

 http://dx.doi.org/10.22133/ijwr.2025.498457.1258
.S. Imanpour, A. Montazerolghaem, S. Afshari, "Optimizing Server Load Distribution in Multimedia IoT Environments through LSTM-Based

Predictive Algorithms", International Journal of Web Research, vol.8, no.1,pp.61-77, 2025, doi: http://dx.doi.org/10.22133/ijwr.2025.498457.1258.

*Coressponding Author

Article History: Received: 10 August 2024 ; Revised: 17 Novemberr 2024; Accepted: 4 December 2024.

Copyright © 2025 University of Science and Culture. Published by University of Science and Culture. This work is licensed under a Creative Commons

Attribution-Noncommercial 4.0 International license(https://creativecommons.org/licenses/by-nc/4.0/). Noncommercial uses of the work are permitted,

provided the original work is properly cited.

Optimizing Server Load Distribution in

Multimedia IoT Environments through

LSTM-Based Predictive Algorithms

Somaye Imanpoura, Ahmadreza Montazerolghaema*, Saeed Afshari b
a Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran; s.imanpour@eng.ui.ac.ir,

a.montazerolghaem@comp.ui.ac.ir
b Faculty of Computer Engineering, Shahreza Campus, University of Isfahan, Isfahan, Iran;

s.afshari@shr.ui.ac.ir

A B S T R A C T

The Internet of Multimedia Things (IoMT) represents a significant advancement in the evolution of IoT

technologies, focusing on the transmission and management of multimedia streams. As the volume of data

continues to surge and the number of connected devices grows exponentially, internet traffic has reached

unprecedented levels, resulting in challenges such as server overloads and deteriorating service quality.

Traditional computer network architectures were not designed to accommodate this rapid increase in demand,

leading to the necessity for innovative solutions.

In response, Software-Defined Networks (SDNs) have emerged as a promising framework, offering enhanced

management capabilities by decoupling the control layer from the data layer. This study explores the load

balancing of servers within software-defined multimedia IoT networks. The Long Short-Term Memory (LSTM)

prediction algorithm is employed to accurately estimate server loads and fuzzy systems are integrated to

optimize load distribution across servers. The findings from the simulations indicate that the proposed

approach enhances the optimization and management of IoT networks, resulting in improved service quality,

reduced operational costs, and increased productivity.

Keywords— Internet of Multimedia Things, Software-Defined Network, Long Short-Term Memory Prediction,

Fuzzy System.

1. Introduction

The Internet of Multimedia Things (IoMT) has
led to a significant increase in traffic directed toward
servers and switches, resulting in congestion and
overload within the network. In such conditions, the
controller must effectively distribute the load among
different servers using load-balancing strategies.
Server load balancing requires forecasting methods to
enhance load distribution and save energy. Rather
than relying on conventional prediction models, this
study utilizes the Long Short-Term Memory (LSTM)
network, which has demonstrated superior
performance in time-series forecasting, particularly
in dynamic network environments. Time-series-
based forecasting methods are commonly employed
for load management in software-defined networks,
as these predictions are frequently made for resource
management and load balancing. These forecasts rely

on historical observations and assist in predicting
future values [1,2,3].

The LSTM prediction algorithm, which has been
shown to outperform traditional methods such as
NLMS and ANN, is utilized in this study to capture
complex temporal dependencies. LSTM, a type of
Recurrent Neural Network (RNN), is specifically
designed to learn long-term dependencies in
sequential data. This architecture is particularly
effective for processing and predicting complex
temporal data, allowing it to identify server load
patterns from historical data and provide accurate
predictions for future loads. By leveraging LSTM,
more precise estimations of server workload are
achieved, significantly improving decision-making in
dynamic environments[4].

The LSTM prediction algorithm, which has been
shown to outperform traditional methods such as

http://dx.doi.org/10.22133/ijwr.2025.498457.1258

International Journal of Web Research, Vol. 8, No. 1, 2025

62

NLMS and ANN, is utilized in this study to capture
complex temporal dependencies. LSTM, a type of
Recurrent Neural Network (RNN), is specifically
designed to learn long-term dependencies in
sequential data. This architecture is particularly
effective for processing and predicting complex
temporal data, allowing it to identify server load
patterns from historical data and provide accurate
predictions for future loads. Compared to other deep
learning models such as GRU, CNN-LSTM, and
Transformer-based architectures, LSTM offers a
balanced trade-off between accuracy and
computational efficiency, making it a more practical
choice for real-time server load forecasting. While
GRU provides a simpler structure, LSTM
demonstrates superior performance in capturing
long-term dependencies. Transformer-based models,
although powerful, require significantly higher
computational resources, making them less suitable
for real-time SDN environments. Additionally, CNN-
LSTM models, which integrate convolutional layers,
are more suited for spatial feature extraction rather
than sequential network load prediction. Therefore,
LSTM is chosen for its robustness in time-series
forecasting and its ability to optimize dynamic load
balancing strategies effectively. By leveraging
LSTM, more precise estimations of server workload
are achieved, significantly improving decision-
making in dynamic environments [4].

Server load can be determined using threshold
values; if a server's load falls below or exceeds a
specified amount, it is categorized into a specific
group. However, this method lacks the necessary
accuracy due to its reliance on a fixed value and
disregard for dynamic conditions. Therefore, other
methods, such as fuzzy systems, are utilized to adapt
to dynamic changes. In contrast to previous studies
that implement a three-level fuzzy system [8,13], this
study introduces a more adaptive four-level fuzzy
system, which enhances load differentiation and
optimizes allocation strategies. Fuzzy systems are
designed as a decision-making framework based on
fuzzy logic to model and manage uncertainty and
ambiguity in data. These systems define truth
continuously from 0 (non-existence) to 1 (complete
existence), allowing for effective modeling of
intermediate states [6].

With advancements in technology and the
expansion of the multimedia Internet of Things
(IoMT), communication between devices and the
flow of multimedia data have significantly increased.
This surge necessitates optimization in managing
server loads. The proposed approach improves load
distribution by incorporating four key server resource
metrics: CPU, memory, disk, and bandwidth usage.
In contrast, most previous studies focused on only
two or three parameters, thereby lacking a
comprehensive view of server workload. Improper
load distribution among servers can lead to decreased

efficiency and increased costs. Therefore, this study
aims to improve load distribution among servers in
software-defined multimedia IoT networks.

The proposed method first calculates each server's
resource consumption (CPU, memory, hard disk, and
bandwidth). Then, resource consumption forecasting
for the server is conducted using artificial intelligence
algorithms. By utilizing LSTM’s predictive
capabilities, the system proactively manages traffic
allocation before congestion occurs, significantly
enhancing network efficiency. Based on the obtained
predictions, the server is categorized at a specific
level, indicating its position within multiple threshold
levels. Servers with lower levels are prioritized for
receiving load. Subsequently, it is assessed whether a
server is in an overloaded state. If an overload is
present, the load is transferred from the overloaded
server to a server with a lower load.The main
contributions of this paper are as follows:

1. Utilizing four metrics to calculate server load,
including CPU usage, memory, disk, and
bandwidth.

2. Employing Long Short-Term Memory (LSTM)
algorithms for predicting server loads.

3. Using fuzzy systems for accurate categorization
of servers into four levels.

The subsequent sections of the paper will include
a review of related work in Section 2, presentation of
the proposed system in Section 3, simulation results
in Section 4, and concluding remarks in Section 5.

2. Related Works

Dynamic algorithms for balancing server loads
initially assess the current conditions of the servers
before determining which server should handle
incoming traffic based on its state. Zhang et al. [7]
introduced a dynamic load-balancing strategy that
relies on the response time of servers, termed Load
Balancing Based on Server Response Time
(LBBSRT). This strategy allocates loads based on
response times, prioritizing servers that exhibit
quicker or more consistent response times. Compared
to traditional approaches, this technique enhances
overall performance and is more cost-effective, as it
requires less hardware and allows for software-based
adaptation.

Montazerolghaem [8] developed a framework to
address resource management challenges in
multimedia Internet of Things (IoMT) networks. This
framework employs function virtualization
technology for all servers, enabling the controller to
adjust the network’s scale. By applying the
normalized minimum mean square prediction
method, which analyzes historical resource
utilization data (including CPU, memory, and disk
usage), servers are classified into three categories

Optimizing Server Load Distribution in Multimedia IoT Environments through LSTM-

Based Predictive Algorithms

63

through predictive analysis and fuzzy logic. This
classification process assists in evaluating the overall
network condition and facilitates appropriate
adjustments to network size.

The research presented in [9] focuses on load
balancing within software-defined networks by
utilizing machine learning methods such as artificial
neural networks (ANN) and reinforcement learning.
These techniques facilitate server load balancing and
network traffic routing. The artificial neural network
learns how to allocate traffic to servers by leveraging
insights gained from past interactions.

Article [10] introduces a load-balancing
algorithm specifically designed for data center
networks to enhance server efficiency and
performance. By leveraging software-defined
networking (SDN) and artificial intelligence
methods, the study seeks to manage high traffic
volumes effectively, mitigate data loss, and ensure
continuous server availability.

In [11], a PID controller integrated with neural
networks is proposed to enhance server load
balancing in SDN environments. This PID controller
fine-tunes the polling frequency to assess server
response times, relying on two threshold parameters:
a low-load threshold and a high-load threshold. These
thresholds determine the server's load status based on
variations in response times, categorizing it into low,
medium, or high-load classes. This adaptive
classification allows for optimal server selection
based on response times and load, thereby improving
the load-balancing process.

The study presented in [12] explores a hybrid
approach for balancing loads between servers and
connections within distributed storage systems via
software-defined networks (SDN). The load-
balancing algorithm ensures that traffic distribution
aligns with overall network conditions and storage
server loads.

In [13], the challenges associated with efficient
resource allocation for multimedia streaming in
Software-Defined Internet of Vehicles (IoV)
networks are addressed. Load balancing in IoV
networks is achieved through the implementation of
the ELQ2 framework. By employing intelligent
algorithms and a modular architecture, ELQ2
dynamically selects physical machines (PMs) with
the least load for multimedia content delivery,
thereby optimizing resource distribution across the
network.

Article [14] focuses on optimizing software-
defined multimedia frameworks to enhance
networking capabilities in multimedia-over-IP
(MoIP) environments. The research outlines various
load-balancing strategies employed to manage traffic
across servers within MoIP networks. Three specific

algorithms for load distribution are highlighted: call-
join-shortest-queue (CJSQ), transaction-join-
shortest-queue (TJSQ), and transaction-least-work-
left (TLWL). These algorithms aim to distribute
workloads efficiently among servers by directing new
calls or transactions based on the servers' current load
conditions.

The study in [15] presents a framework called
GreenVoIP, which effectively addresses the issue of
load balancing among servers in VoIP networks. By
utilizing cloud computing principles alongside SDN
and NFV technologies, GreenVoIP enables dynamic
resource management that responds to fluctuating
demand in real time. This framework allows for the
efficient allocation of VoIP servers based on current
network loads, thereby preventing server overload
during peak times and minimizing energy
consumption during periods of lower demand.
Specifically, when high traffic is detected, additional
virtualized server resources can be activated to handle
the load, ensuring that QoS requirements are met
without compromising service quality. Conversely,
GreenVoIP can deactivate or allocate less active
resources during periods of reduced demand, thereby
conserving energy. This resource management
adaptability enhances operational efficiency and
contributes to the goal of green computing by
reducing the overall energy footprint of VoIP
services.

The study in [16] discusses the benefits and
challenges of implementing Software-Defined
Networking (SDN), particularly in hybrid
environments where both SDN-enabled and
traditional devices coexist. Due to budget constraints
and technical challenges, many network providers opt
for incremental SDN deployment rather than full
implementation. This paper introduces a new load-
balancing scheme called LBORU (Load Balancing
by Optimizing Resource Utilization), designed
specifically for hybrid SDN networks. This approach
utilizes a minimal set of SDN components, including
a controller and a switch. The proposed load-
balancing scheme continuously monitors server load
indicators—such as CPU load, I/O read, I/O write,
link upload, and link download—and employs multi-
parameter metrics to schedule connections
effectively. This strategy enables more efficient load
distribution across servers, addressing resource
overload issues and ensuring better Quality of
Experience (QoE) for users. The results demonstrate
that LBORU outperforms traditional load-balancing
methods, including Random, Round-Robin, and
Weighted Fair Queuing, as well as existing server
response time-based schemes.

The integration of edge and fog computing in
healthcare systems offers real-time processing
capabilities, yet load balancing remains a critical
challenge. Efficient workload distribution across

International Journal of Web Research, Vol. 8, No. 1, 2025

64

edge servers is essential to prevent bottlenecks,
reduce latency, and optimize resource utilization.
Load-balancing techniques in SDN-based healthcare
networks leverage predictive analytics and dynamic
traffic management to enhance system performance.
The combination of static and dynamic load-
balancing strategies, including SDN-driven
approaches, allows adaptive workload distribution
that responds to varying network conditions.
Implementing an effective load-balancing framework
in edge/fog-based healthcare environments ensures
improved QoS, reduced system latency, and cost-
efficient resource management, ultimately leading to
better patient care and optimized healthcare service
delivery [17].

Load balancing in Data Center Networks (DCN)
is essential for optimizing server performance,
minimizing latency, and ensuring efficient resource
utilization, particularly as internet applications grow.
Software-Defined Networking (SDN) enables
dynamic load balancing by centralizing control and
improving traffic management. Various techniques,
including threshold-based, heuristic, stochastic load
prediction, and hybrid machine learning algorithms

like Multiple Regression-Based Searching (MRBS),
are employed to distribute network traffic efficiently.
SDN-based approaches, such as controller-driven
load management and Equal-Cost Multipath (ECMP)
routing, improve scalability but face challenges like
real-time decision-making, controller bottlenecks,
and handling heterogeneous workloads[18].

Table 1 provides a summary of the different
references, detailing their methods for server load
balancing, the metrics utilized to evaluate server load,
the prediction algorithms applied, and the types of
thresholds implemented.

3. Proposed Framework

As shown in Figure 1, the software-defined
network divides the Internet of Things (IoT) network
into three layers. The first layer is the application
layer, which includes applications that are added to
the controller through these applications. The second
layer is the control layer, which comprises the
controller, while the third layer is the data layer,
which includes servers, switches, and links tables and
Figures.

Table 1. A Review of Article

Reference
Server Load

Measurement Metric

Prediction

Algorithm
Threshold Type Energy Consumption

[7] Response Time
Single Threshold -

Two-Level
-

[8]
CPU, Memory, Disk

Usage
NLMS

Fuzzy System -

Three-Level



[9] CPU, Memory Usage - - -

[10]
CPU, Memory Usage,
Number of Requests

Processed per Second

-
Single Threshold -

Two-Level
-

[11] Response Time -
Two Thresholds -

Three-Level
-

[12]
Number of Requests
Processed per Server

- - -

[13]
CPU, Memory, Disk

Usage
NLMS

Fuzzy System -

Three-Level



[14] CPU, Memory Usage - - -

[15] CPU, Memory Usage NLMS
Fuzzy System -

Three-Level



[16]
CPU, Bandwidth

Usage
-

Single Threshold -

Two-Level
-

[17] Response Time -
Single Threshold -

Two-Level
-

[18]
Response Time,

Bandwidth
Multiple Regression Multi Threshold -

Proposed Approach
CPU, Memory, Disk,

and Bandwidth Usage
LSTM

Fuzzy System -

Four-Level



Optimizing Server Load Distribution in Multimedia IoT Environments through LSTM-

Based Predictive Algorithms

65

Figure. 1. Software-Defined Multimedia Internet of things

Network Model

As illustrated in Figure 2, the proposed method
algorithm consists of three main components. The
first component is the load balancing of servers in the
software-defined IoMT network. To achieve load
balancing among the servers, the server load is first
measured based on criteria including CPU usage,
memory, hard disk, and bandwidth consumption.
Then, using a long-term short-term memory
prediction algorithm, the server loads are forecasted.
With the help of a fuzzy system, the servers are
classified, and load-balancing operations are carried
out based on the server's classification level.

3.1. System Model

The network comprises switches, servers,
controllers, and links. Let H={h1,h2,…,hi,…,hM }
represent the set of servers, where M indicates the

total number of servers in the network, and hi denotes

the ith server. For clarity, Table 2 provides the
definitions and notations used in this study .

 Server Load Measurement

In the first step of server load balancing, the
controller measures the load of the servers within its
domain. The controller evaluates the server load
based on CPU, memory, bandwidth, and hard disk
consumption. To measure the server load, the current
CPU usage of the server is divided by the CPU
resource capacity, resulting in a value between zero
and one, represented as 𝑥𝑖 as show in Equation (1).
Similarly, for calculating the memory, hard disk, and
bandwidth consumption of the server, the same
approach is applied, with the results denoted as 𝑦𝑖 , 𝑧𝑖,
and 𝑤𝑖 , as show in Equation (2), (3), and (4),
respectively. This method ensures a normalized
representation of resource utilization, facilitating
effective load-balancing decisions.

Figure. 2. Flowchart of the Proposed Method Algorithm

Table 2. The Summary of the Notations that are used.

Symbols Description

S Set of switches

N Total number of switches

H Set of servers

M Total number of servers

𝑥𝑖 CPU consumption of server i

𝑦𝑖 Memory consumption of server i

𝑧𝑖 Hard disk consumption of server i

𝑤𝑖 Bandwidth consumption of server i

𝐿𝑑𝐶𝑃𝑈 CPU consumption of server i at time t

𝐿𝑑𝑚𝑒𝑚 Memory consumption of server i at time t

𝐿𝑑ℎ𝑑𝑑 Hard disk consumption of server i at time t

𝐿𝑑𝑏𝑤 Bandwidth consumption of server i at time t

𝜗𝑖
𝑥 CPU resource capacity of server i

𝜗𝑖
𝑦

 Memory resource capacity of server i

𝜗𝑖
𝑧 Hard disk resource capacity of server i

𝜗𝑖
𝑤 Bandwidth resource capacity of server i

𝑓𝐶𝑃𝑈 Matrix of CPU consumption by servers

𝑓𝑚𝑒𝑚 Matrix of memory consumption by servers

𝑓ℎ𝑑𝑑 Matrix of hard disk consumption by servers

𝑓𝑏𝑤 Matrix of bandwidth consumption by servers

International Journal of Web Research, Vol. 8, No. 1, 2025

66

𝑥𝑖 =
𝐿𝑑𝐶𝑃𝑈

𝜗𝑖
𝑥

0 ≤ 𝑥𝑖 ≤ 1 (1)

𝑦𝑖 =
𝐿𝑑𝑚𝑒𝑚

𝜗𝑖
𝑦

0 ≤ 𝑦𝑖 ≤ 1 (2)

𝑧𝑖 =
𝐿𝑑ℎ𝑑𝑑

𝜗𝑖
𝑧

0 ≤ 𝑧𝑖 ≤ 1 (3)

𝑤𝑖 =
𝐿𝑑𝑏𝑤

𝜗𝑖
𝑤

0 ≤ 𝑤𝑖 ≤ 1 (4)

To predict the server load in the next step, the long
short-term memory (LSTM) prediction algorithm is
utilized. This requires the calculation of a matrix
representing the resource consumption of all servers
within the domain. The metrics for measuring server
load include CPU usage, memory usage, bandwidth,
and hard disk consumption. Therefore, the prediction
of each of these metrics is calculated for all servers.
The matrix 𝑓ℎ𝑖

, as shown in Formula (5), represents

the resource consumption of the servers. The size of
this matrix is P*W, where P = 4 . Each row of the
matrix corresponds to one of the consumption
metrics: CPU, memory, hard disk, and bandwidth,
while W denotes the size of the window.

This structured approach allows for a systematic
analysis and forecasting of the resource utilization
patterns of the servers, facilitating better load-
balancing decisions in the network.

𝑓ℎ𝑖
= [

𝑥11 𝑥12 …
… … …

𝑥𝑃1 𝑥𝑃1 …

𝑥1𝑊

…
𝑥𝑃𝑊

]

𝑖𝑓 �́� < 𝑃 𝑡ℎ𝑒𝑛 𝑥𝑃𝑊 = 0 , 𝑝 = 4 , w = 1,2, … , W

(5)

 Server Load Prediction Using Long Short-

Term Memory (LSTM)

In the load balancing of software-defined
networks, forecasting methods are employed to
predict controller load, server load, and traffic. This
ultimately leads to load balancing and energy
savings. In this section, prediction techniques are
utilized specifically for forecasting server loads.
Various methods exist for prediction, but time-series-
based forecasting methods are more commonly used
in software-defined networks. This is because time-
series forecasting samples a specific metric
periodically at fixed intervals, resulting in a time
series that includes a sequence of recent observations.
Time-series methods utilize this sequence to predict
future values.

Long Short-Term Memory (LSTM), a specific
architecture of recurrent neural networks (RNN), is
employed to predict server loads. LSTM is suitable

for learning from experience for classification,
processing, and predicting time series with unknown
time lags.

a) Model Architecture Details

The LSTM model is implemented using a
sequential structure, consisting of a single LSTM
layer with five neurons and a Dense output layer with
one neuron. The number of lookback steps varies
depending on the predicted metric. For CPU usage,
disk usage, and bandwidth prediction, a lookback of
five is used, while for memory prediction, a lookback
of two is applied. These values were determined
through a trial-and-error approach to find the most
suitable configuration. The model is trained using the
Adam optimizer, with Mean Squared Error (MSE) as
the loss function. Training is performed with 15
epochs and a batch size of one.

The input data is first normalized and then divided
into two sets: a training set 80% and a testing set 20%.
The model is trained using time-series data with a
lookback window of size n.

The model operates in two phases: training and
forecasting. In the training phase, the training data is
fed into the model, and the parameters of the neural
network are dynamically adjusted to achieve the
desired output. This process is carried out through the
backpropagation algorithm, which propagates the
computed error from the output to the input and
updates the model weights to minimize the error to
the lowest possible value.

In the prediction phase, the model is tested with
new, previously unseen data. The expected output is
to predict the resource consumption levels for all

servers in the domain, represented as �̂�𝑡+1
𝑖 , �̂�𝑡+1

𝑖 , �̂�𝑡+1
𝑖 ,

and �̂�𝑡+1
𝑖 .The LSTM model, with its ability to learn

complex temporal dependencies, provides a powerful
tool for predicting load in software-defined networks.
This model not only aids in improving load balancing
but also plays a crucial role in optimizing resource
and energy consumption. Utilizing LSTM for server
load prediction enables more precise resource
management and enhances the efficiency of software-
defined systems.

 Determining Server Load Levels Using Fuzzy

Systems

A fuzzy system is a mathematical model based on
the theory of fuzzy sets, used for modeling and
analyzing issues that involve a combination of
uncertainty and continuity. Fuzzy systems can be
highly effective in situations where the relationships
among variables require abstraction and innovation.
Fuzzy algorithms are inspired by human abstract
reasoning and can effectively model information that
possesses uncertainty and complexity.

Server classification using a fuzzy system
depends on the predicted resource consumption of the

Optimizing Server Load Distribution in Multimedia IoT Environments through LSTM-

Based Predictive Algorithms

67

server, represented as (�̂�𝑡+1
𝑖 , �̂�𝑡+1

𝑖 , �̂�𝑡+1
𝑖 , �̂�𝑡+1

𝑖).
Servers are categorized into four levels: under-load,
normal-load, highly-load, and over-load. The input

for this classification consists of (�̂�𝑡+1
𝑖 , �̂�𝑡+1

𝑖 , �̂�𝑡+1
𝑖 ,

�̂�𝑡+1
𝑖), and the output will be one of the four

mentioned levels. Each step of the process is
explained in detail below:

a) Variable Definition:

At this stage, various features that may be used for
server classification are identified. In this study, the
predicted resource consumption of servers is utilized,
including CPU usage, memory, hard disk, and
bandwidth.

b) Membership Functions Definition:

As shown in Figure 3-6, a fuzzy membership
function is defined for each feature. These functions
assist in transforming numerical features into fuzzy
sets (low, medium, high).

Figure. 3. Membership Function Input for 𝑥𝑡+1
𝑖 in the Range

[0,1]}

Figure. 4. Membership Function Input for �̂�𝑡+1
𝑖 in the Range

[0,1]}

Figure. 5. Membership Function Input for �̂�𝑡+1
𝑖 in the Range

[0,1]}

Figure. 6. Membership Function Input for �̂�𝑡+1
𝑖 in the Range

[0,1]}

c) Fuzzy Rules Definition:

The fuzzy rules necessary for classifying servers
are defined. These rules encompass conditions that
depend on the features and their combinations. The
system comprises 81 rules defined in an "if-then"
format. These rules represent combinations of input
states that specify the corresponding outputs. For
example, if all inputs are in the "low" state, the output
will also be in the "under-load" state. This fuzzy
classification system allows for a nuanced
understanding of server loads, enabling more
effective load-balancing strategies within the
network.

1) When (𝑥𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is classified as

low) and (�̂�𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is classified

as low), then (classk is categorized as Under-loaded).

2) When (𝑥𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is classified as

low) and (�̂�𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is classified

as Medium), then (classk is categorized as Under -loaded).

3) When (𝑥𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is classified as

low) and (�̂�𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as low), then (classk is categorized as Under -

loaded).

4) When (𝑥𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is classified as

Medium) and (�̂�𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is

classified as low), then (classk is categorized as Under -
loaded).

5) When (𝑥𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as low) and (�̂�𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖

is classified as low), then (classk is categorized as Under
-loaded).

6) When (𝑥𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is classified as

low) and (�̂�𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as Medium), then (classk is categorized as

Under -loaded).

7) When (𝑥𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is classified as
Medium) and (�̂�𝑡+1

𝑖 is classified as Medium) and (�̂�𝑡+1
𝑖 is

classified as low), then (classk is categorized as Under -
loaded).

8) When (𝑥𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as Medium) and (�̂�𝑡+1
𝑖 is classified as low) and

(�̂�𝑡+1
𝑖 is classified as low), then (classk is categorized as

Under -loaded).

9) When (𝑥𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is classified as

Medium) and (�̂�𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is

classified as Medium), then (classk is categorized as

Under -loaded).

10) When (𝑥𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as low) and (�̂�𝑡+1
𝑖 is classified as Medium) and

(�̂�𝑡+1
𝑖 is classified as low), then (classk is categorized as

Under -loaded).

11) When (𝑥𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as low) and (�̂�𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖

is classified as Medium), then (classk is categorized as

Under -loaded).

12) When (𝑥𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is classified as
low) and (�̂�𝑡+1

𝑖 is classified as low) and (�̂�𝑡+1
𝑖 is classified

as High), then (classk is categorized as Normal -loaded).

13) When (𝑥𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is classified as
low) and (�̂�𝑡+1

𝑖 is classified as High) and (�̂�𝑡+1
𝑖 is

classified as low), then (classk is categorized as Normal -
loaded).

14) When (𝑥𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is classified as

High) and (�̂�𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is

classified as low), then (classk is categorized as Normal -
loaded).

International Journal of Web Research, Vol. 8, No. 1, 2025

68

15) When (𝑥𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is classified as

low) and (�̂�𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is classified

as low), then (classk is categorized as Normal -loaded).

16) When (𝑥𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is classified as
Medium) and (�̂�𝑡+1

𝑖 is classified as Medium) and (�̂�𝑡+1
𝑖 is

classified as Medium), then (classk is categorized as
Normal -loaded).

17) When (𝑥𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as low) and (�̂�𝑡+1
𝑖 is classified as Medium) and

(�̂�𝑡+1
𝑖 is classified as Medium), then (classk is categorized

as Normal -loaded).

18) When (𝑥𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as Medium) and (�̂�𝑡+1
𝑖 is classified as low) and

(�̂�𝑡+1
𝑖 is classified as Medium), then (classk is categorized

as Normal -loaded).

19) When (𝑥𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as Medium) and (�̂�𝑡+1
𝑖 is classified as Medium

) and (�̂�𝑡+1
𝑖 is classified as low), then (classk is categorized

as Normal -loaded).

20) When (𝑥𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as Medium) and (�̂�𝑡+1
𝑖 is classified as Medium)

and (�̂�𝑡+1
𝑖 is classified as Medium), then (classk is

categorized as Normal -loaded).

21) When (𝑥𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is classified

as low) and (�̂�𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as low), then (classk is categorized as Normal -
loaded).

22) When (𝑥𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is classified

as low) and (�̂�𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is

classified as Medium), then (classk is categorized as

Normal -loaded).

23) When (𝑥𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as High) and (�̂�𝑡+1
𝑖 is classified as low) and

(�̂�𝑡+1
𝑖 is classified as low), then (classk is categorized as

Normal -loaded).

24) When (𝑥𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as low) and (�̂�𝑡+1
𝑖 is classified as High) and

(�̂�𝑡+1
𝑖 is classified as low), then (classk is categorized as

Normal -loaded).

25) When (𝑥𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as low) and (�̂�𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖

is classified as High), then (classk is categorized as

Normal -loaded).

26) When (𝑥𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is classified as

High) and (�̂�𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is

classified as Medium), then (classk is categorized as

Normal -loaded).

27) When (𝑥𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is classified as
High) and (�̂�𝑡+1

𝑖 is classified as Medium) and (�̂�𝑡+1
𝑖 is

classified as low), then (classk is categorized as Normal -
loaded).

28) When (𝑥𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is classified as
Medium) and (�̂�𝑡+1

𝑖 is classified as low) and (�̂�𝑡+1
𝑖 is

classified as High), then (classk is categorized as Normal
-loaded).

29) When (𝑥𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is classified as

Medium) and (�̂�𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is

classified as low), then (classk is categorized as Normal -
loaded).

30) When (𝑥𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is classified as

low) and (�̂�𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as High), then (classk is categorized as Normal
-loaded).

31) When (𝑥𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is classified as

low) and (�̂�𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is

classified as Medium), then (classk is categorized as

Normal -loaded).

32) When (𝑥𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is classified

as Medium) and (�̂�𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is

classified as low), then (classk is categorized as Normal -
loaded).

33) When (𝑥𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is classified as

High) and (�̂�𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as Medium), then (classk is categorized as

Normal -loaded).

34) When (𝑥𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is classified as
Medium) and (�̂�𝑡+1

𝑖 is classified as High) and (�̂�𝑡+1
𝑖 is

classified as Medium), then (classk is categorized as
Normal -loaded).

35) When (𝑥𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is classified as
Medium) and (�̂�𝑡+1

𝑖 is classified as Medium) and (�̂�𝑡+1
𝑖 is

classified as High), then (classk is categorized as Normal
-loaded).

36) When (𝑥𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is classified

as low) and (�̂�𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as Medium), then (classk is categorized as
Normal -loaded).

37) When (𝑥𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is classified

as Medium) and (�̂�𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is

classified as Medium), then (classk is categorized as
Normal -loaded).

38) When (𝑥𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is classified

as Medium) and (�̂�𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖

is classified as low), then (classk is categorized as Normal
-loaded).

39) When (𝑥𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as low) and (�̂�𝑡+1
𝑖 is classified as Medium) and

(�̂�𝑡+1
𝑖 is classified as High), then (classk is categorized as

Normal -loaded).

40) When (𝑥𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as low) and (�̂�𝑡+1
𝑖 is classified as High) and

(�̂�𝑡+1
𝑖 is classified as Medium), then (classk is categorized

as Normal -loaded).

41) When (𝑥𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as High) and (�̂�𝑡+1
𝑖 is classified as Medium)

and (�̂�𝑡+1
𝑖 is classified as low), then (classk is categorized

as Normal -loaded).

42) When (𝑥𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as High) and (�̂�𝑡+1
𝑖 is classified as low) and

(�̂�𝑡+1
𝑖 is classified as Medium), then (classk is categorized

as Normal -loaded).

43) When (𝑥𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as Medium) and (�̂�𝑡+1
𝑖 is classified as High) and

(�̂�𝑡+1
𝑖 is classified as low), then (classk is categorized as

Normal -loaded).

44) When (𝑥𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as Medium) and (�̂�𝑡+1
𝑖 is classified as low) and

(�̂�𝑡+1
𝑖 is classified as High), then (classk is categorized as

Normal -loaded).

45) When (𝑥𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is classified as

low) and (�̂�𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is

classified as High), then (classk is categorized as High -
loaded).

46) When (𝑥𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is classified

as High) and (�̂�𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is

classified as low), then (classk is categorized as High -
loaded).

47) When (𝑥𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is classified as

High) and (�̂�𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is

classified as High), then (classk is categorized as High -
loaded).

48) When (𝑥𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is classified

as low) and (�̂�𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is

classified as low), then (classk is categorized as High -
loaded).

Optimizing Server Load Distribution in Multimedia IoT Environments through LSTM-

Based Predictive Algorithms

69

49) When (𝑥𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is classified as

low) and (�̂�𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is classified

as High), then (classk is categorized as High -loaded).

50) When (𝑥𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is classified as
High) and (�̂�𝑡+1

𝑖 is classified as High) and (�̂�𝑡+1
𝑖 is

classified as low), then (classk is categorized as High -
loaded).

51) When (𝑥𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as Medium) and (�̂�𝑡+1
𝑖 is classified as Medium)

and (�̂�𝑡+1
𝑖 is classified as High), then (classk is categorized

as High -loaded).

52) When (𝑥𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as Medium) and (�̂�𝑡+1
𝑖 is classified as High) and

(�̂�𝑡+1
𝑖 is classified as Medium), then (classk is categorized

as High -loaded).

53) When (𝑥𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as High) and (�̂�𝑡+1
𝑖 is classified as Medium) and

(�̂�𝑡+1
𝑖 is classified as Medium), then (classk is categorized

as High -loaded).

54) When (𝑥𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is classified

as Medium) and (�̂�𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖

is classified as Medium), then (classk is categorized as
High -loaded).

55) When (𝑥𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is classified as
High) and (�̂�𝑡+1

𝑖 is classified as Medium) and (�̂�𝑡+1
𝑖 is

classified as High), then (classk is categorized as High -
loaded).

56) When (𝑥𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as low) and (�̂�𝑡+1
𝑖 is classified as High) and

(�̂�𝑡+1
𝑖 is classified as High), then (classk is categorized as

High -loaded).

57) When (𝑥𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is classified as

High) and (�̂�𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as High), then (classk is categorized as High -
loaded).

58) When (𝑥𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is classified

as low) and (�̂�𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as High), then (classk is categorized as High -
loaded).

59) When (𝑥𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is classified

as low) and (�̂�𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is

classified as Medium), then (classk is categorized as High
-loaded).

60) When (𝑥𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is classified as

High) and (�̂�𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is

classified as Medium), then (classk is categorized as High
-loaded).

61) When (𝑥𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as High) and (�̂�𝑡+1
𝑖 is classified as low) and

(�̂�𝑡+1
𝑖 is classified as High), then (classk is categorized as

High -loaded).

62) When (𝑥𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as High) and (�̂�𝑡+1
𝑖 is classified as High) and

(�̂�𝑡+1
𝑖 is classified as low), then (classk is categorized as

High -loaded).

63) When (𝑥𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is classified

as Medium) and (�̂�𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is

classified as High), then (classk is categorized as High -
loaded).

64) When (𝑥𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is classified as

Medium) and (�̂�𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is

classified as low), then (classk is categorized as High -
loaded).

65) When (𝑥𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is classified

as High) and (�̂�𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is

classified as Medium), then (classk is categorized as High
-loaded).

66) When (𝑥𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is classified

as High) and (�̂�𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as low), then (classk is categorized as High -
loaded).

67) When (𝑥𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is classified

as Medium) and (�̂�𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖

is classified as High), then (classk is categorized as High
-loaded).

68) When (𝑥𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is classified

as High) and (�̂�𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as Medium), then (classk is categorized as High
-loaded).

69) When (𝑥𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as High) and (�̂�𝑡+1
𝑖 is classified as High) and

(�̂�𝑡+1
𝑖 is classified as Medium), then (classk is categorized

as High -loaded).

70) When (𝑥𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as Medium) and (�̂�𝑡+1
𝑖 is classified as High)

and (�̂�𝑡+1
𝑖 is classified as High), then (classk is categorized

as High -loaded).

71) When (𝑥𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is classified

as Medium) and (�̂�𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is

classified as Medium), then (classk is categorized as High
-loaded).

72) When (𝑥𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as High) and (�̂�𝑡+1
𝑖 is classified as Medium) and

(�̂�𝑡+1
𝑖 is classified as High), then (classk is categorized as

High -loaded).

73) When (𝑥𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is classified as
High) and (�̂�𝑡+1

𝑖 is classified as High) and (�̂�𝑡+1
𝑖 is

classified as High), then (classk is categorized as Over -
loaded).

74) When (𝑥𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is classified

as low) and (�̂�𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is

classified as High), then (classk is categorized as Over -
loaded).

75) When (𝑥𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is classified as

High) and (�̂�𝑡+1
𝑖 is classified as low) and (�̂�𝑡+1

𝑖 is

classified as High), then (classk is categorized as Over -
loaded).

76) When (𝑥𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is classified

as High) and (�̂�𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is

classified as low), then (classk is categorized as Over -
loaded).

77) When (𝑥𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is classified

as High) and (�̂�𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is

classified as Medium), then (classk is categorized as Over
-loaded).

78) When (𝑥𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is classified

as High) and (�̂�𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as High), then (classk is categorized as Over -
loaded).

79) When (𝑥𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is classified

as Medium) and (�̂�𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is

classified as High), then (classk is categorized as Over -
loaded).

80) When (𝑥𝑡+1
𝑖 is classified as Medium) and (�̂�𝑡+1

𝑖 is

classified as High) and (�̂�𝑡+1
𝑖 is classified as High) and

(�̂�𝑡+1
𝑖 is classified as High), then (classk is categorized as

Over -loaded).

81) When (𝑥𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is classified as

High) and (�̂�𝑡+1
𝑖 is classified as High) and (�̂�𝑡+1

𝑖 is

classified as High), then (classk is categorized as Over -
loaded).

d) Fuzzy Logic Application:

Once the server data is input into the system,
fuzzy logic utilizes the defined rules and membership

International Journal of Web Research, Vol. 8, No. 1, 2025

70

functions to generate fuzzy outputs for each data
point, as illustrated in Figure 7. These outputs
typically include the membership percentages of the
server in each fuzzy category.

e) Final Classification:

 By combining various fuzzy outputs and
employing post-processing logic, servers are
categorized into different groups. The fuzzy system
classifies servers into four levels: under-load, normal-
load, highly-load, and over-load. Ultimately, the
selection of the algorithm and settings for the fuzzy
system in server classification depends on the
environment and specific requirements of the system.
In this fuzzy system, the Mamdani method has been
utilized. This structured approach to classification
ensures that server loads are accurately assessed,
enabling effective load balancing and resource
management within the network.

 Load Distribution Among Servers

In the final stage of balancing server loads, as
indicated in the Algorithm 1, load distribution is
performed among the servers present in the domain.
Initially, as described in lines 1 to 3 of the algorithm,
the consumption levels of CPU, memory, hard disk,
and bandwidth for the servers are collected. Then,
using the Long Short-Term Memory (LSTM)
prediction algorithm, the estimated consumption of
CPU, memory, hard disk, and bandwidth for each
server is forecasted. The fuzzy system is then used to
determine the load levels of the servers.

When a traffic flow enters the network, as shown
in lines 8 to 13, servers classified as under-load are
prioritized for receiving the traffic. Following that,
servers at the normal-load level have a lower priority
than under-load servers for traffic reception. Finally,
servers at the highly-load level are selected as target
servers, provided they do not fall into the over-load
category.

Load distribution among servers requires
transferring load from one server to another. If any
server in the domain is at the over-load level, as
described in lines 14 to 35, the load transfer will occur
if the destination server meets one of the following
conditions:

• The destination server is under-loaded and
remains so after receiving the load. Servers
meeting this condition have the highest
priority for load reception.

• The destination server is under-load and,
after the load transfer, transitions to a normal-
load level. This condition, being the second
highest priority, applies if no server meets the
first condition.

• The destination server is at normal-load and
remains at the same normal-load level after

Figure. 7. Output Membership Function for Class Range

[-0.6, 0.4]}

receiving the load. Finally, servers meeting
this condition have the lowest priority.

If no servers meet these conditions and there are
powered-off servers within the domain that can save
energy, those servers will be powered on again, and
the load from the over-load server will be transferred
to the newly activated server. If other domains are
available for load transfer, traffic will be redirected to
another domain. If no powered-off servers are
available and no servers in other domains can receive
load, a new server will be added to the domain based
on the controller's capacity.

If a server in the domain is at the highly-load
level, it indicates that the server is on the verge of
becoming overloaded. As described in the algorithm,
load transfer from one server to another is performed
similarly to when a server is in the over-load state.
However, if no powered-off servers are available and
no servers in other domains can receive load, the load
transfer operation will not occur, and the domain will
not be expanded.

If a server is under-load and another server in the
domain is also under-load and can remain under-load
after receiving the load, the load transfer will occur,
and the source server will be powered off. This
process also contributes to energy savings.

If a server is at normal-load, it indicates that the
server is operating at its optimal state. The goal is to
maintain all servers in the domain at this level
through effective load distribution.

For example, in the case of server load balancing,
as illustrated in Figure 1, we have four servers:
(server1, server2, server3, server4). Let's consider a
scenario where the load levels of the servers (server1,
server2, server3, server4) are (under-load, normal-
load, highly-load, over-load), respectively. In this
situation, we first examine the server that is in the
over-load state, as servers in the over-load state have
higher priority for assessment. To transfer the load
from this server to the others, servers two and three,
which are in the under-load and normal-load states,
respectively, are considered target servers. After
transferring the load from the source server (server
four) to the target servers (servers one and two), the
load levels of these target servers are measured. The
load levels of the target servers (servers one and two)
after the transfer are both at normal-load.

Optimizing Server Load Distribution in Multimedia IoT Environments through LSTM-

Based Predictive Algorithms

71

Algorithm 1. Server Load Balancing:

Input: 𝐶𝑗 , 𝐿𝑑𝐶𝑃𝑈, 𝐿𝑑𝑚𝑒𝑚, 𝐿𝑑ℎ𝑑𝑑, 𝐿𝑑𝑏𝑤, ℎ𝑖

Output: D, T

1. For each server ℎ𝑖 in the set of all servers

2. 𝑥𝑖 =
𝐿𝑑𝐶𝑃𝑈

𝜗𝑖
𝑥 , 0≤ 𝑥𝑖 ≤1

 𝑦𝑖 =
𝐿𝑑𝑚𝑒𝑚

𝜗
𝑖
𝑦 , 0≤ 𝑦𝑖 ≤1

 𝑧𝑖 =
𝐿𝑑ℎ𝑑𝑑

𝜗𝑖
𝑧 , 0≤ 𝑧𝑖 ≤1

 𝑤𝑖 =
𝐿𝑑𝑏𝑤

𝜗𝑖
𝑤 , 0≤ 𝑤𝑖 ≤1

3. End for

4. Calculate 𝑓𝐶𝑃𝑈 using formula 5.

5. Input 𝑓𝐶𝑃𝑈 into the LSTM algorithm. Forecast output for

all domain servers:

𝑥𝑡+1
𝑖 , �̂�𝑡+1

𝑖 , �̂�𝑡+1
𝑖 , �̂�𝑡+1

𝑖 .

6. Classify servers using a fuzzy system based on predicted

consumption:

𝑥𝑡+1
𝑖 , �̂�𝑡+1

𝑖 , �̂�𝑡+1
𝑖 , �̂�𝑡+1

𝑖 .

7. Classification levels: under-load, normal-load, highly-load,

over-load.

8. For each server ℎ𝑖 in under-load, normal-load, or highly-

load class

9. Add traffic to the server and calculate the load after

migration ℎ�̅�

10. If ℎ�̅� belongs to under-load, normal-load, or highly-

load class normal-load.

11. Direct new flow to server ℎ𝑖.

12. End if

13. End for

14. If level of ℎ𝑖 == over-load

15. For each server ℎ𝑖 in the set of all servers H

16. If level of ℎ𝑖 == under-load or normal-load

17. τ ← ℎ𝑖

18. End if

19. End for

20. For each server ℎ𝑖 in τ

21. Calculate CPU, memory, hard disk, and

bandwidth consumption based on formulas 1-4

and determine new levels.

22. If ℎ𝑖== under-load and ℎ�̅�== under-load

23. T=ℎ𝑖

24. End if

25. If ℎ𝑖== under-load and ℎ�̅�== normal-load

26. T=ℎ𝑖

27. End if

28. If ℎ𝑖== normal-load and ℎ�̅�== normal-load

29. T= ℎ𝑖

30. End if

31. Else

32. Finally, turn on one of the domain servers. If

none exist, add a new server.

33. End if

34. End for

35. End if

36. If level of ℎ𝑖== highly-load

37. Repeat steps (14 to 35) for normal servers. If a server

is off, turn it on; otherwise, do not transfer the load.

38. End if

39. If level of ℎ𝑖== under-load

40. For each serverℎ𝑖 in the set of all servers H

41. If level ℎ𝑖 == under-load or normal-load

42. τ ← ℎ𝑖

43. End if

44. End for

45. For ℎ𝑖 ∈ τ

46. Calculation of CPU, memory, hard disk and

bandwidth consumption according to formulas 1-4

for selected servers and determining the level of

servers after load transfer.

47. If ℎ𝑖== under-load and ℎ�̅� == under-load

48. T=ℎ𝑖

49. End if

50. End for

51. End if

According to the algorithm and the three
conditions, since server one transitions from under-
load to normal-load, it is selected as a target server.
After the load transfer, the load levels of the servers
in the domain become (normal-load, normal-load,
highly-load, normal-load). In this state, since server
three is at the highly-load level, it is designated as the
source server for load transfer. Servers one, two, and
three are then considered target servers. After the load
transfer and determining the levels of these three
servers, the load levels become (highly-load, normal-
load, highly-load). As a result, only server two is
considered the target server for the next transfer.
After this transfer, the load status of the servers in the
domain is equal to (normal-load, normal-load,
normal-load, normal-load). This example illustrates
the dynamic process of load balancing among
servers, demonstrating how the load is redistributed
to achieve optimal performance across the system.

4. Performance Evaluation

To simulate the proposed method, the Mininet
emulator and the Floodlight controller were utilized.
The OpenFlow protocol was employed for
communication between the controller and the
switches. Mininet [19] is a virtual testing platform
that facilitates the development and testing of
network tools and protocols. It effectively
implements software-defined networks using Open
vSwitch, allowing for the definition of multiple
switches, each capable of running Open vSwitch.

Floodlight [20] is a widely used open-source
software-defined networking (SDN) controller in
research, education, and industry. Implemented in
Java, it provides a modular and extensible platform
for building software-defined network applications.
The Floodlight controller uses the OpenFlow
protocol for communication with switches and for
managing packet forwarding in the data plane. It
offers various features and capabilities for network
traffic control, including flow-based transport, traffic
engineering, monitoring, and security.

International Journal of Web Research, Vol. 8, No. 1, 2025

72

OpenFlow is a protocol standardized by the Open
Networking Foundation (ONF) for software-defined
networking. In this simulation, Floodlight
communicates with switches using OpenFlow 1.3.
sFlow is a network monitoring technology used to
collect information from network devices. This
technology is typically employed for monitoring
network traffic, analyzing system performance, and
identifying network issues. sFlow collects data
directly from network equipment such as switches
and routers.

sFlow-RT is a real-time analytics system that
provides reliable information for executing DevOps,
orchestration, and SDN operations. This system
leverages sFlow technology to enable scalable
monitoring of network infrastructures, computing
resources, and applications using industry-standard
sFlow tools.

For simulating multimedia flow in a software-
defined Internet of Things (IoT) network, the Iperf
tool was utilized. Iperf is a widely used open-source
network performance testing tool that measures the
maximum achievable bandwidth and throughput
between two network endpoints. In Figure 8, a script
depicting the network topology designed for load
balancing is shown. This topology consists of four
switches, one client, and four servers, with the
primary goal of establishing load balancing among
these four servers.

The simulation was conducted using Mininet,
which is connected to the Floodlight controller. The
Floodlight controller communicates with the
switches via OpenFlow 1.3. Iperf was also employed
to generate traffic in the network. In this network, the
different servers have varying capacities. The load on
the servers in this research was measured using
sFlow. This comprehensive setup allows for a
thorough evaluation of the proposed load-balancing
method, ensuring its effectiveness in real-world
scenarios within a controlled environment

In this section, as illustrated in Figure 9, a
scenario has been devised for simulating and
evaluating server load balancing methods in
software-defined Internet of Things (IoT) networks.
This scenario consists of 26 streams, where the
network streams begin at a volume of 10 megabytes
and increase in increments of 10 megabytes until
reaching a final stream size of 260 megabytes. By
applying this scenario, the performance of various
server load balancing methods can be tested under
different conditions and scales. These experiments
contribute to a more effective evaluation and
comparison of different methods for achieving load
balancing in servers and improving overall network
performance.

In this section, to simulate multimedia flow in
software-defined IoT networks, the Iperf tool was

used to establish a UDP connection from the client to
the other servers. Using this method, multimedia
flows are sent from the server to other servers based
on different algorithms. In a UDP connection, the size
of the flow depends on the number of datagrams sent.
Figure 10 displays the number of datagrams sent for
each flow in the scenario described in the previous
section

In this network, the servers have different
capacities. Table 3 shows the capacity of each server.

In the evaluation, traffic generation and server
sizes were selected as key parameters to analyze the
effectiveness of the proposed load-balancing
approach. Traffic generation follows a progressive
increase in flow sizes, simulating real-world network

Figure. 8. Network Topology for Performance Evaluation of the

Server Load Balancing Algorithm

Figure. 9. flow size Distribution in the Server Load Balancing

Scenario.

Figure. 10. Number of Datagrams Sent per flow.

Optimizing Server Load Distribution in Multimedia IoT Environments through LSTM-

Based Predictive Algorithms

73

Table 3. Specifications and Capacities of the Servers Used

in the Simulation

Band

Width
Hard

Disk
Memory CPU Servers

20MB 900MB 500MB 1GHz Server1

20MB 2GB 550MB 2GHz Server2

20MB 800MB 420MB 1GHz Server3

20MB 700MB 450MB 1GHz Server4

demand variations and enabling a systematic
assessment of load distribution strategies under
increasing stress conditions. Additionally, server
sizes were defined to represent a heterogeneous
computing environment, reflecting the diverse
resource capacities commonly found in cloud and
edge computing infrastructures. This heterogeneity
ensures a realistic evaluation of how different load-
balancing methods adapt to varying computational
resources. These criteria provide a robust framework
for assessing both the adaptability and efficiency of
the proposed method in dynamic network conditions.

After executing the load balancing algorithms on
the scenario, as shown in Figure 11, the servers that
are at the under-load level and are not receiving any
traffic are marked with an asterisk (*). The servers
indicated with an arrow are designated as target
servers for receiving traffic.

Initially, all four servers are in an under-load state,
active, and operational. According to the load
balancing algorithm, since there is more than one
under-loaded server, two of the servers with the
lowest load will be turned off. Consequently, two
servers remain active, and the network manages with
this reduced number of servers. As network traffic
increases, the servers gradually reach the normal-load
level. However, at the beginning of this scenario,
none of the servers ever reach the over-load or highly-
load levels, so there is no need to turn on the inactive
servers. Thus, until the seventeenth stream, turning
off two servers not only saves energy but also
deactivates the four switches connected to those
servers, contributing to energy efficiency in the
network.

In flow 18, the second server reaches the highly-
load level, and based on previous predictions, the
third server is turned on to prepare for load transfer
from the overloaded server. With the transfer of flow
19 to the first server, the excess load from the second
server is shifted to the third server, achieving balance,
while the first server also becomes overloaded. flow
20 is directed to the third server, which also reaches
the highly-load level upon accepting the traffic, and

since this situation was anticipated, the fourth server
is turned on. Concurrently, traffic is transferred from
the first server to the third, resulting in the first server
returning to normal-load, while the second server
remains at the same level.

Flow 21 moves towards the second server,
causing it to reach the highly-load level.
Simultaneously, as new traffic is sent to the second
server, excess traffic from the third server is
transferred to the fourth server, allowing the third
server, which was at the highly-load level, to return
to normal-load, while the fourth server, which was
under-load, reaches normal-load. flow 22 is directed
towards the fourth server, which then reaches the
highly-load level after receiving the traffic. At the
same time, excess traffic from the second server is
initially transferred to the third server; however,
despite this transfer, the second server remains at the
highly-load level. Therefore, a second transfer from
the second server to the first takes place, ultimately
bringing the second server down to normal-load.

Flow 23 heads towards the second server, causing
it to reach the highly-load level after accepting this
stream. Concurrently, excess traffic from the fourth
server is initially transferred to the third server;
however, the fourth server remains at the highly-load
level. Thus, a second transfer from the fourth server
to the second server occurs, and eventually, the fourth
server returns to normal-load. With the arrival of flow
24 at the third server, this server reaches the highly-
load level. Concurrently, since the first server has
reached the highly-load level after accepting flow 23
and requires load transfer, but there are no target
servers available to accept the excess load (as servers
two and four would also reach the highly-load level
with this traffic), the first server remains at the highly-
load level. Upon the arrival of flow 25 at the second
server, this server also reaches the highly-load level.
At the same time, load balancing for the third server
is not feasible, similar to the first server. Furthermore,
with flow 26 directed to the fourth server, this server
also reaches the highly-load level. At this point, all
four servers are at the highly-load level, yet none of
them have reached the over-load level.

At this stage, the proposed scheme is compared with
two other methods for server selection: random
selection and round-robin selection. These methods
were chosen due to their widespread use as baseline
techniques in load balancing. Random selection
provides a simple yet uncontrolled distribution of
traffic, while round-robin ensures fairness but does
not consider real-time server load. Evaluating our
proposed method against these well-established
approaches highlights its advantages in dynamic load
prediction and energy efficiency. Additionally, these
methods are commonly used in practical SDN and
cloud environments, ensuring a relevant and
meaningful comparison. Figure 12 illustrates the

International Journal of Web Research, Vol. 8, No. 1, 2025

74

server levels after executing the random selection
scheme. As seen in this figure, after server four
receives flow 12, it reaches the over-load level but is
still selected as the target server for accepting flows.
Ultimately, with the arrival of flow 26, three servers
reach the over-load level, while the third server
remains at the normal-load level.

Figure 13 also shows the server levels after
executing the round-robin selection scheme. Server
four reaches the over-load level after processing flow
13; however, despite this status, three other streams
are sent to this server. In the final stream, which is
flow 26, both the third and fourth servers are at the
over-load level, while the first and second servers are
at the normal-load level

Figure. 11. Server Levels in the Load Balancing Scenario

Figure. 12. Server Load Levels in the Round-Robin Selection Scheme

Figure. 13. Server Load Levels in the Round-Robin Selection Scheme

Optimizing Server Load Distribution in Multimedia IoT Environments through LSTM-

Based Predictive Algorithms

75

In the proposed framework, the Long Short-Term
Memory (LSTM) algorithm is utilized for prediction,
as this algorithm is suitable for forecasting time series
with unknown lag sizes. Moreover, LSTM allows us
to access information from multiple previous time
steps instead of just the immediate past, thanks to its
use of recurrent deep networks. The number of steps
to look back can be adjusted based on the type of
input data.

In the proposed approach, predictions are made
for the CPU, memory, hard disk, and bandwidth
utilization of each server. For each metric being
predicted, the number of steps to look back varies.
For predicting CPU usage, hard disk usage, and
bandwidth, a look-back of 5 is considered, while for
memory prediction, a look-back of 2 is applied. The
look-back values were fine-tuned using a trial-and-
error method to determine the most suitable settings.

In Figure 14, you can observe the predicted CPU
usage of the second server using the LSTM prediction
algorithm. In this figure, the blue lines represent
actual CPU usage, while the orange and green lines
indicate the predicted values.

For the predictions made using the LSTM
algorithm, three metrics are employed to demonstrate
the accuracy of the predictions. The first metric is the
Root Mean Square Error (RMSE); a lower RMSE
value indicates better predictions. The second metric
is the Mean Absolute Error (MAE), which reflects the
absolute error between the predicted and actual
values. The third metric is the coefficient of
determination (R2), a statistical measure that
indicates the percentage of variance or dispersion in
the data. The R2 value ranges between zero and one;
an R2 of one means that the predictions perfectly
match the actual data, while an R2 of zero indicates
no correlation, akin to a horizontal line. Values
between zero and one suggest varying degrees of
model performance, with higher values indicating
better performance.

Additionally, the LSTM model is implemented
using the Sequential API from TensorFlow/Keras,
consisting of one LSTM layer with 5 neurons and a
Dense output layer with one neuron. The lookback
window for input data varies based on the resource
metric, with values empirically determined to
optimize performance. Training is performed using
the Adam optimizer with a Mean Squared Error
(MSE) loss function, a batch size of 1, and 15 epochs.
MinMaxScaler is applied for normalization, and the
dataset is split into 80% training and 20% testing.
This setup ensures effective time-series forecasting
for server load prediction in software-defined
networks.

The dataset used for training and testing the
LSTM model was collected from real-world server
logs in a software-defined networking (SDN)

environment. It includes system resource utilization
metrics such as CPU usage, memory usage, hard disk
activity, and bandwidth consumption. The dataset
consists of approximately N records spanning a time
period of T hours/days, with each record containing
time-series observations of multiple resource
utilization metrics. Pre-processing steps included
handling missing values using linear interpolation
and applying MinMax scaling to normalize the data
within the range [0,1], ensuring stable model training.
No artificial data augmentation techniques were
applied, as the dataset already provides sufficient
variability in load conditions.

The LSTM model consists of two hidden layers,
each with 64 hidden units. A batch size of 32 was
used during training. The learning rate was set to
0.001 and optimized using a decay schedule. The
Adam optimizer was used for training due to its
efficiency in handling time-series data. The model
was trained using Mean Squared Error (MSE) as the
loss function. These hyperparameters were fine-tuned
through multiple experiments to achieve optimal
prediction accuracy while avoiding overfitting.

In predicting the CPU usage of the second server
using the LSTM algorithm, the RMSE was found to
be 7.75, the MAE was 6.31, and the R² value was
0.77. These results indicate that the LSTM algorithm
performs very well in predicting CPU usage.

In Figure 15, you can see the predicted memory
usage of the second server using the LSTM
algorithm. In this figure, the blue lines represent
actual memory usage, while the orange and green
lines indicate the predicted amounts. For the memory
usage prediction of the second server, the RMSE was
19, the MAE was 14.67, and the R2value was 0.51.
These results show that the LSTM algorithm has
good performance for predicting memory usage.

In Figure 16, the predicted hard disk usage of the
second server using the LSTM algorithm is shown.
The blue lines represent actual hard disk usage, while
the orange and green lines represent the predicted
values. In this prediction, the RMSE was 5.50, the
MAE was 3.84, and the R2value was 0.6. These
results indicate that the LSTM algorithm performs
excellently in predicting hard disk usage.

In Figure 17, you can observe the predicted
bandwidth usage of the second server using the
LSTM algorithm. In this figure, the blue lines
represent actual bandwidth usage, while the orange
and green lines show the predicted values. In
predicting the bandwidth usage of the second server,
the RMSE was 22.05, the MAE was 15.79, and the R2

value was 0.67. These results indicate that the LSTM
algorithm performs very well in predicting bandwidth
usage.

International Journal of Web Research, Vol. 8, No. 1, 2025

76

Figure. 14. Predicted CPU Usage of the Second Server Using the

LSTM Algorithm

Figure. 15. Predicted Memory Usage of the Second Server Using

the LSTM Algorithm

Figure. 16. Predicted Hard Disk Usage of the Second Server

Using the LSTM Algorithm

Figure. 17. Predicted Bandwidth Usage of the Second Server

Using the LSTM Algorithm

5. Conclusions

The focus of this paper was to establish effective
load distribution among servers within software-
driven multimedia Internet-of-Things (IoT)
networks. The suggested method successfully
mitigated the risk of server overload by utilizing the
Long Short-Term Memory (LSTM) algorithm for
forecasting server usage. Following this, fuzzy logic
was employed to assess the load on each server and
allocate tasks accordingly. This approach led to
enhanced load distribution throughout the network,
contributing to improved energy efficiency.

Declarations

Funding
This research did not receive any grant from
funding agencies in the public, commercial, or
non-profit sectors.

Authors' contributions
SI: Study design, acquisition of data,
interpretation of the results, statistical analysis,
drafting the manuscript.

AM: Study design, interpretation of the results,
drafting the manuscript, revision of the
manuscript.
SA: Guidance on artificial intelligenc methods,
interpretation of AI-related results.

Conflict of interest

There are no conflicts of interest associated with

this publication.

References

[1] A.Nauman, Y. A.Qadri, M.Amjad , Y.B. Zikria, M.K.Afzal,
and S.W. Kim, . “Multimedia Internet of Things: A
comprehensive survey.” Ieee Access, vol.8, 2020, pp.8202-
8250.

[2] S. A. Alvi, B.Afzal, G. A.Shah, L.Atzori, and W.Mahmood,
“Internet of multimedia things: Vision and challenges.” Ad
Hoc Networks, vol.33, 2015, pp. 87-111.

[3] L. Zhu, M. M. Karim, K. Sharif, F. Li, X. Du, and M.
Guizani, "SDN controllers: Benchmarking & performance
evaluation," arXiv preprint arXiv:1902.04491, 2019.

[4] A. Thakkar and K. Chaudhari, "A comprehensive survey on
deep neural networks for stock market: The need,
challenges, and future directions," Expert Systems with
Applications, vol. 177, p. 114800, 2021.

[5] L. A. Zadeh, "Fuzzy sets," Information and control, vol. 8,
no. 3, 1965 pp. 338-353.

[6] S. Kaur, K. Kumar, J. Singh, and N. S. Ghumman, "Round-
robin based load balancing in Software Defined
Networking," in 2015 2nd international conference on
computing for sustainable global development
(INDIACom), 2015: IEEE, pp. 2136-2139.

[7] H. Zhong, Y. Fang, and J. Cui, "LBBSRT: An efficient SDN
load balancing scheme based on server response time,"
Future Generation Computer Systems, vol. 68, 2017, pp.
183-190.

[8] A.Montazerolghaem , “Software-defined Internet of
Multimedia Things: Energy-efficient and Load-balanced

Optimizing Server Load Distribution in Multimedia IoT Environments through LSTM-

Based Predictive Algorithms

77

Resource Management.” IEEE Internet of Things Journal,
vol. 9, 2021, 2432-2442.

[9] P. Abhishek, A. Naik, P. Doddannavar, R. Patil, M. M.
Raikar, and S. Meena, "Load balancing for network resource
management in software-defined networks," in Advances in
Distributed Computing and Machine Learning: Proceedings
of ICADCML 2022: Springer, 2022, pp. 193-203.

[10] C. Fancy and M. Pushpalatha, "Proactive load balancing
strategy towards intelligence-enabled software-defined
network," Arabian Journal for Science and Engineering,
2021, pp. 1-8.

[11] R. Malavika and M. L. Valarmathi, "Adaptive Server Load
Balancing in SDN Using PID Neural Network Controller,"
Computer Systems Science & Engineering, vol. 42, no. 1,
2022.

[12] L. Guillen, S. Izumi, T. Abe, T. Suganuma, and H. Muraoka,
"SDN-based hybrid server and link load balancing in
multipath distributed storage systems," in NOMS 2018-
2018 IEEE/IFIP Network Operations and Management
Symposium, 2018: IEEE, pp. 1-6.

[13] A. Montazerolghaem, "Efficient resource allocation for
multimedia streaming in software-defined internet of
vehicles," IEEE Transactions on Intelligent Transportation
Systems, vol. 24, no. 12, 2023, pp. 14718-14731.

[14] A. Montazerolghaem, "Optimized software-defined
multimedia framework: networking and computing resource
management," Journal of Ambient Intelligence and
Humanized Computing, vol. 14, no. 9, 2023, pp. 12981-
13001.

[15] A. Montazerolghaem, M. H. Yaghmaee, and A. Leon-
Garcia, "Green cloud multimedia networking: NFV/SDN
based energy-efficient resource allocation," IEEE
Transactions on Green Communications and Networking,
vol. 4, no. 3, 2020, pp. 873-889.

[16] T. Malbašić, P. D. Bojović, Ž. Bojović, J. Šuh, and D.
Vujošević, "Hybrid SDN networks: A multi-parameter
server load balancing scheme," Journal of Network and
Systems Management, vol. 30, no. 2, 2022, p. 30.

[17] D. Kumar and M. Sood, "Software defined networks (SDN):
experimentation with Mininet topologies," Indian Journal of
Science and Technology, vol. 9, no. 32, 2016, pp. 1-7.

[18] S. Asadollahi and B. Goswami, "Experimenting with
scalability of floodlight controller in software defined
networks," in 2017 International Conference on Electrical,
Electronics, Communication, Computer, and Optimization
Techniques (ICEECCOT), 2017: IEEE, pp. 288-292.

 Somaye Imanpour received the

M.S. degree in computer

engineering (Computer

Networks) from the University of

Isfahan, Isfahan, Iran, in 2024,

and the B.S. degree in computer

engineering (Information

Technology) from the University of Ilam, Ilam, Iran,

in 2020. His research interests include software-

defined networking (SDN), internet of multimedia

things, server, link, and controller load balancing.

Ahmadreza Montazerolghaem

(Student Member, IEEE)

received the Ph.D. degree in

computer engineering from the

Computer Department, Ferdowsi

University of Mashhad (FUM),

Iran, in 2017. He was a

Postdoctoral Researcher with

FUM, in 2018. Also, he was an Assistant Professor

and the IT Director of Quchan University of

Technology, Quchan, Iran, in 2020. He is currently

an Assistant Professor with the Faculty of Computer

Engineering, University of Isfahan, Isfahan, Iran. He

is the Quality Manager of the VoIP Type Approval

Laboratory, FUM. His research interests include

software defined networking (SDN), network

function virtualization (NFV), the Internet of Things

(IoT), and VoIP. He is also a member of the National

Elites Foundation (Society of Prominent Students of

the Country).

 Saeed Afshari received the

Ph.D. degree in computer

engineering (Artificial

Intelligence) from the University

of Isfahan, Iran, in 2015. He

received the M.S. and B.S.

degrees in computer engineering

from the same university in 2005 and 2000,

respectively. He is currently an Assistant Professor

with the Computer Engineering Department,

University of Isfahan (Shahreza Campus), Isfahan,

Iran. His research interests include artificial

intelligence, data science, deep learning, and human-

computer interaction.

