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1. Introduction 

Due to the rapid changes happening in today’s world, there is much emphasis on economic forecasts. 

Energy, as the driver of many economic efforts, has an important place in the economic progress of 

countries (Yuan, Zhao, and Umair, 2023). Currently, oil and gas account for approximately 60%, coal 

for 15%, and nuclear along with other sources for the remaining 25% of energy supply (Xiuzhen, Zheng, 

and Umair, 2022). Crude oil plays an important role in people’s daily life and industrial economic 

development and is considered an important strategic resource worldwide (Yuan, Zhao, and Umair, 

2023). The oil market is volatile due to its high volatility, and the crude oil market is different from 

other energy markets (Xiuzhen, Zheng, and Umair, 2022). Accurate forecasting of oil price has a central 

impact on the macro economy. The research of the World Bank shows that a 30% drop in oil price 
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Abstract 

The price of crude oil is exposed to various factors that cause random, sudden, and chaotic price fluctuations. 

Accurate forecasting of oil price has a central impact on the macro economy. The aim of this study is to predict 

the fluctuations of Organization of Petroleum Exporting Countries (OPEC) crude oil in the long-term using the 

chaos theory and the GMDH-GA algorithm. First, the daily oil price time series is decomposed by wavelet 

transformation. Then, chaos is tested using the embedding dimension, the Lyapunov power, and GA tests. 

Finally, time series noises are reduced by reconstructing the wavelet phase space. Three nonlinear models, 

namely the GMDH-GA model, the GMDH-GA wavelet model, and the GMDH-GA extended model, were 

used to forecast time series. Although the results showed that all three models were favorable in terms of the 

root mean square error (RMSE) and the correlation coefficient, the developed GMDH-GA neural network 

model with a low RMSE and high correlation coefficient was most effective in predicting the daily price of 

OPEC crude oil. 
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causes a 0.5% increase in GDP in importing countries. Since crude oil constitutes a significant 

percentage of the exports of some countries, a rapid change in the price of crude oil can have extensive 

financial consequences. The fall in the price of crude oil can slow down the economic activity of 

exporting countries (Ullah, Chishti, and Majeed, 2020). In recent years, the complexity and diversity of 

crude oil price have had an increasing impact on the economic development of countries. Therefore, 

accurate forecasting of crude oil price is useful for maintaining economic stability and avoiding risks 

(Zhao et al., 2015). Governments can prepare for unexpected jumps in oil price with the help of accurate 

forecasts. While supply and demand are the primary drivers of crude oil price, other variables such as 

stock market, economic activity, political situation, and other external factors also play a role (Wu et 

al., 2024). The accurate prediction of oil price is necessary for economic planning of exporting and 

importing countries. The correct estimation of the future price of crude oil is one of the most important 

research questions in the field of forecasting (Pan et al., 2023). Due to the nonlinear nature of the oil 

market, accurately predicting price in the oil market is not an easy task. Crude oil price forecast errors 

are mainly caused by the complexity of the supply and demand structure and the existence of many 

unexpected factors that disturb the market balance. Both exogenous factors, such as the state of the 

world economy, and endogenous components of the oil market, such as oil consumption, inventory, and 

supply, have an effective role in crude oil price (Liu and Chen, 2022). 

Due to the erratic nature of oil price and the impact of various environmental factors on the crude oil 

market, finding a suitable forecasting tool has always been a challenge. Forecasting crude oil future 

price is very challenging due to the three characteristics of crude oil price, namely lag, nonlinearity, and 

their interrelationship among different oil markets, most traditional crude oil price forecasting models 

cannot handle simultaneously (Cheng et al., 2019). Researchers have conducted extensive studies in 

this field and have proposed various models. However, most contemporary forecasting models consider 

oil price fluctuations stochastic processes and rely on statistical methodology (Wu et al., 2024). Most 

of the existing literature has relied on the autoregressive integrated moving average (ARIMA) and 

artificial neural network (ANN) for forecasting (Iqbal et al., 2020). Prediction based on past prices is 

difficult due to nonlinearity, uncertainty, and dynamics in these prices (Iram, Jabbar, and Bhatti, 2022). 

Crude oil price is often nonstationary time series, making it challenging to achieve acceptable 

forecasting accuracy using time series-based models. In addition, these methods depend on the 

assumptions of linear and normal distribution, which does not adequately reflect the specific 

characteristics of crude oil price series (Dong et al., 2024). 

In general, energy prices, like crude oil price, are affected by certain events such as seasonal changes, 

as well as uncertain events such as geopolitical events. Uncertain events cause prices to change 

randomly and make price prediction a difficult task. These random changes act as noise, which affects 

the definite changes in prices (Behradmehr and Ahrari, 2014). In recent years, the exploration of 

nonlinear time series has gained significant traction, especially in the use of the chaos theory to 

understand the properties of fuzzy systems. The chaos theory provides an alternative framework to 

explain seemingly random behavior in deterministic systems. Several nonlinear measures such as fractal 

dimension, the Lyapunov power, Poincaré sections, and entropies have been devised for time series 

analysis. Currently, the time series analysis of chaotic nonlinear systems using correlation dimensions 

and the largest Lyapunov exponent is increasingly used for system classification and modeling. This 

approach holds promise for examining crude oil price time series and facilitates the identification of 

underlying behavioral patterns. 

In this study, the behavior of Organization of Petroleum Exporting Countries (OPEC) oil price time 

series is analyzed using the chaos theory. The characteristics of this time series are extracted using 

wavelet transform, and the developed GMDH-GA model is used to predict the time series. The 
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procedure is as follows. First, the general time series is selected. The chaos test is performed on the 

wavelets, and the time series noises are reduced by determining the phase parameters. OPEC crude oil 

prices are nonlinear due to chaotic behavior in the time series. Therefore, the GMDH-GA algorithm is 

used to predict it. TISEAN software, which is suitable for analyzing nonlinear time series (Pan et al., 

2023), and MATLAB software are utilized to numerically solve the models. 

Our study is organized as follows. The second section describes a comprehensive literature review on 

oil prices and forecasting methods, and the third part explains the proposed research model. Following 

this, in section four, turbulence tests are conducted on daily OPEC crude oil price series to confirm the 

chaotic properties of the time series. Finally, section five includes a summary, conclusions, and 

suggestions for future research efforts. 

2. Literature review 

Research in the field of crude oil price forecasting can be divided into three main areas: 1) econometric 

methods, 2) machine-learning methods, and 3) integrated segmentation methods (J. L. Zhang, Zhang, 

and Zhang, 2015). Kaboudan (2001) used two genetic meta-heuristic algorithms, genetic algorithm 

(GA) and single-layer artificial neural network for short-term crude oil price forecasting. The 

predictions produced by these two calculation methods were compared and evaluated with a random 

prediction method. The results showed that GA had an advantage over random predictions, but ANN 

prediction was inferior (Kaboudan, 2001). Oil price changes are very complex and therefore 

unpredictable. One of the main challenges of econometric models is to predict such seemingly 

unpredictable economic series. Traditional linear mathematical models used for forecasting are not 

efficient, especially for complex series such as crude oil price. Moshiri and Foroutan (2004) modeled 

and forecasted daily oil price futures using the autoregressive integrated moving average and GARCH 

models. Then, they tested the chaos using embedding dimension tests, BDS, the Lyapunov power, and 

neural networks. Also, they set up a nonlinear and flexible ANN model for series forecasting. Chaos 

tests showed that the price of oil in futures follows a chaotic process, and the ANN model makes better 

predictions (Moshiri and Foroutan, 2004). Xie et al. (2006) introduced a support vector machine (SVM) 

method for crude oil price forecasting, which was better than ARIMA and back-propagation neural 

network (BPNN) models (Xie et al., 2006). 

Nguyen and Nabney (2008) presented a forecasting technique for energy prices on a daily basis. Their 

technique is a combination of wavelet transform and prediction models such as multilayer perceptron, 

linear regression, or GARCH. Their results showed that the prediction accuracy improved significantly 

when the wavelet transform was used (Nguyen and Nabney, 2008). Yu et al. (2008) proposed a neural 

network ensemble learning model based on empirical mode decomposition (EMD) for crude oil price 

forecasting. They used a three-layer feedforward neural network (FNN) model in modeling to increase 

the prediction accuracy. They combined the forecast results with an adaptive linear neural network 

(ALNN) to formulate an output set for the original crude oil price series. The found that the 

experimental results showed the attractiveness of the EMD-based neural network ensemble learning 

model (Yu, Wang, and Lai, 2008) . 

Kang et al. (2011) investigated the effect of structural changes in volatility on information transmission 

in two crude oil prices. They used the iterated cumulative sums of squares (ICSS) algorithm to evaluate 

the effect of these structural changes. Incorporating these changes into GARCH reduced the degree of 

volatility in the model, indicating that ignoring structural changes might distort the direction of the 

information flow and transmission of fluctuations between crude oil markets (Kang, Cheong, and Yoon, 

2011). Azadeh et al. (2012) presented a flexible algorithm based on artificial neural network and fuzzy 

regression (FR) to deal with optimal long-term oil price forecasting in uncertain and complex 
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environments. They showed that selected ANN models significantly outperformed FR models in terms 

of mean absolute percentage error (MAPE) (Azadeh et al., 2012). Guo, Li, and Zhang (2012) developed 

an improved oil price forecasting model that used SVM. The new model, called the GA-SVM prediction 

model, was based on GA optimization parameters. GA was used to optimize SVM parameter selection 

methods according to training data and improve the prediction accuracy of SVM. Their results showed 

that the prediction efficiency of GA-SVM was better than the traditional SVM (Guo, Li, and Zhang, 

2012). Behradmehr and Ahrari (2014) used wavelet transform as a tool to smooth and minimize the 

noise introduced in crude oil prices. They investigated the effect of wavelet smoothing on oil price 

forecasting while the GMDH neural network was used as a forecasting model. In addition, the 

generalized autoregressive conditional heteroskedasticity model was used to capture the time-varying 

variance of crude oil prices. Their results showed that the prediction performance was enhanced by 

more than 40% when the effect of noise was minimized, and the variance was regressed by the 

conditional heteroscedasticity model (Behradmehr and Ahrari, 2014) . 

Zhang et al. (2015) proposed a new hybrid method for crude oil price forecasting. They used the 

ensemble empirical mode decomposition (EEMD) method to analyze the international price of crude 

oil. Further, they developed least square support vector machine with particle swarm optimization 

(LSSVM–PSO) and the GARCH model to forecast the nonlinear and time-varying components of crude 

oil price. Their results showed that the proposed new hybrid method had a strong predictive capability 

for crude oil prices due to its excellent performance in adapting to random sample selection, data 

abundance, and structural failures in the samples. In addition, the comparison results showed that the 

new method was superior in prediction accuracy compared to the known methods for crude oil price 

forecasting (J. L. Zhang, Zhang, and Zhang, 2015). Cheng et al. (2015) proposed a new hybrid model 

of vector error correction and nonlinear autoregressive neural network (VEC–NAR) model. The results 

showed that the VEC–NAR model had superior forecasting accuracy compared to traditional models 

such as GARCH, VAR, VEC, and NAR in multi-stage short-term forecasting (Cheng et al., 2019). 

Ghazi Salah et al. (2019) investigated the robustness, efficiency, and accuracy of multiscale forecasting 

in crude oil markets. They explicitly defined an automatic hybrid ARMA wavelet model to detect the 

inherent nonlinear dynamics of crude oil returns with a hierarchical structure. Entropic estimation was 

used to calculate the optimal level of decomposition. The wavelet-based forecasting method takes into 

account the turbulent behavior of the oil series, while capturing drifts, spikes, and other nonstationary 

effects that common frequency-domain methods completely miss. These results opened a new horizon 

on the predictability of crude oil markets in unstable conditions (Uddin et al., 2019). 

Ghoddusi et al. (2019) reviewed the growing literature of energy or financial economics applications 

by machine learning (ML). Their review included applications in energy price forecasting such as crude 

oil, demand forecasting, risk management, business strategies, data processing, and macro energy trend 

analysis. Their analysis showed that SVM, ANN, and GA were among the most used (Ghoddusi, 

Creamer, and Rafizadeh, 2019) . 

Bekiros et al. (2020) investigated the potential of multi-scale forecasting in the crude oil market using 

multi-scale wavelet analysis on returns and volatility of crude oil indices. The analysis was based on an 

invariant discrete wavelet transform augmented by an entropy-based method to determine the optimal 

time scale decomposition under different market regimes. The experimental results showed that the 

five-stage wavelet forecast based on volatility was better than the random walk forecast compared to 

the wavelet forecast based on returns. Their results might have important implications for market 

efficiency and price predictability in crude oil markets (Bekiros et al., 2020). Yusheng Huang and Yong 

Deng (2021) introduced variable mode decomposition (VMD) to forecast crude oil prices. They used a 

rule based on improved signal energy (ISE) to select the VMD parameter. Finally, a prediction model 
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(VMD–LSTM–MW model) was built by combining VMD, long-term short-term memory (LSTM) 

network, and moving window strategy. The superiority of the VMD–LSTM–MW model was 

demonstrated by conducting monthly and daily crude oil price forecasting experiments (Huang and 

Deng, 2021) . 

Jiang et al. (2021) combined a group-decomposition approach, optimized by the seagull algorithm, with 

sentiment analysis to address this problem. An ensemble empirical mode decomposition (EEMD) 

method was employed to decompose crude oil futures data and reduce the effect of noise. A seagull 

optimization algorithm (SOA) was introduced to tune the meta-parameters of gated regression units 

(GRUs). Multiple linear regression (MLR) integrated the prediction results of each component. This 

approach performed significantly better than some other comparison models in predicting fluctuations 

in oil prices. Zhang et al. (2023) presented a new hybrid forecasting model for oil price forecasting 

based on recurrent neural networks using VMD, sample entropy (SE), and gated regression units. The 

proposed VMD–SE–GRU model obtained a root mean square error value of 0.6735, a mean absolute 

error of 0.4585, a mean absolute percent error of 0.8059, and a value of 0.9272. Therefore, the proposed 

hybrid VMD–SE–GRU framework had several advantages over previous models and produced highly 

accurate predictions with shorter execution time (Zhang et al., 2023). Dong et al. (2024), based on the 

chaotic nature of crude oil price series, proposed a model for crude oil price forecasting that included 

the VMD algorithm, the phase space reconstruction (PSR) technique, the convolutional neural network 

(CNN), and the bidirectional long- and short-term memory network (BiLSTM). Specifically, noises in 

the original data were removed using the VMD algorithm. In the next step, crude oil prices were 

reconstructed using the PSR technique. The reconstructed and removed phase space was then fed into 

the CNN–BiLSTM model for multi-stage predictions. The experimental results showed that the 

proposed model obtained the lowest MAPE and MSE (Dong et al., 2024) . 

Table 1 summarizes a number of past studies on the subject of crude oil forecasting according to the 

concepts and tools they used. 

Table 1 

Summary of past research in the field of crude oil price forecasting 

Year Author(s) 
Meta 

Heuristic 
Time series Statistics Chaos Reference 

2001 Kaboudan 
ANN and 

GA 
   

(Kaboudan, 

2001) 

2004 
Moshiri and 

Froutan 
ANN 

ARIM and 

GARCH 
 

Embedding 

dimension, 

BDS, and 

the 

Lyapunov 

exponent 

(Moshiri and 

Foroutan, 

2004) 

2006 Xie et al. 
SVM and 

BPNN 

ARIM and 

GARCH 
  

(Xie et al., 

2006) 

2008 
Nguyen and 

Nabney 
 GARCH  

Wavelet 

transform 

(Nguyen and 

Nabney, 

2008) 
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Year Author(s) 
Meta 

Heuristic 
Time series Statistics Chaos Reference 

2008 Yu et al. 

EMD, ANN, 

FNN, and 

ALNN 

   

(Yu, Wang, 

and Lai, 

2008) 

2011 Kang et al.  GARCH   

(Kang, 

Cheong, and 

Yoon, 2011) 

2012 Azadeh et al. ANN  
FR and 

ANOVA 
 

(Azadeh et 

al., 2012) 

2012 Guo and Zhang 
SVM and 

GA 
   

(Guo, Li, 

and Zhang, 

2012) 

2014 
Behradmehr 

and Ahrari 
GMDH  

Auto-

regressive 
 

(Behradmehr 

and Ahrari, 

2014) 

2015 Zhao et al. 
ANN, GA, 

and SVM 
CGARCH   

(Zhao et al., 

2015) 

2015 Zhang et al. PSO  LSSVM EEMD 

(J. L. Zhang, 

Zhang, and 

Zhang, 

2015) 

2019 Cheng et al. NAR GARCH 
VEC and 

VAR 
 

(Cheng et 

al., 2019) 

2019 
Ghazi Salah et 

al. 
 ARMA  

Hybrid 

wavelet 

(Uddin et al., 

2019) 

2020 Bekiros et al.    
Wavelet 

transform 

(Bekiros et 

al., 2020) 

2021 Yusheng Huang    
VMD and 

ISE 

(Huang and 

Deng, 2021) 

2022 Jiang et al. SOA  MLR EEMD 
(Jiang et al., 

2022) 

2023 Zhang et al.   

MAPE, 

MAE, and 

RMSE 

 
(S. Zhang et 

al., 2023) 

2024 Dong et al. 

PSR, CNN, 

and 

BILSTM 

 
MAPE and 

MSE 
VMD 

(Dong et al., 

2024) 
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Year Author(s) 
Meta 

Heuristic 
Time series Statistics Chaos Reference 

2024 This research GMDH–GA   

Wavelet 

transform, 

embedding 

dimension, 

BDS, and 

the 

Lyapunov 

exponent 

- 

The study of the published articles on crude oil price forecasting shows that the price of crude oil is 

nonlinear due to the chaotic behavior in the time series. Therefore, most studies have used metaheuristic 

algorithms to predict it. Some studies also paid attention to the chaotic nature of crude oil prices and 

used the tools of this branch of physics to eliminate noise. In the present study, the behavior of OPEC 

oil price time series is analyzed using the chaos theory, and the features of this time series are extracted 

using wavelet transformation. The developed GMDH–GA model is employed to predict time series . 

3. Methodology 

3.1. Proposed model 

The conceptual framework of the present study is depicted in Figure 1. 

3.2. Time series selection 

Given the paramount significance of time series data in ensuring the precision of current study’s 

outcomes, we utilized the maximum available dataset spanning a period of 15 years. Employing 

Rosenstein and Collins algorithms, we calculated the Lyapunov exponent to discern potential chaotic 

behaviors (Rosenstein, Collins, and De Luca, 1993). 

3.3. Wavelet transforms and noise reduction 

In the oil market, there are noisy behaviors that disrupt the study of the system. The noise of time series 

must be reduced to identify the correct behavior of the time series and the precise results of the chaotic 

tests. Noisy behavior is detected by a discrete wavelet transform and is removed from the time series. 

3.3.1. Wavelet transforms 

Some characteristics and features of time series cannot be observed on a time basis, so by transferring 

time series to another basis, these properties are observed and examined. There are several ways to 

achieve this goal. One of these methods is wavelet transformation (Misiti et al., 1996; Percival and 

Walden 2000). The continuous wavelet transform (CWT) of a function is defined by the sum of the 

multiplication of function in the scaled wavelet function and shifted in the whole time period. Therefore, 

Equation (1) can be written as follows: 

(1) 

𝐶(𝑠𝑐𝑎𝑙𝑒, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) = ∫ 𝑓(𝑡)
+∞

−∞
𝜓(𝑠𝑐𝑎𝑙𝑒, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)𝑑𝑡  

𝐶(𝑎, 𝑏) = ∫ 𝑓(𝑡)
1

√𝑎
𝜓

+∞

−∞
(

𝑡−𝑏

𝑎
) 𝑑𝑡  
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Figure 1 

The conceptual framework of research 

The result is the wavelet coefficients (C), which is a function of scale and position. The multiplication 

of each of these coefficients in the corresponding scaled and shifted wavelet determines its share in the 

main signal. The shift means the movement of the wavelet along the time axis, and scale means the 

amount of wavelet extension along the time axis. The large scale of the wavelet is equal to the low 

frequencies, and the small scale equals the high frequencies. Each function used as a wavelet must have 

an average of zero, have a non-zero norm, and be limited in time properly. These characteristics are 

presented in Equations (2)–(4), respectively. 

(2) ∫ 𝛹(𝑡)
+∞

−∞
𝑑𝑡 = 0  

(3) 0 < ∫ 𝛹2(𝑡)
+∞

−∞
𝑑𝑡 < ∞  

There are the largest value of LB and the smallest value of UB when the following is met:  

(4) ∀𝑡 ≤ 𝐿𝐵                  𝛹(𝑡) = 0  
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∀𝑡 ≥ 𝑈𝐵                  𝛹(𝑡) = 0  

The wavelet-based transmission signal can be returned to the time-based signal by Equation (5). 

(5) 𝑓(𝑡) =
1

𝐾𝛹
∬ 𝐶(𝑎, 𝑏)

1

√𝑎
𝛹 (

𝑡−𝑏

𝑎
) 

𝑑𝑎 𝑑𝑏

𝑎2   

Signals are usually discrete, so the discretization of the wavelet transform is inevitable. 

3.3.2. Phase space reconstruction 

In a nonlinear system, a single-variable time series can bring information about the whole multivariable 

system (Sivakumar, 2002). Therefore, in systems where all dynamic variables are not available, the 

dynamics of the system can be achieved by reconstructing the phase space of the system using the 

single-variable time series. The method used for this purpose is the Takens method (Takens, 2006). 

Takens’ theory states that if a time series is obtained from a given dynamic system, it is possible to 

reconstruct the phase space of this system with the help of the same time series by creating time delays 

as large as τ in m dimensions. In this definition, τ and m are called time delay and the embedding 

dimension, respectively. Selecting the amount of τ affects the structure of the attractor. If a very small 

τ is selected, the delay vectors will be highly interdependent so that all the points around the diameter 

axis will be in the phase space and will cause the loss of the characteristics of the attractor structure. 

Further, if the size τ is chosen too large, the time delay vectors become dynamically independent. In 

this case, the reconstructed phase space will be very complex, even if the actual attractor of the system 

is simple (Casdagli et al., 1991). In general, two methods of autocorrelation function (ACF) and average 

mutual information (AMI) are employed to estimate time delay (Fraser and Swinney, 1986). In strange 

attractors, if they are surrounded by the right dimension, the paths of the state do not intersect. The most 

common method of determining the optimal embedding dimension for chaotic time series is the nearest-

neighbor counting method. 

3.4. Chaos test  

3.4.1. The Lyapunov exponent test 

The Lyapunov exponent provides a criterion for the level to which two points converge in the phase 

space and presents information about the system’s dependence on initial conditions over time (Ott, 

2002). In a state of a stable fixed point, all Lyapunov’s powers are negative. If the system is sensitive 

to the initial conditions, it will have at least one positive the Lyapunov exponent. One of the important 

features of chaotic systems is that the system is sensitive to changes in initial conditions. A Lyapunov 

exponent is a tool for studying this feature of dynamic systems. When a small change occurs in the 

initial state of the chaotic system, the effect of this change will become clearer over time. It creates a 

time path that is completely different from the previous time path. The Lyapunov exponents are the 

average convergence or divergence rate of adjacent paths in the phase space. Numerous algorithms have 

been proposed to calculate the Lyapunov exponent. In this study, Rosenstein and Collins algorithm was 

employed to calculate the Lyapunov exponent (Gencay and Dechert, 1992). In this algorithm, first, a 

∆n point of the time series in the phase space and all its neighbors with a distance less than ε is selected. 

Then, the average distances of all the larger neighbors, greater than the movement path of the reference 

point, are calculated as a function of the relative time according to Equation (6).  

(6) 𝜆 = 𝐿𝑖𝑚𝑁→∞ ∑ 𝑙𝑛 (
1

|𝑣(𝑠𝑛0
)|

∑ |𝑠𝑛0+∆𝑛 − 𝑠𝑛+∆𝑛|𝑠𝑛∈𝑣(𝑠𝑛0
) )𝑁

𝑛0=1   
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where Sn0 expresses reference points, V(Sn0) is the neighborhood of Sn0 with a diameter of ε, and Sn0+ ∆n 

denotes time covered by the delay vector Sn0. S(∆n) is calculated for both values of minimum embedding 

dimension (M) and optimal distance (ε). If function S(∆n) shows a strong linear increase for ∆n intervals, 

its slope at each stage estimates the largest Lyapunov exponent (λ). 

3.4.2. Fractal dimension 

Chaotic dynamic systems show their dynamism in dependence on initial conditions. Paths are spaced 

apart exponentially over time. This behavior of the chaotic dynamic systems is consistent with the 

geometry of the system attract. Considering a small part of the attractor the initial condition, we know 

that after a while the images will fill the whole attractor. In fact, despite the distance between the paths 

and the instability of the system in a small part of the attractor, eventually, the paths are absorbed by 

the attractor, and they are spaced apart in the range of attraction. Fractals do not have the correct 

dimension like other Euclidean geometric shapes, and the concept of fractional dimension is used to 

describe them. Therefore, the concept of dimensions can be expanded, and the distribution of the set of 

points in the phase space can be examined. Box counting dimension, information dimension, correlation 

dimension, and other methods have been defined for this purpose (Panigrahy et al., 2019). Finally, the 

chaotic time series is studied by a hybrid neural network with a genetic algorithm. 

3.5. Definition parameters, indices, and variables of model 

Based on the chaos theory and related tests, the variables and parameters used in the current research 

are described in Table 2. 

Table 2 

The variables and parameters of the model 

Variable Description Range 

τ Time delay By ACF or AMI 

FNN False nearest neighbors  

M Embedding dimension Number of false neighbors equal to zero 

ACF Autocorrelation function Zero or a threshold value of 1/e 

AMI Average mutual information  

𝝀I Lyapunov exponent i=1, m 

3.6. GMDH–GA neural network 

In this framework, an evolutionary design approach is adopted to optimize the structure of the neural 

network. Specifically, the genetic algorithm is employed for this purpose (Ünal and Başçiftçi, 2022). In 

the genetic algorithm, solutions to the problem are represented by a list of parameters referred to as 

chromosomes or genomes. These chromosomes typically consist of a simple set of data [36]. In the 

GMDH–GA neural network, each chromosome signifies the structure of a GMDH neural network and 

comprises a symbolic string of letters or numbers, with each symbol representing an input variable of 

the network. The length of each chromosome is 2K + 1, where K denotes the number of layers in the 

neural network. 
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4. Results 

This study first performed chaos tests on the OPEC crude oil daily price series and presented the 

nonlinear model of the neural network by confirming the chaotic behavior of the time series to predict 

this time series. 

4.1. Data set  

4.1.1. Time series selection 

This work uses weekly data on OPEC oil price. The data belong to a period of time from the beginning 

of January 2003 to the end of August 2017 and are available on www.opec.org, www.eia.gov, and 

www.quandl.com websites (Jabalameli, Ghorbani, and Ahmadian, 2020; Bekheet, 2020). 

4.1.2. Wavelet transformation and noise reduction 

The time series was decomposed by the Daubechies mother wavelet to five levels, and the results are 

shown in Figure 2. 

 

Figure 2 

The transformation of the time series to discrete wavelet at five levels 

According to Figure 2, the main time series is decomposed into six time series due to wavelet 

transformation: five high-frequency time series and one low-frequency time series. The high-frequency 

time series have drastic and rapid changes and are the main ones called time-series details. The low-

frequency time series indicates slow and soft changes and is approximate to the original time series. 

http://www.opec.org/
http://www.eia.gov/
http://www.quandl.com/
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The histogram diagrams of the time series data are plotted and compared in Figure 3 to further identify 

and investigate their distribution. 

 

Figure 3 

The histogram of the detail and approximate time series 

Figure 3 demonstrates that the rapid changes in the main time series have a normal distribution and can 

be studied by statistical methods. However, the slow time series, which is an approximation of the 

original series, does not have a specific distribution, and its behavior is examined by chaotic theory 

tools. 

4.2. Chaos tests 

4.2.1. Determining the embedding phase space 

Exploring the chaotic dynamics of the time series necessitates defining the embedding phase space, 

which involves selecting a time delay and an embedding dimension. This choice is crucial for accurately 

capturing the underlying dynamics of the time series. 

Step 1) Determining the time delay of the time series: The determination of the embedding 

parameters, including the time delay and embedding dimension, can be achieved through methods such 

as the auto correlation function (ACF) or average mutual information (AMI). In the autocorrelation 

function method, the appropriate delay time is identified as the point where the function reaches zero 

or a threshold value of 1/e. Figure 4a illustrates that the time series exhibits strong autocorrelation and 

fails to reach zero or the threshold value within 150 time delays. Alternatively, the average mutual 

information method can be employed. Figure 4b presents the AMI values plotted for various delays. 

Point 34, identified as the first local minimum, is selected as the optimal time delay value for the time 

series. 
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Figure 4 

Autocorrelation function diagram and average mutual information  

Step 2) Determining the embedding dimension: The false nearest neighbor algorithm is also used to 

obtain the embedding dimension, and Figure 5 shows the results of this method. The first point where 

the graph reaches zero is three, and this point is the size of the embedding dimension. 

 

Figure 5 

The diagram of the false nearest neighbor algorithm 

The time series is displayed in Figure 6 to understand the degree of dependence on the initial conditions. 

The time series is drawn, taking into account a time delay (τ) of 34 and an embedding dimension (m) 

of 3. It is obvious that points in the form of lines, called paths, never intersect, and in parts of space, 

they are far apart and sometimes close together. This behavior indicates that the system is sensitive to 

the initial conditions. 

 

Figure 6 

Time series display in the state space 
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The Lyapunov exponent 

The Lyapunov exponent, one of the tests of investigating time series chaos, was used to examine the 

system more closely and demonstrate sensitivity to the initial conditions of the system. Figure 7 

delineates the results of this test, and its slope is equal to the Lyapunov exponent.  

 

Figure 7 

The Lyapunov exponent estimation on time series in the embedding space dimensions 

Due to the positive slope, this system is sensitive to the initial conditions, one of the important features 

of chaotic systems. Given that the embedding phase space in this study equals three, we will have a 

Lyapunov exponent in each dimension. The Lyapunov exponent was calculated utilizing TISEAN 

software version 38. For a more accurate estimate, the value of the Lyapunov exponent can be obtained 

for several different initial points (K), as listed in Table 3. 

Table 3 

The Lyapunov exponents in line with the embedding space dimensions 

𝝀𝟑 𝝀𝟐 𝝀𝟏 After wavelet 

0.010 0.170 0.394 K = 40 

0.029 0.163 0.352 K = 50 

–0.013 0.175 0.327 K = 100 

–0.006 0.156 0.320 K = 160 

According to Table 3, the Lyapunov exponent is positive in two dimensions. In one dimension, the 

Lyapunov exponent is sometimes positive and sometimes negative by changing the value of K. 

However, in the two other dimensions, this value is always positive for different values of K: 𝜆1 =

0.35 ± 0.03 and 𝜆2 = 0.160 ± 0.01. The Lyapunov exponent concept on the time series diagram in 

the embedding space dimensions is also shown in Figure 8. 

4.2.2 Correlation dimension test 

The correlation dimension is used to examine the dimensions of the time series in the phase space. The 

total correlation diagram for different dimensions is obtained using the TISEAN software.  
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Figure 8 

The Lyapunov exponent concept on the time series diagram in the embedding space dimensions 

4.3. Neural network models 

Three different models were used in the current study to predict the price of OPEC crude oil. According 

to the results, the efficiency of the models was examined, and the best model was finally selected. 

4.3.1. GMDH–GA neural network model 

The input to the neural network was the time series of OPEC oil price with a time delay of 34 and a 

dimension of 3. In this model, 70% of the data were considered for learning and 30% for network 

testing. In the internal structure of the network, the data selected for learning were divided into two 

categories: The first category was used to obtain the model coefficients, and the second category of data 

was employed to fit the model with the least square error (LSE) criterion. This approach strengthens 

the model’s coefficients. The model was repeated based on different divisions to optimally divide the 

learning data, and the optimal division of the learning data was finally reported to be 50%. 

There are three selection methods in the structure of the genetic algorithm for parent selection: the 

roulette wheel, random, and competitive. This model randomly selected one of these three methods in 

the neural network structure. The root mean square error (RMSE) of the first model with three layers 

was equal to 3.8333, and its correlation coefficient equaled 0.99552. 

4.3.2. GMDH–GA wavelet neural network model 

In this model, the inputs to the neural network were decomposed into five levels with wavelet 

transformations before entering the network. Then, the six obtained time series, each with a time delay 

of 34 and a dimension of 3, entered the neural network. Thus, there were 18 inputs to the neural network. 

The general structure of the GMDH–GA wavelet neural network model is shown in Figure 9. 

The RMSE of the second model with two layers equaled 3.2864, and its correlation coefficient was 

equal to 0.99564. 
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Figure 9 

The structure of the GMDH–GA wavelet neural network  

4.3.3. Developed GMDH wavelet neural network model 

In this model, the time series was decomposed into five levels before entering the neural network. The 

optimal time delay for each of the time series levels was obtained by means of average mutual 

information and optimal dimension through the algorithm of the false nearest neighbor. The time series 

phase was specified by the time delay and dimension values. As an example, the graph of the first time 

series state with τ = 2 and m = 3 is plotted in Figure 10a, and the second time series state with τ = 1 and 

m = 4 is drawn in Figure 10b. 

a)                  b) 

 

Figure 10 

Time series phase diagram in the first and second states 

Figures show that the state-space diagram of the first time series has noise, but that of the second time 

series has no noise. Data from time series with noise are removed from the calculations, and time series 

without noise enter the neural network with their time delay and dimension. The results of the time 

series are present in Table 4. 

The RMSE of the third model with 3 layers is equal to 2.67333, and the correlation coefficient of the 

model equals 0.99733. 
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Table 4 

The chaos characteristics of time series 

Time 

series 
Time delay 

Optimal 

dimension 

Behavior in phase 

space 
Frequency type Result 

1 2 3 Noisy Slow and soft Series removed 

2 1 4 Noiseless Fast Series entered  

3 3 4 Noiseless Fast Series entered 

4 6 4 Noiseless Fast Series entered 

5 11 4 Noiseless Fast Series entered 

Finally, the overall results of the three models are presented in Table 5. The result is an optimal value 

of 30 repetitions for each model per specific layer number. 

Table 5 

The overall results of the three crude oil price forecast models by number of layers 

 Number of layers RMSE Correlation coefficient 

First model 

1 3.9943 0.99609 

2 4.1488 0.9946 

3 3.8333 0.99552 

4 4.2599 0.99566 

Second model 

1 3.3565 0.99598 

2 3.2864 0.99564 

3 3.6725 0.99678 

4 3.4225 0.99718 

Third model 

1 3.1886 0.9957 

2 3.9838 0.99534 

3 2.6733 0.99733 

4 2.928 0.99726 

Comparing the results of the models by the number of layers listed in Table 5 shows that all three 

models are suitable for predicting the price of OPEC crude oil due to the high correlation coefficient 

and low forecast error. However, the third model with a number of layers equal to three is more 

appropriate than the two other models based on the smaller root mean square error. 

5. Discussion and policy implications 

In today’s world, there is much emphasis on economic forecasts. Crude oil plays an important role in 

the industrial economic development of countries and is considered an important strategic resource 

around the world. The accurate forecasting of crude oil price has a central impact on the 

macroeconomics and is necessary for the economic planning of exporting and importing countries. 

Moreover, prediction based on past prices is difficult due to nonlinearity, uncertainty, and dynamics in 

these prices. Crude oil prices are often nonstationary time series, making it challenging to achieve 
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acceptable forecasting accuracy using time series-based models. Nondeterministic events cause prices 

to change randomly and affect deterministic price changes like noise. As a result, crude oil price has 

nonlinear and chaotic time series. Several nonlinear measures such as the fractal dimension, the 

Lyapunov power, Poincaré sections, and entropies have been devised for analyzing time series.  

This study analyzed the behavior of OPEC oil price time series from 2003 to 2017 using the chaos 

theory. The features of this time series were extracted using the wavelet transform, and five wavelets 

plus one main wavelet were studied. The graphs demonstrated that the rapid changes in the main time 

series had a normal distribution and could be investigated using statistical methods. Nevertheless, the 

slow time series, an approximation of the main series, did not have a special distribution, and its 

behavior should be investigated with the tools of the chaos theory. TISEAN software, which is suitable 

for analyzing nonlinear time series, and MATLAB software were utilized to numerically solve the 

models. 

Exploring the chaotic dynamics of the time series required the definition of the embedded phase space, 

including the choice of the time delay and the embedding dimension. The primary tool for determining 

the time delay parameter is the autocorrelation function method. The time delay in this method is the 

point where the function reaches zero or the threshold value of 1/e. Nonetheless, the results showed that 

the time series had a strong autocorrelation and did not reach zero or the threshold value even in 150 

time lags. As a result, it was not possible to determine the time delay parameter through the method. 

Consequently, the second method, average mutual information, should be used. The AMI values plotted 

for different delays showed that the time delay was equal to 34: the first local minimum detected) (m = 

3). The embedding dimension was also calculated at three through the wrong nearest neighbor algorithm 

(τ = 34)). 

The graphs were drawn a with time delay parameter of 34 and an embedding dimension of 3 to 

understand the dependence of the time series on the initial conditions. The points in the form of lines, 

called paths, never intersected and were far from each other and sometimes close in some parts of the 

space. This behavior showed that the system was sensitive to the initial conditions. To examine the time 

series more precisely and to show its sensitivity to the initial conditions, we employed the Lyapunov 

curve, which is one of the tests for investigating the chaos of time series. Because of the positive slope, 

the time series was sensitive to the initial conditions, which is one of the important characteristics of 

chaotic systems. Considering that the embedded phase space in this research was equal to three, we 

would actually have a Lyapunov exponent in each dimension. The Lyapunov exponent was positive in 

two dimensions: λ1= 0.35 ± 0.03 and λ2 = 0.16 ± 0.01. However, it was sometimes positive and 

sometimes negative in the other dimension. This was due to the presence of noise behavior in the 

original time series, disturbing the identification of the system behavior.  

The time series must be de-noised to correctly identify the behavior of the time series and the accurate 

results of the chaos tests. There are also noisy behaviors in the global oil market, which disrupts the 

study of systems. In this research, the noise behavior was detected by the wavelet transform and was 

removed from the time series. In the following, the correlation dimension was used to examine the 

dimensions of the time series in the phase space. The slope of the graph was 0.88 and equaled the 

correlation dimension. The tests performed to identify the behavior of the OPEC crude oil price time 

series showed that it had a chaotic behavior. Since chaos occurs in nonlinear systems, OPEC crude oil 

price behaved nonlinearly. 

This study employed three neural network methods to predict the time series of OPEC crude oil price. 

The first model was GMDH–GA neural network. The inputs to this network were the time series 

resulting from the wavelet transform with one level, reduced by the wavelet transform. This time series 
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was entered into the neural network with a time delay of 34, and the optimal structure of the neural 

network with 3 layers was obtained. The root mean square error prediction of this model was 3.8333, 

its correlation coefficient equaled 0.99552. The second model was GMDH–GA. In this model, the 

neural network inputs were the time series resulting from wavelet decomposition with five levels. The 

details related to level one as noise were removed from the input data. The resulting five time series, 

which included different frequencies, were entered into the neural network with a time delay of 34. The 

RMSE of this model was 3.2864, and its correlation coefficient equaled 0.99564. The third model was 

a GMDH–GA neural network. In this model, the inputs of the neural network were time series resulting 

from wavelet decomposition with five levels. The details related to level one as noise were removed 

from the input data, and three time series were entered into the neural network, each with a different 

time delay. The optimal model was obtained with three layers. The root mean square error of this model 

was 2.6733, and its correlation coefficient equaled 0.99733. 

6. Conclusions 

This study developed a hybrid model of chaotic concept and GMDH–GA neural network for more 

accurate prediction of crude oil price. The time series were de-noised using wavelet transform. The 

chaotic parameters of the time series were identified, and various tests were performed on the system. 

The tests performed to identify the behavior of the OPEC crude oil price time series showed that they 

had a chaotic behavior. Since chaos occurs in nonlinear systems, OPEC crude oil price behaves 

nonlinearly. Therefore, nonlinear prediction methods should be used to predict it. In this research, three 

neural network methods were utilized to predict the time series of OPEC crude oil price. All the three 

models were favorable in terms of the correlation coefficient, but the root mean square error of the third 

model was lower; the correlation coefficient of this model was also higher than that of the two other 

models. Considering the chaos of the OPEC crude oil price time series, we suggested removing the 

noise by the wavelet transformation. Chaotic time series indicate nonlinearity, so nonlinear models, 

especially other neural networks, should be employed to predict OPEC crude oil price. 

Nomenclature 

ANN Artificial neural network  

BPNN Back-propagation neural network 

EEMD Ensemble empirical mode decomposition 

GMDH–GA Group method of data handling-genetic algorithm 

MAPE  Mean absolute percentage error 

OPEC Organization of Petroleum Exporting Countries 

RMSE Root mean square error 

SVM Support vector machine 

VEC-NAR Vector error correction and nonlinear auto regressive 

VMD Variable mode decomposition 
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