Mean Absolute Error (MAE), which reflects the 
absolute error between the predicted and actual 
values. The third metric is the coefficient of 
determination (R2), a statistical measure that 
indicates the percentage of variance or dispersion in 
the data. The R2 value ranges between zero and one; 
an R2 of one means that the predictions perfectly 
match the actual data, while an R2 of zero indicates 
no correlation, akin to a horizontal line. Values 
between zero and one suggest varying degrees of 
model performance, with higher values indicating 
better performance. 

Additionally, the LSTM model is implemented 
using the Sequential API from TensorFlow/Keras, 
consisting of one LSTM layer with 5 neurons and a 
Dense output layer with one neuron. The lookback 
window for input data varies based on the resource 
metric, with values empirically determined to 
optimize performance. Training is performed using 
the Adam optimizer with a Mean Squared Error 
(MSE) loss function, a batch size of 1, and 15 epochs. 
MinMaxScaler is applied for normalization, and the 
dataset is split into 80% training and 20% testing. 
This setup ensures effective time-series forecasting 
for server load prediction in software-defined 
networks. 

The dataset used for training and testing the 
LSTM model was collected from real-world server 
logs in a software-defined networking (SDN) 

environment. It includes system resource utilization 
metrics such as CPU usage, memory usage, hard disk 
activity, and bandwidth consumption. The dataset 
consists of approximately N records spanning a time 
period of T  hours/days, with each record containing 
time-series observations of multiple resource 
utilization metrics. Pre-processing steps included 
handling missing values using linear interpolation 
and applying MinMax scaling to normalize the data 
within the range [0,1], ensuring stable model training. 
No artificial data augmentation techniques were 
applied, as the dataset already provides sufficient 
variability in load conditions. 

The LSTM model consists of two hidden layers, 
each with 64 hidden units. A batch size of 32 was 
used during training. The learning rate was set to 
0.001 and optimized using a decay schedule. The 
Adam optimizer was used for training due to its 
efficiency in handling time-series data. The model 
was trained using Mean Squared Error (MSE) as the 
loss function. These hyperparameters were fine-tuned 
through multiple experiments to achieve optimal 
prediction accuracy while avoiding overfitting. 

In predicting the CPU usage of the second server 
using the LSTM algorithm, the RMSE was found to 
be 7.75, the MAE was 6.31, and the R² value was 
0.77. These results indicate that the LSTM algorithm 
performs very well in predicting CPU usage. 

In Figure 15, you can see the predicted memory 
usage of the second server using the LSTM 
algorithm. In this figure, the blue lines represent 
actual memory usage, while the orange and green 
lines indicate the predicted amounts. For the memory 
usage prediction of the second server, the RMSE was 
19, the MAE was 14.67, and the R2value was 0.51. 
These results show that the LSTM algorithm has 
good performance for predicting memory usage. 

In Figure 16, the predicted hard disk usage of the 
second server using the LSTM algorithm is shown. 
The blue lines represent actual hard disk usage, while 
the orange and green lines represent the predicted 
values. In this prediction, the RMSE was 5.50, the 
MAE was 3.84, and the R2value was 0.6. These 
results indicate that the LSTM algorithm performs 
excellently in predicting hard disk usage. 

In Figure 17, you can observe the predicted 
bandwidth usage of the second server using the 
LSTM algorithm. In this figure, the blue lines 
represent actual bandwidth usage, while the orange 
and green lines show the predicted values. In 
predicting the bandwidth usage of the second server, 
the RMSE was 22.05, the MAE was 15.79, and the R2 

value was 0.67. These results indicate that the LSTM 
algorithm performs very well in predicting bandwidth 
usage. 
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Figure. 14. Predicted CPU Usage of the Second Server Using the 

LSTM Algorithm 

 

Figure. 15. Predicted Memory Usage of the Second Server Using 

the LSTM Algorithm 

 
Figure. 16. Predicted Hard Disk Usage of the Second Server 

Using the LSTM Algorithm 

 
Figure. 17. Predicted Bandwidth Usage of the Second Server 

Using the LSTM Algorithm 

5. Conclusions 

The focus of this paper was to establish effective 
load distribution among servers within software-
driven multimedia Internet-of-Things (IoT) 
networks. The suggested method successfully 
mitigated the risk of server overload by utilizing the 
Long Short-Term Memory (LSTM) algorithm for 
forecasting server usage. Following this, fuzzy logic 
was employed to assess the load on each server and 
allocate tasks accordingly. This approach led to 
enhanced load distribution throughout the network, 
contributing to improved energy efficiency. 
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