

 http://dx.doi.org/10.22133/ijwr.2024.482725.1241
.A. Taghinezhad-Niar, S. Pashazadeh,"State-Space Analysis and Complexity Assessment of Puzzle Games Using Colored Petri Nets", International

Journal of Web Research, vol.7, no.4,pp.13-27, 2024, doi: http://dx.doi.org/ 10.22133/ijwr.2024.482725.1241.

*Coressponding Author
Article History: Received: 9 June 2024; Revised: 3 September 2024; Accepted: 15 September 2024.

Copyright © 2024 University of Science and Culture. Published by University of Science and Culture. This work is licensed under a Creative Commons

Attribution-Noncommercial 4.0 International license(https://creativecommons.org/licenses/by-nc/4.0/). Noncommercial uses of the work are permitted,

provided the original work is properly cited.

State-Space Analysis and Complexity

Assessment of Puzzle Games Using Colored

Petri Nets

Ahmad Taghinezhad-Niar*, Saeid Pashazadeh

Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran;

a.taghinezhad@tabrizu.ac.ir, pashazadeh@tabrizu.ac.ir

A B S T R A C T

The verification of complex systems has traditionally relied on semi-automatic theorem-proving methods.

However, model checking represents a paradigm shift by enabling automated, exhaustive verification of

behavioral properties through systematic state exploration. Among advanced formal verification tools, Colored

Petri Net (CPN) stands out for its integration of the ML programming language, facilitating robust model

checking and system validation. Nevertheless, the application of CPN to complex systems is often constrained

by the state-space explosion problem, which presents a significant challenge in contemporary research. While

state-space analysis offers powerful capabilities for validation and scenario extraction, its potential remains

largely untapped due to computational complexity constraints. This limitation is particularly pronounced in

concurrent systems with multiple interacting variables, exemplified by game systems where intricate rule sets,

deadlock conditions, and termination scenarios demand sophisticated modeling approaches. This paper

presents a novel methodological framework for modeling and analyzing such game riddles, introducing methods

to mitigate the state-space explosion problem. We demonstrate the efficacy of our approach through a

comprehensive case study of the Merchant Ship puzzle game, though the methodology generalizes across

various game typologies. By synthesizing model-checking techniques with ML-based algorithmic

implementations, we develop an optimized search strategy for traversing the state space graph, enabling the

derivation of quantitative complexity metrics. These metrics encompass critical indicators such as the success-

to-total scenario ratio and the minimal trajectory length for both successful and unsuccessful game completions.

Our research contributes to both the theoretical understanding of game complexity analysis and practical

applications in game design through formal methods.

Keywords— State-Space Analysis, Model-Checking, Colored Petri Net, Riddle Game.

1. Introduction

Designing distributed and concurrent systems
require higher complexity, which raises the
possibility of technical errors. In concurrent and
sophisticated systems, a chain of events may occur
that leads to system failure, which may be overlooked
during the design phase. A lot of events occur during
play in computer games, making it difficult for a
human creator to examine all scenarios and riddles.
Formal modeling can automatically calculate all of a
system's behaviors. Most formal models can produce
a state-space graph of the modeled system, which
provides valuable information for studying and
demonstrating the system's behavior. Because the
state-space network can have a large number of
nodes, each of which represents a state of the system

obtained from various places, extracting features’
information from these states is difficult. To address
these issues, formal approaches are extensively
employed in the design process to describe a system's
function and confirm its behavioral features.

CPN is one of the well-known formal methods
that is used to model and verify the behavioral
characteristics of distributed and concurrent systems.
The state-space graph of the colored Petri net model
of a system is generated automatically using CPN
tools. Designing a model that leads to a rational state
space is a challenging problem in CPN that could lead
to state-space explosion [1, 2, 3]. As a result, a
thorough analysis of the system cannot begin until all
state space of a model has been determined.
However, many works [4, 5, 6] do not consider

http://dx.doi.org/10.22133/ijwr.2024.482725.1241

14

International Journal of Web Research, Vol. 7, No. 4, 2024

14

model checking, and their models suffer from state-
space explosion [7].

Game modeling can offer different advantages.
For example, a riddle of the game can be studied by
changing the initial markings of the model. The
complexity of a game riddle can be found by model-
checking its state space. Therefore, a game developer
company can utilize the model to sort its game riddles
based on their complexity. Riddles can also be
examined to avoid deadlocks.

Even studies that utilized state-space analysis of
CPN only consider the basic features like having no
deadlock, however, a state-space graph can give us a
lot of information about a model. Hence, in this paper,
we consider a game riddle as a case of study and
formally model and obtain advanced information like
the complexity of a game riddle (explicit scenarios of
a game riddle), the shortest path to success and failure
of a riddle proposing an advanced search algorithm
inspired by breadth-first search (BFS) over the state-
space graph of the game model. By this means, a new
metric is defined for evaluating the complexity of a
game riddle, and a search algorithm of the state-space
graph is proposed for evaluation and proving the
value of this metric. Moreover, we propose two
strategies in this study to avoid a state-space
explosion. The proposed methods can be extended to
other domains, such as web behavior modeling,
ensuring security, and improving the reliability of
concurrent systems. This work contributes to
advancing the analysis and verification of complex
systems in various applications, including web and
IoT environments.

To the best of our knowledge, this is the first study
that covers issues like model checking for extracting
distinct features of a riddle game while also
discussing strategies to avoid state-space explosion.
Contributions of this paper are as follows:

• Modeling and analysis of a puzzle game as a
case study for verification and validation of
game riddles by CPN.

• Two novel approaches to control the state-
space explosion of the model. Two new
metrics for representing the complexity of a
game riddle and algorithms for evaluation of
these metrics

• A function to find success and failure
scenarios of the game riddle for directing and
scoring gamer’s action

The remainder of the paper is structured as
follows: Section 2 includes a survey of the literature
in which formal methods and CPN were used to
model and analyze analogous systems. Section 3
contains the problem definition and presents the
fundamental concepts of the proposed case study.
Section 4 delves into the specifics of the proposed

game model. Section 5 employs the model-checking
technique to validate the anticipated attributes of the
modeled game and analyze its riddle by exploring the
state-space graph. Methods for reducing the state-
space explosion are also introduced. Section 6
concludes with a brief conclusion to this study.

2. Related Work

Colored Petri Nets (CPN) are highly effective for
modeling and evaluating systems. They have been
crucial in developing discrete-system models over the
past 40 years. Designing and verifying parallel
systems is more complex than successive systems, as
discussed in [8]. They can be modeling in complex,
concurrent or distributed systems such as scheduling
in algorithms in computing environments [9,10] and
cloud computing [11, 12, 13] or designing fault-
tolerant frameworks software defined networks [14,
15].

CPN-tools is a sophisticated tool for modeling
with CPN. Initially released in 1989, it included
network editing and simulation features. The
simulator, launched in 2000, faced performance
challenges with larger models. Recent updates have
improved the interface and simulation engine,
enhancing efficiency for large state-space models
[16, 17].

Zhao et al. [18] investigated a practical
scheduling problem arising from wire rod and bar
rolling processes in steel production systems using
CPN. Their challenge involved optimizing serial
batch scheduling, considering sequence-dependent
family setup time, and release time, and minimizing
the total number of late jobs across all batches. To
address this, the study employs a Petri net (PN) model
and formulates a mixed-integer linear program
(MILP). Four iterated greedy algorithm (IGA)-based
heuristics are proposed. Consequently, these
heuristics hold promise for practical scheduling
problems beyond the specific context studied.

Lages et al. [19] employed a Colored Petri Net
(CPN) framework to comprehensively analyze
energy consumption in Low-Power Wide-Area
Network (LPWAN) systems. These findings hold
significant implications for the ongoing development
of energy-efficient Internet of Things (IoT) solutions.
The proposed model, which focuses on CPU and
communication transceivers, provides valuable
insights for both future research and practical
applications in the field. The CPN-based framework
enables detailed analysis, considering various
operational parameters and their interactions.
Validation using a real-world hardware platform
yielded impressive accuracy, with errors below 1.4%
for CPU energy consumption and 0.14% for network
energy consumption, enhancing the model’s
credibility for real-world implementation.

State-Space Analysis and Complexity Assessment of Puzzle Games Using Colored

Petri Nets

15

Kalid et al. [20] emphasize the importance of
techniques, tools, and procedures for automatic threat
diagnosis and recovery in IoT-based cyber-physical
systems (CPSs). Specifically, it proposes an IoT-
based Colored Resource-Oriented Petri Net
(CROPN) to self-detect and self-treat failures,
measuring reliability metrics such as uptime,
downtime, and availability. The CROPN approach
simplifies configuration, overcomes deadlock issues,
and enhances reliability. Simulation results validate
its effectiveness.

Shahidinejad et al. [21] proposed an elastic cloud
controller using CPN. They proposed this approach
to predict the required resources in order to cope with
workload changes, fulfill service level objectives
requirements, and avoid over- or under-provisioning
problems. However, they utilized neither validation
nor verification methods to analyze their CPN model.

Mishra et al. [22] proposed a model for a profile-
based system using Petri nets which will operate in
real-time to assess suspicious actions and
automatically detect intrusion. The proposed
approach will also examine the alarms to find
intrusions and provide a real-time instant reaction to
protect. They only utilized the traditional Petri nets
without model-checking.

In research [1] modeling and analysis of agent-
based human behavior are proposed. They tried to
present validation and verification of their model by
formalizing it, using CPN and state-space analysis.
Their case study was a park environment with
different playgrounds each one has its roles and
different type of agents. Agents as a people of society
had to follow roles of their own and playground and
make decisions. Their modeling in CPN was so
simple. nevertheless, they did not consider the state
space of the given scenario automatically; they
manually analyzed state space by observing the status
of each state. In this paper, we provide methods for
automatically checking the state space as well as a
novel way for extracting all goal scenarios from the
CPN-Tools state space reachability tree.

Kuchař and Vondrák [23] presented a method for
simulating and analysis of business process
management models. They tried to extract
information using the simulation model to enhance
strategies and methods in resource allocation. They
modeled the human-based process for the activity of
allocating workers based on their competencies to
perform tasks. The productivity of their model using
each resource capability has the formalism of Petri
nets as they mentioned. However, they do not
illustrate the model.

Aguiar et al. [24] addressed the monitoring
system in productive cells with multiple robots using
CPN and a graphical simulator. They modeled and
evaluated cell behavior at a high level of abstraction

using the model of CPN. The approach functionality
is evaluated by modeling the activity of each of the
cell components and coordinating them with a
monitoring system.

Rehman et al. [5] simulate the agent-based
warehouse control system with a Petri net.
Identifying system features and evaluating their
performance, they utilized the results of the state
space. Hsiung et al. [25] addressed automated and
correct designing of complex, real-time, and
embedded software. A time-memory scheduler
(TMS) method has been proposed for combining and
generating automated code, using a timed CPN in
real-time embedded systems.

In [26], the Petri net has been mapped by parallel
programming in the C++ programming language, and
an approach to extract the parallel framework for
Petri nets has been provided, which established a link
between Petri net and Parallel Object-Oriented
Programming.

In our previous paper [27], we used CPN for
proposing a model for the implementation of
monotonic read consistency for distributed systems.
In that model, clients were sending their transactions
including reading and writing operations
concurrently to distributed data servers, the model
proved to be successful to guarantee monotonic read
consistency.

In [2], a flood monitoring system based on CPN
is studied. They proposed a CPN model of their
system and analyzed it using model-checking. In their
model, properties like liveness (no deadlock) and
reliability are considered due to proposing a system
without flow.

In [3], a model of hierarchical CPN for a network
flow control system is investigated. They did not
consider verification and state-space analysis to
investigate the features and prove the flowless
function of their model.

The authors in [28] used Petri net as a designing
language for characteristics of complex workflows to
model and analyze the business process flow
management model, which allowed the business
process logic to provide computer support.

Fedorova et al. [4] proposed a technique to
simulate and assess such UAV systems using CPN. It
is based on UAV application standards and enables a
modular view of common setup components and
various UAV kinds. Their method does not contain
state-space analysis to validate their methodology.

In [29], Yu et al. investigate logical vulnerabilities
in e-business. They propose dynamic slicing
techniques, leveraging Colored Petri Nets (CPN), to
identify these vulnerabilities during system design.
Their streamlined approach enhances e-business

16

International Journal of Web Research, Vol. 7, No. 4, 2024

16

security. The developed model, known as the
Interactive Business Process Fusion (IBPF) net,
excels at pinpointing vulnerabilities during the design
phase. However, the current analysis methods for
IBPF require urgent innovation. By employing
targeted dynamic slicing, they simplify the analysis
process, prevent state space explosion, and gain a
distinct advantage. The research outcomes contribute
to system reliability enhancement, reduced
maintenance costs, and improved e-business security
analysis techniques.

Kaid et al. [6] proposed a two-step deadlock
prevention strategy based on a CPN and a structurally
simple mechanism that drastically lowers the number
of monitors in flexible manufacturing systems. They
used a vector covering the approach to produce a
minimal covered set of first-met bad markings and
legal markings. They merged all produced monitors
into a global control area in their model. Their method
just used the traditional Petri net capabilities,
therefore CPN extension that enables ML
programming and model-checking by code is not
utilized in their study.

Drakaki et al. [30] proposed a simulation
modeling approach based on CPN to assess how
inventory management choices affect supply chain
efficiency. The approach described models of
inventory management in a multi-stage serial supply
chain under normal operating conditions and in the
case of interruptions, for both traditional and
information-sharing setups, using hierarchical timed
CPN.

Kristensen's Ph.D. dissertation [31] was the first
to introduce state-space analysis methods for CPN.
He proposed various strategies for generating the
state space in CPN tools. They investigated data
structures and methods of storing state space, as well
as proposing a rigorous evaluation of the software.
Every node in the state space denotes the values
(markings) of places. However, problems like the
different ordering of a record and list may lead to
state-space explosion in concurrent systems and
game riddles. In this paper, we will address
techniques to circumvent this issue.

To this end, numerous articles underestimated the
power of CPN state-space analysis. Furthermore,
modeling concurrent systems typically result in state-
space explosion, which is one of the reasons why
state-space analysis is underutilized. Using state-
space analysis, a few articles were successful in
demonstrating properties such as no deadlock and
reliability [2, 32]. However, this paper first formally
models a game riddle using CPN, then proposes
methods to prevent state-space explosion, and finally
presents advanced model-checking methods utilizing
the ML programming language to extract complex
features from the model, which in this case is a game
riddle. As a result, a graph search algorithm inspired

by the BFS algorithm is suggested to compute various
game characteristics such as the shortest answer, the
complexity of a riddle, and the shortest failure
scenario.

3. Modeling and Problem Formulation

3.1. Colored Petri Net (CPN) Basics

This section introduces CPN basic formulas at
first, followed by the game's fundamental principles.

Petri net was first designed in the Ph.D.
dissertation by Adam Petri and introduced as a formal
method to model concurrency and synchronization in
the concurrent system [33]. The traditional Petri net
is a bi-directional graph consisting of two types of
nodes: 1) places and 2) transitions. The nodes are
linked by directional arrows. Places and transitions
are represented by ovals and rectangles, respectively.
Colored (high-level) Petri net is an extension of
traditional Petri nets which is integrated with standard
ML (Standard Meta Language). ML is A high-level,
modular, functional programming language with
compile-time type checking and type inference is
called Standard Meta Language (ML). It is often used
for creating compilers, researching programming
languages, and creating theorem provers. Colored
Petri Nets (CPNs) rely heavily on standard ML,
which provides data manipulation primitives and
allows for compact, parameterizable models. It gives
Petri Nets the expressiveness required for modeling
large industrial systems, as well as supporting the
formal semantics and implementation of CPN
computer tools. This work investigates the use of
functional programming and Standard ML in the
CPN modeling language and its associated tools to
simulate, verify, and analyze concurrent systems.

In addition, appropriate required data types and
functions are added to this language for being
consistent with formal concepts of colored Petri net.
By this means, the modeling capabilities of the
concurrent systems using CPN are extended [34].
Colored Petri net is defined as follows:

(∑, P, T, A, V, C, G, E, I)

Σ: A finite set of defined colors.

P: A finite set of places.

T: A finite set of transitions.

A: A finite set of directional arcs: 𝐴 ∁ 𝑃 × 𝑇 ∪
𝑇 × 𝑃

V: A limited set of variables including types, such
as ∀𝑣 ∈ 𝑉, 𝑇𝑦𝑝𝑒[𝑣] ∈ ∑

C: The color function is defined as a mapping
from P to Σ and specifies the color of places.

G: is a guard function and is defined for T and
determines its activation condition.

State-Space Analysis and Complexity Assessment of Puzzle Games Using Colored

Petri Nets

17

E: The expression is the arc function. 𝐸: 𝐴 →
𝐸𝑋𝑃𝑅𝑉

I: The initialization function for places.

3.2. Modeling the Game

The case study of this paper is a puzzle game
named Merchant ship that is modeled using CPN with
different configurations and riddles. The game has a
two-dimensional environment with static and
dynamic barriers that we call “Balk” in the modeling.
The goal of the game is for a merchant ship to go from
its starting point to a target destination. The ship can
move in four directions (north, south, west, and east)
and should not collide with immovable rocks; ship
mobility is limited by walls. Pirate ships patrol on a
predefined route with predefined timing and
destruction radius. If the merchant ship crosses the
hampering radius, it will be taken by pirates, and the
game will fail.

The game environment has been studied in
different configurations, including Riddle (𝑎) and
Riddle (𝛽), as illustrated in Figure 1. The problem is
first investigated in a simple 4x4 context (Riddle (𝑎))
to provide a basic description of how the proposed
solution works. Pirates can have a hindering radius,
which implies they can destroy or hijack merchant
ships within a certain radius.

4. Proposed Modelling of a Merchant Ship Puzzle

Game as a Case of Study

In this section, we will illustrate the proposed
game model, including the colors and functions that
it employs. The proposed game model's color sets are
explained first, followed by each function based on
ML code and the CPN model.

4.1. Color Sets of the Game Model

Color sets are usually known as data types in
programming languages and are used to declare
variables. Declarations for color sets, functions,
variables, and constants are provided by CPN tools.
A specific color set should be assigned to each place
in the colored Petri net, and only tokens from that
color set can be present there. The transitions and arcs
are inscribed using variables and functions. The
colored sets of the proposed model are shown in Code
1.

The SHIP color set indicates the ship's features,
including its id and the ship's present latitudinal and
longitudinal position, which are shown by row and
col, respectively. trow and tcol show the latitudinal
and longitudinal positions of their destination target,
respectively. The SHIPS color represents a set of
SHIP color sets that can be defined in the game.

The ROCK color is defined to express the profile
of a cliff, which includes a latitudinal and
longitudinal position of it. The ROCKS color is used

to define a list of ROCK colors (i.e., cliff properties).
The PSTATUS color is a numerical type and is
defined to represent the patrolling direction of the
pirates (north, south, east, and west).

The PIRATE color indicates the characteristics of
a pirate ship including the characteristics of the
current latitudinal and longitudinal position, its
movement direction, the next position, the next
movement direction (after a movement), the start of
the movement, the end of the movement (patrolling
between these two positions), and in the end the
radius of damage influence (‘sight’) of the pirate.
PIRATES color is defined to display a list of PIRATE
color types. BALK color shows the hazards and
obstacles in the game, including pirates and rocks,
which is a record of PIRATES and ROCKS colors.
These color sets are shown in Code 1.

4.2. Initial Markings and the Model of the Game

The constants values of intialWidth and
intialHeight are defined to indicate the length and
width of the game environment, and their values are
equal to 4 for the Riddle (𝑎) shown in Figure 1. Code
2 shows these initial variables. Two more constant
variables, intialShip, and intialBalk, are used to
initialize the game's ship attributes (identity, ship
location, and destination), as well as the game's
barrier properties (the position of pirate and rocks).
The initial markings of the game are shown in Figure
1.

 Riddle (𝑎) Riddle (𝛽)

Figure. 1. Two configurations of the game riddle

colset SHIP=record no:NO* row:INT* col:INT* trow:INT

*tcol:INT

closet SHIPS=list SHIP;

colset ROCK=record row:INT*col:INT;

colset ROCKS=list ROCK;

colset PSTATUS=with E|W|N|S;

colset PIRATE=record row:INT*col:INT*

pstatus:PSTATUS*nrow:INT*ncol:INT* nstatus: PSTATUS

* starte:INT* ende:INT* sight:INT;

colset PIRATES=list PIRATE;

colset BALK=record pirates:PIRATES*rocks: ROCKS;

Code 1. color sets of the proposed game model

18

International Journal of Web Research, Vol. 7, No. 4, 2024

18

4.3. Functions of the Proposed Game Model

In this part, several functions of the game model
are described. The canGoUp guard function receives
a merchant ship, a barrier list, and a list of merchant
ships shown in Figure 1. It checks when the merchant
ship moves north, whether it hits other ships, rocks,
and pirates or not. If the ship is free to go return true
to enable the transition otherwise return false to
disable the transition. Other guard functions such as
canGoLeft, canGoRight, and canGoDown are like
canGoUp to examine the possibility of merchant ship
movement to the west, east, and south, respectively.
The function canGoUp calls the checkup function
defined in Code which is used to check if the next
location is free from pirates, rocks, and other
merchant ships. The function members defined in
Code 5 and membership defined in Code 6 are also
called hierarchal by checkup function.

The isDead guard function shown in Code 7,
checks if the ship is captured by pirates. It is given a
merchant ship, a list of obstacles (including rocks and
pirates), and a list of ships. If the merchant ship was
not at its target and could not move north, south, west,
or east, the return value is true (the ship is being
blocked by pirates) to enable the transition of the ship
from ‘harbor’ place to ‘dead’ place of the model.

val intialWidth=4;

val intialHeight=4;

val intialSHIP=[{no=1,row=2,col=4,trow=4,tcol=4 }];

val intialBalk={pirates=[{row=3,col=2,pstatus=E

,nrow=3,ncol=3,nstatus=E,starte=2,ende=4,sight=0}],Rock

s=[{row=2,col=2},{row=2,col=3]};

Code 2. initial markings of the game model for the riddle (𝒂)

Code 3. canGoUp function of the proposed game model

fun canGoUp(ship:SHIP,balk:BALK,ships)=

let

val sprow= #row ship
val spcol= #col(ship);

val sno= #no ship;

val rocks= #rocks balk;

val pirate= #pirates balk;

val stcol= #tcol ship;

val strow= #trow ship;
in

 if sprow=strow andalso spcol=stcol then false

 else (if checkup (sprow-1,
spcol,rocks,pirate,ships) then

 true

else false)
end

Code 4. checkup function of the proposed game model

For updating the locations of pirates and merchant
ships, other methods like updateBalk and direct are
employed, respectively. If the merchant ship is at its
intended destination, the guard function isGoal will
return true.

The proposed model of the game is illustrated in
Figure 2. This model is captured from CPN-Tools,
where green boxes at the top of places show the initial
marking (values) of the place’s colors. A transition
box with a green border shows that it is ready to fire.
The proposed model includes four places: harbor,
balk, dead, and destination. The harbor is where
merchant ships are serviced. The ‘Balk’ place stores
the pirate locations and the rocks detailed. The
merchant ships captivated by pirates are stored in the
place ‘dead’. The place ‘destination’ stores the
merchant ships that reach their destination.

5. Proposed State Space Analysis Methods of the

Game Model

The model's simulation can be executed in two
forms: 1) interactive, and 2) automated using CPN-
tools software. In interactive form, the user selects the
desired transition and fires it in each step to change
the system state. In the automatic simulation form,
the CPN-tools fire enabled transitions non-
deterministically to obtain all potential model states.

This form generates a state-space graph for all
sequences of states which could represent a specific
execution scenario. The complete state-space graph
contains all possible execution scenarios of the
system. In the state space graph, each node represents
a state of the system and the nodes are connected by
arcs. Arcs represent the firing of an enabled transition

fun members(y,x,st:ROCKS):BOOL =
 if st= [] then true

 else

 let
val head = List.hd st

val tail = List.tl st

val col= #col head;
val row= #row head;

 in

 if y=row andalso x=col then false
 else members (y,x,tail)

 end;

Code 5. members function of the proposed game model

fun membership(y,x,st:SHIPS):BOOL =

if st= [] then true

else
let

 val head = List.hd st

val tail = List.tl st
val col= #col head

val row= #row head

 in
 if y=row andalso x=col then false

 else membership (y,x,tail)

 end;

Code 6. membership function of the proposed game model

fun checkup(y,x,rock,pirate,ships):BOOL =

 if y> intialHeight orelse y< 1 orelse x>intialWidth orelse
x<1 then false

 else if memberp(y,x,pirate) andalso members(y,x,rock)

andalso membership(y,x,ships)
 then true

 else false

State-Space Analysis and Complexity Assessment of Puzzle Games Using Colored

Petri Nets

19

of the model in the current state of the system and the
next system state.

In our model, for example, when a merchant ship
or a pirate advance, a new state is generated. Three
CPN state-space nodes from a 2-dimensional
merchant ship game are shown in Figure 3, where the
place 'harbor' has a ship with no='1' in row '1' and
column '1'. Node 3 in the state-space graph shows that
the merchant advanced south, which is represented by
row '2' and column '3'. Following that, node '5'
displays the ship at the initial node's location. As a
result, a circle of game agents could represent various
nodes in the state space. However, a state-space
explosion may occur, if a game is not carefully
modeled in CPN. Hence, we present methods in the
next part to circumvent the issue.

fun IsDead(ship:SHIP,balk:BALK,ships)=

let

val r= #row ship

val c= #col(ship);

val sno= #no ship;

val rocks= #rocks balk;

val pirate= #pirates balk;

val tr= #trow ship;

val tc= #tcol ship;

in

 if r=tr andalso c=tc then false

 else (if checkup(r,c+1,rocks,pirate,ships)=false andalso

checkup(r,c-1,rocks,pirate,ships) =false andalso

checkup(r+1,c,rocks, pirate,ships) =false andalso

checkup(r-1,c,rocks,pirate,ships)=false

then true else false)

end

 Code 7, isDead function of the proposed game model

Figure. 2. modeling of a merchant ship game on the CPN-tools

5.1. Proposed methods for avoiding the state

space explosion

One of the most problematic issues in CPN
models is the state space explosion. This problem
leads to a block on model-checking the model. This
paper proposes two methods for controlling the state-
space explosion: 1) Sorting the color sets; 2) Using
complex functions on transitions; in other words,
creating transitions that perform extensive processing
on the system's state.

When the placements of items in a list change,
CPN tools assume a new state of the system;
nevertheless, in most models, the list is used to
represent a set, and the order of its components is
irrelevant. Sorted tokens of a place, which is a list
type in the model of this study, result in a huge
reduction in the size of the state-space model. The
presented model sorts the list of pirates' color sets
following each transition. This method avoids the
needless generation of redundant states. Our study
leads to the conclusion that sorting tokens of a list in
the places of a model in CPN can reduce over 20
percent of redundant state spaces generated by CPN
tools.

The second strategy advocated in this paper for
modeling with CPN is to employ sophisticated CPN
features such as defining list and record data types
and using programming functions. Complex color
sets (data types) serve as the foundation for the
complex processing of system states via transition
firing. Every fire of transitions in the CPN generates
a state in the state-space graph; therefore, if we can
build a transition that performs more operations per
fire than a standard Petri net transition, we can avoid
the production of redundant states in the model. For
example, in the proposed model, we built advanced
functions such as updateBalk and direct, which can
update the direction of a merchant ship and a pirate at
the same time, eliminating the need to update each
actor in a game separately. This method alone can
reduce redundant states by 50%. In addition, we also
built advanced guard functions such as canGoUp,
canGoLeft, canGoRight, canGoDown, IsGoal, and
IsDead to determine whether a transaction can fire.

Figure. 3. state-space of a 2-dimensional riddle game

20

International Journal of Web Research, Vol. 7, No. 4, 2024

20

Figure 4 shows the time of generating state space
of the modeled game in various environment sizes.
This result shows that all states of the modeled game
can be calculated at a very convenient time. In our
initial models, we were facing state space explosion
and the CPN tools could not calculate all the states of
the model in a convenient time. However, applying
the proposed methods dramatically reduced the state
space size and calculation time which is shown in
Figure 4.

5.2. Proposed Model-Checking for the Model of

a Game Riddle

In this part, the state space graph of the proposed
model will be analyzed. In addition, we also propose
a method to recognize sequences of state space nodes
leading to a termination of the game riddle. All the
modeling of this paper has experimented with an Intel
Core i7 3630QM processor and 16 GB of memory.

Figure 5 illustrates the automatically generated
complete state-space graph of the modeled game with
the initial marking of the riddle (𝑎) using CPN tools.
In another word, this graph display all possible events
that could occur in the simulated game with initial
markings of riddle (𝑎). Nodes with a red border line
and font color (i.e. 9, 27) in Figure 5 are the dead
markings which are also shown in the state-space
report of the game model in Table 1. The first state of
the state space graph is where that model can be
started which is node 1. In our example of riddle (𝑎),
the ship can only go up and down as shown in nodes
2 and 3 in Figure 5, respectively. At the same time
that the ship moves, pirates are also moving by each
arc and node. Each node of the generated state space
of CPN tools shows the id of a node at the top and
two numbers separated by ‘:’; where the first number
indicates the number of incoming nodes and the latter
denotes the number of outgoing nodes according to
Figure 5.

The Riddle (𝛽) of this paper is a more complex
environment of the game to examine the speed of the
proposed validation and verification functions.
Riddle (𝛽) in Figure 1 shows the abstract picture of
the configuration of the second example. The graph
of state space of the second example, shown in Table
1, has 609 nodes and 1326 edges. The presented
methods to reduce the state-space volume and avoid
its explosion enabled us to run our validation and
verification tests in the model. The experimental
implementation illustrates that the presented
approach in this article is suitable for the validation
and verification of complex models of Petri Net and
the extraction of the ideal scenarios from its state
space. Figure 6 shows the state space graph nodes and
arc size for various dimensions of the game puzzle.
We altered the initial markings of the game riddle
between 10x10 (10 rows and 10 columns) and 50x50,
and then we demonstrated in Figure 6 the number of

nodes and arcs that CPN tools generates
automatically from the model. The number of nodes
is the all states that can be generated out of the CPN
tools, and arcs show the transition between them.

5.3. Proposed Functions for Model-Checking of

the Modeled Game Riddle

In this part, we propose a methodology to
discover the expected scenarios from state space, by
another meaning, methods to identify different sets of

Figure. 4. time to calculate state space for various dimensions of

the game riddle

Figure. 5. A complete state-space graph of riddle (𝑎) generated

by CPN-Tools

Table 1. Report of generated state space of the riddle (𝑎) by

CPN-Tools

Properties of the

proposed model
Riddle (𝒂) Riddle (𝜷)

Number of Nodes 27 609

Number of Arcs 49 1326

Time to generate

state-space
0 Sec 1 Sec

Status of state-space Full Full

Number of Dead
marks

2 17

Id of Dead markings 27, 9
594,580,58,561,

537, …

State-Space Analysis and Complexity Assessment of Puzzle Games Using Colored

Petri Nets

21

Figure. 6. state space graph nodes and arc size for various

dimensions of the game puzzle.

sequential state space nodes that follow a scenario
from the start to the termination of the model will be
proposed.

Dead markings of the state-space graph are
divided into two different categories 1) solution of the
riddle and 2) gamer failure. For example, in our
model, when a merchant ship successfully reaches its
destination, we call that the game successfully
terminated. However, if a pirate captures or destroys
all the merchant ships then it will be terminated by
failure.

We can discover state space nodes from the
starting state to the dead marking states by knowing
the success and failure dead markings. Hence, we
propose methods for discovering success and failure
dead markings, as well as a set of paths from the start
state to these dead markings and explicit paths (paths
without an unnecessary circle) from the start to a dead
marking. We also find the complexity of a game by
model-checking its state space. The complexity of the
game is defined as the ratio of explicit successful
solution paths to the total number of solution paths
(both success and failure solution paths).

Let us call the set of connected nodes from the
start to a dead marking node as a solution path.
Therefore, based on the complexity of the modeled
game, it can have many solution paths, however,
these paths may contain unnecessary circles in the
state space. Therefore, in the following, we will
illustrate advanced ML functions for model-checking
to discover different game features.

Numerous functions are written to model
checking of the proposed game model. This part only
illustrates important model-checking functions and
briefly describes the remaining. Table 2 provides an
overview of the functions used that are not covered in
an ML code format.

5.4. Model Checking of the Successful

Termination Scenarios for the Game Riddle

Successful termination is dependent on our
concept in the game riddle. In the modeled game
riddle, when a merchant ship reaches its destination

in a two-dimensional environment, CPN considers it
as the termination of the game riddle since no
transition in the model will be enabled.

We proposed the successDeadmarkings function
of the state space to find a list of dead markings
known as a successful termination of the game riddle.
It traverses the dead marking list and returns a list of
dead marking state nodes where the merchant ship
has arrived at its destination; these dead markings are
known as the game riddle's success dead markings.
Code 8 displays the function's ML code. We can use
the successDeadmarkings function to find the
shortest scenario from the state space of the modeled
game riddle. Hence, the shortest scenario to game
termination is another property of a game riddle that
can be discovered by model-checking. This can be
regarded as a criterion for assessing the complexity of
the modeled game riddle. Therefore, we proposed the
function ShortestSenario in Code 9, which receives a
list of dead markings and returns the shortest dead
marking node.

When the shortest dead marking node of the state
space is found, a list of state nodes from the beginning
node to the dead marking node (solution path) can be
found by calling the following function:
NodesInPath(1, ShortestSenario()).

Using the NodesInPath and ShortestSenario
functions, the CPN-tools software reaches four
sequential state space nodes (solution path) from state
1 to a dead marking state 9, as illustrated in Figure 7.
In this figure, node 1 shows the place harbor
containing the merchant ship with id 1 in row 2 and
column 4. In node 3, the location of the merchant ship
is updated to row 3 and column 4. In node 6, the
merchant ship has moved to row 4 and column 4.
Node 9, shows the state that the merchant ship marker
transitioned from place harbor to place destination,
where no transition is enabled anymore which
indicates a dead marking.

5.5. Model Checking for the Presence of a

Deadlock in the Modeled Game Riddle

Formal methods are used to evaluate design
defects. If a gaming riddle reaches a point when no
action can be taken and the riddle can not be solved
(in this case, all ships have not arrived at their
destination), it signifies that there is a deadline in the
riddle. To avoid deadlines, we created the
‘DeadlockExistance’ function that analyzes the
modeled game state space demonstrated in Code 10.
Testing the code for both presented game riddles (𝑎)
and (𝛽) in CPN tools will return ‘False’ which
indicates the riddles do not encounter deadlock.

5.6. Model Checking for Solution Paths in the

Modeled Game Riddle

In this part, we will illustrate how model- checking

22

International Journal of Web Research, Vol. 7, No. 4, 2024

22

Table 2. Notations of functions used in the proposed model

Description of the proposed model-checking functions

RemoveFromList1(list1, list2) Returns list1 - list2

List.length list Returns count of a list of members

extractColAgent Extracts the longitude (column) location of a ship

extractRowAgent Extracts the latitude (row) location of a ship

List.hd Returns the first content of the list

List.tail Returns all content of the list except the first one

hasCommonNodes
This function takes two solution paths and returns true if they have at least one common

node, and false otherwise.

isMemberOfPath
Receive a state node and a solution path and determine whether or not a merchant ship has

passed through the locations of the solution path.

nodeRepetition

Receive a state node and solution path and based on the merchant ships’ location of the state
node, calculate the number of times, they were standing in the same location on the solution

path states.

failDeadmarkings Returns a list of dead markings that the merchant ship is destroyed by pirates.

NodesInPath(s,e) Find the shortest state nodes connecting the nodes s and e.

ContainCommonNodes (n, list) Receive a state space node and a list then returns true if the node is in the list.

solutionPathsDetail

Receives a solution path (list of state space node) and describes the merchant ship locations in

a list of lists (each list is solution path) from start to a dead marking. Only works for the riddles

that one merchant ship is defined.

RemoveFromList Receives two lists and subtract them (i.e., list1- list2)

ListDeadmarkings This is an inbuilt CPN tools function to obtain a list of dead markings from the state space

NodesInPath
This is an inbuilt CPN tools function that receives two node states of the state space graph and

returns a list of shortest sequential nodes states between them.

OutNodes
This is an inbuilt CPN tools function that receives an id of a state space node and returns a list

of its output nodes in the state space.

ShortestDeadmarking
Receives a list of dead markings and returns an integer as an id of the shortest dead marking

(steps from start to termination)

can help discover desired scenarios of the modeled
case. Therefore, we investigate the complexity of a
riddle utilizing the model's automatically created
state space for the modeled game riddle by
determining the number of solution paths to success
and failure. Success solution path means the process
of a game from start to successful finish of the game
riddle. Here it means paths that a merchant ship
reaches its destination at the end of the game. Three
straightforward explicit success solution paths can be
deducted for the riddle (a) of the modeled game
which is illustrated in Figure 8.

We will illustrate functions to acquire these
solution paths from the state space of the modeled
game riddle. Therefore, only by changing the initial
markings of the modeled game, we can study
different riddles by their state space. Different
features of the game riddle such as solution paths,
deadlines, and the complexity of the game riddle can
be revealed using the proposed functions at the
following. Figure 9 demonstrates the proposed
function that we used for model-checking and
analyses of the state space graph.

PathExtractor is the first function to extract
simple movements of a merchant ship from the
modeled riddle. It is a recursive function that can be
recalled at most n times, where n is the number of
nodes in the state space. It accepts as a first argument
the node index at which the state space search begins
(i.e., index 1 at the first call). In each recursion, it
finds a list of reachable nodes in the first argument
and adds to the second argument. In every recursion,
the first parameter (state node) is tested to determine
if it is eligible; if it is, the function will invoke the
state node’s output nodes. Code 11 illustrates the ML
code of the PathExtractor.

Two constraints apply to an eligible node: 1) its
index is not repeated in any of its ancestor nodes in
the list of the second argument (i.e. a path from the
initial state of the system to that node) 2) the position
of the merchant ship in that node is not repeated in
any of the predecessor nodes; however, an exception
occurs when all of the index node children are
repeated in the path, in which case it is eligible. This
function is an application-specific extension of a BFS
algorithm. To illustrate, consider the function called

State-Space Analysis and Complexity Assessment of Puzzle Games Using Colored

Petri Nets

23

fun successDeadmarkings() =

let
val harbor=List.hd (Mark.PAgent 'harbor 1 1)

val harborlen=List.length harbor

val L= ListDeadMarkings()
val len = List.length(L)

val n = ref (List.nth(L, 0))

val dead=ref (Mark.PAgent'destination 1 (!n))
val lendead= ref 0

val j= ref 0

val ls= ref []
in

while !j<len do(
n := List. Hd;

dead:= Mark.PAgent'destination 1 (!n);

lendead:= List.length(!dead);
if !lendead<>0 then ls:= !ls ^^[!n]

else ls:= !ls;

j:= !j+1);
!ls

end

Code 8. successDeadmarkings function of MLcode

fun ShortestSenario(deadstates):INT =
let

val index= ref (List.hd deadstates)

val i= ref 0
val min= ref (!index)

in

while !i<(List.length deadstates) do(
 let

val item= ref (List.nth

(deadstates,!i))
 in

 index:= !item;

 if !index< !min then min:=
!index

 else min:= !min;

 i:= !i+1
 end

);
!min

end;

Code 9. ShortestSenario to find the id of the shortest dead

marking state

Figure. 7. State space of the CPN tools from the modeled game

fun DeadlockExistance() =

let

val k=List.hd (Mark.mship'harbor 1 1)

val lengh=List.length k

val lst=UpperMultiSet

(Mark.mship'destination 1)

val lenlst=List.length lst ;
in

lenlst=lengh

end

Code 10, DeadlockExistance function determines whether or not

a deadlock is possible in the modeled game puzzle

fun pathExtractor(s:INT, path:PATH):PATHS=
let

val outs= OutNodes(s)

val souts=RemoveFromList (outs, path)
val len= List.length souts

val i = ref (len-1)

val ls= ref []
val q= ref []

val q2= ref[]

val n=ref 0
in

while !i>=0 do(

n:= List.nth(souts,!i);
if (isMemberOfPath(!n, path) andalso len>=

nodeRepetition (!n, path)) then

i:= !i -1
else

(q:= path^^ [!n];

ls := !ls^^[!q]^^ pathExtractor(!n, !q);
i := !i - 1)

);

!ls
end

Code 11, pathExtractor to find eligible nodes from the parameter

node

Figure. 8. Schematic description of extracted paths by function

“PathExtractor” from the graph of Figure 2 and riddle of Figure

1.

24

International Journal of Web Research, Vol. 7, No. 4, 2024

24

Figure. 9. function structure diagram of the state space analysis

functions, rectangles are the proposed functions, rectangles with

a dashed border are CPN tools inbuilt functions.

PathExtractor (4, [1, 2]) of the graph of state-space in
the riddle (a). It results in a recursive call to
PathExtractor (7, [1, 2, 4]) and PathExtractor (8, [1,
2, 4]). Some recursive calls to the PathExtractor
function may result in the development of the cycle.
To eliminate these loops, we implemented the
RemoveFromList method. If any of the nodes
available with one step from the first input parameter
node of function calls present in the second parameter
path, the recursive call to that node will be skipped by
using the function RemoveFromList, preventing the
formation of a cycle in the extracted paths.

PathExtractor can be used to extract all of the
ship's simple movement paths (1, []). However, we
require solution paths (game scenarios) from the start
node of the state space to a dead marking which is the
‘solution paths’ function defined in Code 12. This
function receives a list of all cycle-free paths utilizing
calling PathExtractor and a list of dead markings of
the state space, respectively. Then, it selects from the
final list only solution paths, based on the dead
markings it received, and eliminates those paths that
do not terminate in any of the received deadmarkings
in the second argument.

We have executed the model checking proposed
functions for the riddle (a) using CPN tools which are
demonstrated in Figure 10. As can be seen in the
figure, the result of executing solution paths returns
three solution paths as a list of lists like the schematic
paths of Figure 8. The function ‘solutionPathsDetail’
in Figure 11 shows the location of a merchant ship
step by step in the acquired solution paths.

We can alter the second argument of the solution
path function to failDeadmarkings to identify failed
solution paths (failure scenarios of the game's
puzzle).

Figure 11 also shows these solution paths based
on the state space graph nodes in the CPN tools. This
figure was generated using CPN tools; however, the
arc's text and solution path numbers have been added
to make it more understandable. Arcs depict the firing
of a transition in the CPN-Tools model. The phrase
on the arc's edge denotes a transition and type of
change in the system's states. The word preceding ":"
in the statement denotes the ship ID. The word

Figure. 10. executed proposed functions of the state space for the

riddle (𝒂) in the CPN tools

Figure. 11. extracted paths of top-level call of function

PathExtractor from riddle (𝒂)

fun SolutionPaths(ls:PATHS,dk:PATH):PATHS=
let

val len= List.length ls

val i = ref 0
val n= ref []

val st= ref []

val bol= ref true
in

while !i<len do(

n := List.nth(ls, !i) ;
if ContainCommonNodes(!n,dk)= true then

st:= !st ^^ [!n]

else
st:= !st;

i := !i + 1);

!st
end

Code 12. Solution paths function to discover explicit paths to

termination of the riddle

pathExtractor

solutionPaths

successDeadmarkings DeadlockExistancefailDeadmarkings

ContainCommonNodes

isMemberOfPath

nodeRepetition
ShortestSenario

solutionPathsDetail

NodesInPath

ListDeadMarkings

RemoveFromList

OutNodes

State-Space Analysis and Complexity Assessment of Puzzle Games Using Colored

Petri Nets

25

following the ":" is a pass marker consisting of Up,
Down, Right, and Left, which implies traveling to the
north, south, east, and west, respectively. The term
Goal denotes the merchant ship's arrival at the target;
for example, the S1: Up statement in Figure 11
denotes traveling north to the merchant ship with ID
1.

5.7. Complexity Metric of the Proposed Model

Another effective indicator for assessing the
complexity of the puzzle game is the number of
alternative solution paths that can lead to a successful
game solution or a game over. The bigger the number
of individual situations leading to a successful game
solution, the easier the game.

This paper proposes a comparable metric, the
ratio of successful scenarios to failed scenarios, as a
measure of the puzzle game's complexity. Equ (1)
calculates the total number of successful scenarios,
while Equ (2) indicates failed scenarios that lead to
the termination of a specific riddle. Equ (3) defines
the riddle complexity of the game, denoted by ω.

𝑆𝑆 = ∑[𝑆𝑖 = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑝𝑎𝑡ℎ𝑠]

𝑛

𝑖=1

 (1)

𝐹𝑆 = ∑[𝐹𝑖 = 𝑓𝑎𝑖𝑙𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑝𝑎𝑡ℎ𝑠]

𝑛

𝑖=1

 (2)

 𝜔 =
𝐹𝑆

𝑆𝑆 + 𝐹𝑆
 (3)

Examination of the state-space graph for the
riddle (𝛽), extracts 542 possible scenarios for solving
the modeled puzzle game. The number of solution
paths leading to a pirate blockade of the ship before it
arrives at its destination, as determined by an analysis
of the state-space graph, is 380. The length of the
shortest path from the graph of state space that leads
to the successful end of the game riddle is the second
metric of riddle complexity. A low number for this
statistic indicates that the puzzle is simple.

Figure 12 depicts the average complexity of a
game riddle determined from Equ (1) with various
pirate numbers and their sight after 10 experiments in
a 15x15 (15 rows and 15 columns) riddle with
random pirate and ship locations. As shown, pirates’
sight (destruction of power radios) and the number of
pirates have a direct impact on the complexity of a
game riddle. Another aspect that is clear from the
results is that increasing pirate sight has a more
complex effect on the game riddle than increasing
pirate number.

Figure 13 shows the shortest steps (movement) of
the merchant ship to succeed or fail in the modeled
game. This result was acquired in a 10x10 area of the
modeled game, using the average values of ten
experiments with different pirate counts and pirate
sight. The results reveal that raising the pirate sight
and pirate number leads to fewer steps to failure and
more steps to success in the game. For example, when
the pirate sight and number are one, the shortest step
to success is 14 and the shortest step to failure is 10.

6. Conclusion

The CPN using the ML programming language is
one of the most powerful formal tools for system
behavioral analysis. This paper introduced the
modeling of the Merchant Ship puzzle game. It
proposed two innovative techniques to address state-
space explosion, a key limitation of CPNs that
hinders their application to large and complex
systems. By integrating advanced data structures,
programming functions, and a model-checking
technique implemented in ML, we developed a
framework capable of effectively generating and
analyzing state-space graphs. In addition, we propose
two metrics for evaluating game complexity and
player performance: the success-to-total scenario
ratio and the minimal trajectory length. These metrics
provide a quantitative evaluation framework for
comparing riddles across similar puzzle games. We
also detail the calculation techniques, their
implementation, and the resulting efficiency

Figure 12: Complexity of the game riddle in a two-dimensional

environment

Figure 13: Shortest steps to success and failure termination of the

game riddle

26

International Journal of Web Research, Vol. 7, No. 4, 2024

26

improvements, demonstrating that our methods
significantly reduce the computational overhead to
acceptable levels. In the future, timed and hierarchal
colored Petri net and its validation methods through
time and state space will be studied on time-restricted
games.

Declarations

Funding
There has been no significant financial support for
this work.

Authors' contributions
Ahmad Taghinezhad-Niar: Study design,
acquisition of data, interpretation of results,
drafting the result; Saeid Pashazadeh: Study
design, revision of the manuscript.

Conflict of interest
There are no conflicts of interest associated with
this publication.

References

[1] M. A. Piera, R. Buil, and E. Ginters, “State space analysis
for model plausibility validation in multi-agent system
simulation of urban policies,” J. Simul., vol. 10, no. 3, pp.
216–226, Aug. 2016, https://doi.org/10.1057/jos.2014.42

[2] A. Rehman, N. Akhtar, and O. H. Alhazmi, “Formal
Modeling, Proving, and Model Checking of a Flood
Warning, Monitoring, and Rescue System-of-Systems,” Sci.
Program., vol. 2021, no. 1, p. 6685978, 2021,
https://doi.org/10.1155/2021/6685978.

[3] J. Li, Z. Wang, L. Sun, and W. Wang, “Modeling and
Analysis of Network Control System Based on Hierarchical
Coloured Petri Net and Markov Chain,” Discret. Dyn. Nat.
Soc., vol. 2021, no. 1, p. 9948855, 2021,
https://doi.org/10.1155/2021/9948855.

[4] A. Fedorova, V. Beliautsou, and A. Zimmermann, “Colored
Petri Net Modelling and Evaluation of Drone Inspection
Methods for Distribution Networks,” Sensors, vol. 22, no. 9,
pp. 1–20, 2022, https://doi.org/10.3390/s22093418.

[5] M. Drakaki and P. Tzionas, “Modeling and performance
evaluation of an agent-based warehouse dynamic resource
allocation using Colored Petri Nets,” Int. J. Comput. Integr.
Manuf., vol. 29, no. 7, pp. 736–753, Jul. 2016,
https://doi.org/10.1080/0951192X.2015.1130239.

[6] H. Kaid, A. Al-Ahmari, Z. Li, and W. Ameen, “An
Improved Synthesis Method Based on ILPP and Colored
Petri Net for Liveness Enforcing Controller of Flexible
Manufacturing Systems,” IEEE Access, vol. 10, pp. 68570-
68581, 2022, https://doi.org/10.1109/access.2022.3186287.

[7] S. Saeedvand, M. Abbaszadeh, and F. Ansaroudi,
“Modelling causal consistency for distributed systems using
hierarchical coloured petri net,” Indian J. Sci. Technol., vol.
8, no. 35, pp. 1-7, 2015,
https://doi.org/10.17485/ijst/2015/v8i35/54980.

[8] A. Karatkevich, Dynamic analysis of Petri net-based
discrete systems, vol. 404. Springer Science and Business
Media, 2007.

[9] A. Taghinezhad-Niar and J. Taheri, “Security , Reliability ,
Cost , and Energy-aware Scheduling of Real-Time
Workflows in Compute-Continuum Environments,” IEEE
Trans. Cloud Comput., vol. 12, no. 3, pp. 954–965, 2024,
https://doi.org/10.1109/TCC.2024.3426282.

[10] A. Taghinezhad-Niar, S. Pashazadeh, and J. Taheri,
“Workflow scheduling of scientific workflows under

simultaneous deadline and budget constraints,” Cluster
Comput., vol. 24, no. 4, pp. 3449–3467, Dec. 2021,
https://doi.org/10.1007/s10586-021-03314-3.

[11] A. Taghinezhad-niar, J. Taheri, and S. Member, “Reliability,
Rental-Cost and Energy-Aware Multi-Workflow
Scheduling on Multi-Cloud Systems,” IEEE Trans. Cloud
Comput., vol. 11, no. 3, pp. 2681–2692, 2023,
https://doi.org/10.1109/TCC.2022.3223869.

[12] A. Taghinezhad-Niar, S. Pashazadeh, and J. Taheri, “QoS-
aware online scheduling of multiple workflows under task
execution time uncertainty in clouds,” Cluster Comput., vol.
25, pp. 3767–3784, 2022, https://doi.org/10.1007/s10586-
022-03600-8.

[13] A. Taghinezhad-Niar, S. Pashazadeh, and J. Taheri,
“Energy-efficient workflow scheduling with budget-
deadline constraints for cloud,” Computing, vol. 104, no. 3,
pp. 601–625, Mar. 2022, https://doi.org/10.1007/s00607-
021-01030-9.

[14] P. Valizadeh and A. Taghinezhad-niar, “A Fault Tolerant
Multi-Controller Framework for SDN DDoS Attacks
Detection,” Int. J. Web Res., vol. 5, no. 1, pp. 1–7, 2022,
https://doi.org/10.22133/ijwr.2022.345927.1119.

[15] P. Valizadeh and A. Taghinezhad-Niar, “DDoS Attacks
Detection in Multi-Controller Based Software Defined
Network,” in 2022 8th International Conference on Web
Research (ICWR), Tehran: IEEE, May 2022, pp. 34–39.
https://doi.org/10.1109/ICWR54782.2022.9786246.

[16] “CPN Tools Homepage,” CPN Tools support. Accessed:
Jul. 12, 2022. [Online]. Available: http://cpntools.org/start

[17] A. Taghinezhad-Niar, “A Client-Centric Consistency Model
for Distributed Data Stores using Colored Petri Nets,” in
2024 10th International Conference on Web Research
(ICWR), 2024, pp. 309–314.
https://doi.org/10.1109/ICWR61162.2024.10533365

[18] Z. Zhao, S. Liu, M. Zhou, D. You, and X. Guo, “Heuristic
Scheduling of Batch Production Processes Based on Petri
Nets and Iterated Greedy Algorithms,” IEEE Trans. Autom.
Sci. Eng., vol. 19, no. 1, pp. 251–261, 2022,
https://doi.org/10.1109/TASE.2020.3027532.

[19] D. Lages, E. Borba, E. Tavares, A. Balieiro, and E. Souza,
“A CPN-based model for assessing energy consumption of
IoT networks,” J. Supercomput., vol. 79, no. 12, pp. 12978–
13000, 2023, https://doi.org/10.1007/s11227-023-05185-4.

[20] H. Kaid, A. Al-Ahmari, and K. N. Alqahtani, “Fault
Detection, Diagnostics, and Treatment in Automated
Manufacturing Systems Using Internet of Things and
Colored Petri Nets,” Machines, vol. 11, no. 2, p. 173, 2023,
https://doi.org/10.3390/machines11020173.

[21] A. Shahidinejad, M. Ghobaei-Arani, and L. Esmaeili, “An
elastic controller using Colored Petri Nets in cloud
computing environment,” Cluster Comput., vol. 23, no. 2,
pp. 1045–1071, 2020, https://doi.org/10.1007/s10586-019-
02972-8

[22] V. P. Mishra, B. Shukla, and A. Bansal, “Analysis of alarms
to prevent the organizations network in real-time using
process mining approach,” Cluster Comput., vol. 22, no. s3,
pp. 7023–7030, 2019, https://doi.org/10.1007/s10586-018-
2064-8.

[23] Š. Kuchař and I. Vondrák, “Automatic allocation of
resources in software process simulations using their
capability and productivity,” J. Simul., vol. 10, no. 3, pp. 1–
10, 2015, https://doi.org/10.1057/jos.2015.8.

[24] A. J. Cunha De Aguiar, E. Villani, and F. Junqueira,
“Coloured Petri nets and graphical simulation for the
validation of a robotic cell in aircraft industry,” Robot.
Comput. Integr. Manuf., vol. 27, no. 5, pp. 929–941, 2011,
https://doi.org/10.1016/j.rcim.2011.03.005.

[25] P. A. Hsiung and C.H . Gau, “Formal Synthesis of Real-

https://doi.org/10.1057/jos.2014.42
https://doi.org/10.1155/2021/6685978
https://doi.org/10.1155/2021/9948855
https://doi.org/10.3390/s22093418
https://doi.org/10.1080/0951192X.2015.1130239
https://doi.org/10.1109/access.2022.3186287
https://doi.org/10.17485/ijst/2015/v8i35/54980
https://doi.org/10.1109/TCC.2024.3426282
https://doi.org/10.1007/s10586-021-03314-3
https://doi.org/10.1109/TCC.2022.3223869
https://doi.org/10.1007/s10586-022-03600-8
https://doi.org/10.1007/s10586-022-03600-8
https://doi.org/10.1007/s00607-021-01030-9
https://doi.org/10.1007/s00607-021-01030-9
https://doi.org/10.22133/ijwr.2022.345927.1119
https://doi.org/10.1109/ICWR54782.2022.9786246
https://doi.org/10.1109/ICWR61162.2024.10533365
https://doi.org/10.1109/TASE.2020.3027532
https://doi.org/10.1007/s11227-023-05185-4
https://doi.org/10.3390/machines11020173
https://doi.org/10.1007/s10586-019-02972-8
https://doi.org/10.1007/s10586-019-02972-8
https://doi.org/10.1007/s10586-018-2064-8
https://doi.org/10.1007/s10586-018-2064-8
https://doi.org/10.1057/jos.2015.8
https://doi.org/10.1016/j.rcim.2011.03.005

State-Space Analysis and Complexity Assessment of Puzzle Games Using Colored

Petri Nets

27

Time Embedded Software by Time-Memory Scheduling of
Colored Time Petri Nets,” Electron. Notes Theor. Comput.
Sci., vol. 65, no. 6, pp. 140–159, Jun. 2002,
https://doi.org/10.1016/S1571-0661(04)80474-2.

[26] Weili Yao and Xudong He, “Mapping Petri nets to parallel
programs in CC++,” in Proceedings of 20th International
Computer Software and Applications Conference:
COMPSAC ’96, Weili: IEEE Comput. Soc. Press, 1996, pp.
70–75. https://doi.org/10.1109/CMPSAC.1996.542428.

[27] A. Taghinezhad and S. Pashazadeh, “Modelling and analysis
of the monotonic read consistent distributed system using
coloured Petri net,” 2016 8th Int. Conf. Inf. Knowl. Technol.
IKT 2016, Hamedan, Iran, 2016, pp. 85–90,
https://doi.org/10.1109/IKT.2016.7777791.

[28] W. M. P. Van Der Aalst, “The Application Of Petri Nets To
Workflow Management,” J. Circuits, Syst. Comput., vol. 08,
no. 01, pp. 21–66, Feb. 1998,
https://doi.org/10.1142/S0218126698000043.

[29] W. Yu, J. Feng, L. Liu, X. Zhai, and Y. Cheng, “Enhancing
security in e-business processes: Utilizing dynamic slicing
of Colored Petri Nets for logical vulnerability detection,”
Futur. Gener. Comput. Syst., vol. 158, pp. 210–218, 2024,
https://doi.org/10.1016/j.future.2024.04.035.

[30] M. Drakaki and P. Tzionas, “A colored petri net-based
modeling method for supply chain inventory management,”
Simulation, vol. 98, no. 3, pp. 257–271, 2022,
https://doi.org/10.1177/00375497211038755.

[31] L. M. Kristensen, “State space methods for coloured petri
nets,” DAIMI Rep. Ser., vol. 29, no. 546, 2000,
https://doi.org/10.7146/dpb.v29i546.7080.

[32] A. Taghinezhad-Niar, T. Javadzadeh, and L. Farzinvash,
“Modeling of resource monitoring in federated cloud using
Colored Petri Net,” in 2017 IEEE 4th International
Conference on Knowledge-Based Engineering and
Innovation (KBEI), Tehran, Iran, Dec. 2017, pp. 0577–0582.
https://doi.org/10.1109/KBEI.2017.8324866.

[33] C. A. Petri, “Kommunikation mit Automaten,” Technische
Hochschule Darmstadt, Darmstadt, Germany, 1962.
Accessed: Oct. 18, 2017. [Online]. http://edoc.sub.uni-
hamburg.de/informatik/volltexte/2011/160/.

[34] K. Jensen, “Colored Petri Nets : A Graphical Language,”
Commun. ACM, vol. 58, no. 6, pp. 61–70, 2015,
https://doi.org/10.1145/2663340.

Ahmad Taghinezhad-Niar

received the MSc and PhD

degrees in computer engineering

from the University of Tabriz, in

2017 and 2021, respectively. He

is an Assistant Professor with

the Department of Computer

Engineering, University of

Tabriz, Iran. His research

interests lie in distributed systems, cloud computing,

scheduling algorithms, and formal methods.

Additionally, he actively contributes to the academic

community by serving as a reviewer for esteemed

journals.

Saeid Pashazadeh received a

B.Sc. degree in computer

engineering from the Sharif

University of Technology,

Tehran, Iran, in 1995, and the

M.Sc. and Ph.D. degrees in

computer engineering from the

Iran University of Science and

Technology, Tehran, in 1998

and 2010, respectively. He is currently a Full

Professor with the Department of Information

Technology, Faculty of Electrical and Computer

Engineering, University of Tabriz, Tabriz, Iran. His

research interests include wireless sensor networks,

target tracking, formal methods, distributed systems,

and stochastic systems.

https://doi.org/10.1016/S1571-0661(04)80474-2
https://doi.org/10.1109/CMPSAC.1996.542428
https://doi.org/10.1109/IKT.2016.7777791
https://doi.org/10.1142/S0218126698000043
https://doi.org/10.1016/j.future.2024.04.035
https://doi.org/10.1177/00375497211038755
https://doi.org/10.7146/dpb.v29i546.7080
https://doi.org/10.1109/KBEI.2017.8324866
http://edoc.sub.uni-hamburg.de/informatik/volltexte/2011/160/
http://edoc.sub.uni-hamburg.de/informatik/volltexte/2011/160/
https://doi.org/10.1145/2663340

