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A B S T R A C T  

The verification of complex systems has traditionally relied on semi-automatic theorem-proving methods. 

However, model checking represents a paradigm shift by enabling automated, exhaustive verification of 

behavioral properties through systematic state exploration. Among advanced formal verification tools, Colored 

Petri Net (CPN) stands out for its integration of the ML programming language, facilitating robust model 

checking and system validation. Nevertheless, the application of CPN to complex systems is often constrained 

by the state-space explosion problem, which presents a significant challenge in contemporary research. While 

state-space analysis offers powerful capabilities for validation and scenario extraction, its potential remains 

largely untapped due to computational complexity constraints. This limitation is particularly pronounced in 

concurrent systems with multiple interacting variables, exemplified by game systems where intricate rule sets, 

deadlock conditions, and termination scenarios demand sophisticated modeling approaches. This paper 

presents a novel methodological framework for modeling and analyzing such game riddles, introducing methods 

to mitigate the state-space explosion problem. We demonstrate the efficacy of our approach through a 

comprehensive case study of the Merchant Ship puzzle game, though the methodology generalizes across 

various game typologies. By synthesizing model-checking techniques with ML-based algorithmic 

implementations, we develop an optimized search strategy for traversing the state space graph, enabling the 

derivation of quantitative complexity metrics. These metrics encompass critical indicators such as the success-

to-total scenario ratio and the minimal trajectory length for both successful and unsuccessful game completions. 

Our research contributes to both the theoretical understanding of game complexity analysis and practical 

applications in game design through formal methods. 
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1. Introduction  

Designing distributed and concurrent systems 
require higher complexity, which raises the 
possibility of technical errors. In concurrent and 
sophisticated systems, a chain of events may occur 
that leads to system failure, which may be overlooked 
during the design phase. A lot of events occur during 
play in computer games, making it difficult for a 
human creator to examine all scenarios and riddles. 
Formal modeling can automatically calculate all of a 
system's behaviors. Most formal models can produce 
a state-space graph of the modeled system, which 
provides valuable information for studying and 
demonstrating the system's behavior. Because the 
state-space network can have a large number of 
nodes, each of which represents a state of the system 

obtained from various places, extracting features’ 
information from these states is difficult. To address 
these issues, formal approaches are extensively 
employed in the design process to describe a system's 
function and confirm its behavioral features. 

CPN is one of the well-known formal methods 
that is used to model and verify the behavioral 
characteristics of distributed and concurrent systems. 
The state-space graph of the colored Petri net model 
of a system is generated automatically using CPN 
tools. Designing a model that leads to a rational state 
space is a challenging problem in CPN that could lead 
to state-space explosion [1, 2, 3]. As a result, a 
thorough analysis of the system cannot begin until all 
state space of a model has been determined. 
However, many works  [4, 5, 6] do not consider 
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model checking, and their models suffer from state-
space explosion [7]. 

Game modeling can offer different advantages. 
For example, a riddle of the game can be studied by 
changing the initial markings of the model. The 
complexity of a game riddle can be found by model-
checking its state space. Therefore, a game developer 
company can utilize the model to sort its game riddles 
based on their complexity. Riddles can also be 
examined to avoid deadlocks. 

Even studies that utilized state-space analysis of 
CPN only consider the basic features like having no 
deadlock, however, a state-space graph can give us a 
lot of information about a model. Hence, in this paper, 
we consider a game riddle as a case of study and 
formally model and obtain advanced information like 
the complexity of a game riddle (explicit scenarios of 
a game riddle), the shortest path to success and failure 
of a riddle proposing an advanced search algorithm 
inspired by breadth-first search (BFS) over the state-
space graph of the game model. By this means, a new 
metric is defined for evaluating the complexity of a 
game riddle, and a search algorithm of the state-space 
graph is proposed for evaluation and proving the 
value of this metric. Moreover, we propose two 
strategies in this study to avoid a state-space 
explosion. The proposed methods can be extended to 
other domains, such as web behavior modeling, 
ensuring security, and improving the reliability of 
concurrent systems. This work contributes to 
advancing the analysis and verification of complex 
systems in various applications, including web and 
IoT environments. 

To the best of our knowledge, this is the first study 
that covers issues like model checking for extracting 
distinct features of a riddle game while also 
discussing strategies to avoid state-space explosion. 
Contributions of this paper are as follows: 

• Modeling and analysis of a puzzle game as a 
case study for verification and validation of 
game riddles by CPN. 

• Two novel approaches to control the state-
space explosion of the model. Two new 
metrics for representing the complexity of a 
game riddle and algorithms for evaluation of 
these metrics  

• A function to find success and failure 
scenarios of the game riddle for directing and 
scoring gamer’s action 

The remainder of the paper is structured as 
follows: Section 2 includes a survey of the literature 
in which formal methods and CPN were used to 
model and analyze analogous systems. Section 3 
contains the problem definition and presents the 
fundamental concepts of the proposed case study. 
Section 4 delves into the specifics of the proposed 

game model. Section 5 employs the model-checking 
technique to validate the anticipated attributes of the 
modeled game and analyze its riddle by exploring the 
state-space graph. Methods for reducing the state-
space explosion are also introduced. Section 6 
concludes with a brief conclusion to this study. 

2. Related Work 

Colored Petri Nets (CPN) are highly effective for 
modeling and evaluating systems. They have been 
crucial in developing discrete-system models over the 
past 40 years. Designing and verifying parallel 
systems is more complex than successive systems, as 
discussed in [8]. They can be modeling in complex, 
concurrent or distributed systems such as scheduling 
in algorithms in computing environments [9,10] and 
cloud computing [11, 12, 13] or designing fault-
tolerant frameworks software defined networks [14, 
15]. 

CPN-tools is a sophisticated tool for modeling 
with CPN. Initially released in 1989, it included 
network editing and simulation features. The 
simulator, launched in 2000, faced performance 
challenges with larger models. Recent updates have 
improved the interface and simulation engine, 
enhancing efficiency for large state-space models 
[16, 17]. 

Zhao et al. [18] investigated a practical 
scheduling problem arising from wire rod and bar 
rolling processes in steel production systems using 
CPN. Their challenge involved optimizing serial 
batch scheduling, considering sequence-dependent 
family setup time, and release time, and minimizing 
the total number of late jobs across all batches. To 
address this, the study employs a Petri net (PN) model 
and formulates a mixed-integer linear program 
(MILP). Four iterated greedy algorithm (IGA)-based 
heuristics are proposed. Consequently, these 
heuristics hold promise for practical scheduling 
problems beyond the specific context studied. 

Lages et al. [19] employed a Colored Petri Net 
(CPN) framework to comprehensively analyze 
energy consumption in Low-Power Wide-Area 
Network (LPWAN) systems. These findings hold 
significant implications for the ongoing development 
of energy-efficient Internet of Things (IoT) solutions. 
The proposed model, which focuses on CPU and 
communication transceivers, provides valuable 
insights for both future research and practical 
applications in the field. The CPN-based framework 
enables detailed analysis, considering various 
operational parameters and their interactions. 
Validation using a real-world hardware platform 
yielded impressive accuracy, with errors below 1.4% 
for CPU energy consumption and 0.14% for network 
energy consumption, enhancing the model’s 
credibility for real-world implementation. 
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Kalid et al. [20] emphasize the importance of 
techniques, tools, and procedures for automatic threat 
diagnosis and recovery in IoT-based cyber-physical 
systems (CPSs). Specifically, it proposes an IoT-
based Colored Resource-Oriented Petri Net 
(CROPN) to self-detect and self-treat failures, 
measuring reliability metrics such as uptime, 
downtime, and availability. The CROPN approach 
simplifies configuration, overcomes deadlock issues, 
and enhances reliability. Simulation results validate 
its effectiveness. 

Shahidinejad et al. [21] proposed an elastic cloud 
controller using CPN. They proposed this approach 
to predict the required resources in order to cope with 
workload changes, fulfill service level objectives 
requirements, and avoid over- or under-provisioning 
problems. However, they utilized neither validation 
nor verification methods to analyze their CPN model.  

Mishra et al. [22] proposed a model for a profile-
based system using Petri nets which will operate in 
real-time to assess suspicious actions and 
automatically detect intrusion. The proposed 
approach will also examine the alarms to find 
intrusions and provide a real-time instant reaction to 
protect. They only utilized the traditional Petri nets 
without model-checking. 

In research [1] modeling and analysis of agent-
based human behavior are proposed.  They tried to 
present validation and verification of their model by 
formalizing it, using CPN and state-space analysis. 
Their case study was a park environment with 
different playgrounds each one has its roles and 
different type of agents. Agents as a people of society 
had to follow roles of their own and playground and 
make decisions. Their modeling in CPN was so 
simple. nevertheless, they did not consider the state 
space of the given scenario automatically; they 
manually analyzed state space by observing the status 
of each state. In this paper, we provide methods for 
automatically checking the state space as well as a 
novel way for extracting all goal scenarios from the 
CPN-Tools state space reachability tree.  

Kuchař and Vondrák [23] presented a method for 
simulating and analysis of business process 
management models. They tried to extract 
information using the simulation model to enhance 
strategies and methods in resource allocation. They 
modeled the human-based process for the activity of 
allocating workers based on their competencies to 
perform tasks. The productivity of their model using 
each resource capability has the formalism of Petri 
nets as they mentioned. However, they do not 
illustrate the model.  

Aguiar et al. [24] addressed the monitoring 
system in productive cells with multiple robots using 
CPN and a graphical simulator. They modeled and 
evaluated cell behavior at a high level of abstraction 

using the model of CPN. The approach functionality 
is evaluated by modeling the activity of each of the 
cell components and coordinating them with a 
monitoring system. 

Rehman et al. [5] simulate the agent-based 
warehouse control system with a Petri net. 
Identifying system features and evaluating their 
performance, they utilized the results of the state 
space. Hsiung et al. [25] addressed automated and 
correct designing of complex, real-time, and 
embedded software. A time-memory scheduler 
(TMS) method has been proposed for combining and 
generating automated code, using a timed CPN in 
real-time embedded systems. 

In [26], the Petri net has been mapped by parallel 
programming in the C++ programming language, and 
an approach to extract the parallel framework for 
Petri nets has been provided, which established a link 
between Petri net and Parallel Object-Oriented 
Programming.  

In our previous paper [27], we used CPN for 
proposing a model for the implementation of 
monotonic read consistency for distributed systems. 
In that model, clients were sending their transactions 
including reading and writing operations 
concurrently to distributed data servers, the model 
proved to be successful to guarantee monotonic read 
consistency. 

In [2], a flood monitoring system based on CPN 
is studied. They proposed a CPN model of their 
system and analyzed it using model-checking. In their 
model, properties like liveness (no deadlock) and 
reliability are considered due to proposing a system 
without flow.  

In [3], a model of hierarchical CPN for a network 
flow control system is investigated. They did not 
consider verification and state-space analysis to 
investigate the features and prove the flowless 
function of their model.  

The authors in [28] used Petri net as a designing 
language for characteristics of complex workflows to 
model and analyze the business process flow 
management model, which allowed the business 
process logic to provide computer support.  

Fedorova et al. [4] proposed a technique to 
simulate and assess such UAV systems using CPN. It 
is based on UAV application standards and enables a 
modular view of common setup components and 
various UAV kinds. Their method does not contain 
state-space analysis to validate their methodology. 

In [29], Yu et al. investigate logical vulnerabilities 
in e-business. They propose dynamic slicing 
techniques, leveraging Colored Petri Nets (CPN), to 
identify these vulnerabilities during system design. 
Their streamlined approach enhances e-business 
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security. The developed model, known as the 
Interactive Business Process Fusion (IBPF) net, 
excels at pinpointing vulnerabilities during the design 
phase. However, the current analysis methods for 
IBPF require urgent innovation. By employing 
targeted dynamic slicing, they simplify the analysis 
process, prevent state space explosion, and gain a 
distinct advantage. The research outcomes contribute 
to system reliability enhancement, reduced 
maintenance costs, and improved e-business security 
analysis techniques. 

Kaid et al. [6] proposed a two-step deadlock 
prevention strategy based on a CPN and a structurally 
simple mechanism that drastically lowers the number 
of monitors in flexible manufacturing systems. They 
used a vector covering the approach to produce a 
minimal covered set of first-met bad markings and 
legal markings. They merged all produced monitors 
into a global control area in their model. Their method 
just used the traditional Petri net capabilities, 
therefore CPN extension that enables ML 
programming and model-checking by code is not 
utilized in their study.  

Drakaki et al. [30] proposed a simulation 
modeling approach based on CPN to assess how 
inventory management choices affect supply chain 
efficiency. The approach described models of 
inventory management in a multi-stage serial supply 
chain under normal operating conditions and in the 
case of interruptions, for both traditional and 
information-sharing setups, using hierarchical timed 
CPN. 

Kristensen's Ph.D. dissertation [31] was the first 
to introduce state-space analysis methods for CPN. 
He proposed various strategies for generating the 
state space in CPN tools. They investigated data 
structures and methods of storing state space, as well 
as proposing a rigorous evaluation of the software. 
Every node in the state space denotes the values 
(markings) of places. However, problems like the 
different ordering of a record and list may lead to 
state-space explosion in concurrent systems and 
game riddles. In this paper, we will address 
techniques to circumvent this issue. 

To this end, numerous articles underestimated the 
power of CPN state-space analysis. Furthermore, 
modeling concurrent systems typically result in state-
space explosion, which is one of the reasons why 
state-space analysis is underutilized. Using state-
space analysis, a few articles were successful in 
demonstrating properties such as no deadlock and 
reliability [2, 32]. However, this paper first formally 
models a game riddle using CPN, then proposes 
methods to prevent state-space explosion, and finally 
presents advanced model-checking methods utilizing 
the ML programming language to extract complex 
features from the model, which in this case is a game 
riddle. As a result, a graph search algorithm inspired 

by the BFS algorithm is suggested to compute various 
game characteristics such as the shortest answer, the 
complexity of a riddle, and the shortest failure 
scenario. 

3. Modeling and Problem Formulation 

3.1. Colored Petri Net (CPN) Basics 

This section introduces CPN basic formulas at 
first, followed by the game's fundamental principles. 

Petri net was first designed in the Ph.D. 
dissertation by Adam Petri and introduced as a formal 
method to model concurrency and synchronization in 
the concurrent system [33]. The traditional Petri net 
is a bi-directional graph consisting of two types of 
nodes: 1) places and 2) transitions. The nodes are 
linked by directional arrows. Places and transitions 
are represented by ovals and rectangles, respectively. 
Colored (high-level) Petri net is an extension of 
traditional Petri nets which is integrated with standard 
ML (Standard Meta Language). ML is A high-level, 
modular, functional programming language with 
compile-time type checking and type inference is 
called Standard Meta Language (ML). It is often used 
for creating compilers, researching programming 
languages, and creating theorem provers. Colored 
Petri Nets (CPNs) rely heavily on standard ML, 
which provides data manipulation primitives and 
allows for compact, parameterizable models. It gives 
Petri Nets the expressiveness required for modeling 
large industrial systems, as well as supporting the 
formal semantics and implementation of CPN 
computer tools. This work investigates the use of 
functional programming and Standard ML in the 
CPN modeling language and its associated tools to 
simulate, verify, and analyze concurrent systems. 

In addition, appropriate required data types and 
functions are added to this language for being 
consistent with formal concepts of colored Petri net. 
By this means, the modeling capabilities of the 
concurrent systems using CPN are extended [34]. 
Colored Petri net is defined as follows: 

(∑, P, T, A, V, C, G, E, I) 

Σ: A finite set of defined colors. 

P: A finite set of places. 

T: A finite set of transitions. 

A: A finite set of directional arcs: 𝐴 ∁ 𝑃 × 𝑇 ∪
𝑇 × 𝑃 

V: A limited set of variables including types, such 
as  ∀𝑣 ∈ 𝑉, 𝑇𝑦𝑝𝑒[𝑣] ∈ ∑ 

C: The color function is defined as a mapping 
from P to Σ and specifies the color of places. 

G: is a guard function and is defined for T and 
determines its activation condition. 
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E: The expression is the arc function. 𝐸: 𝐴 →
𝐸𝑋𝑃𝑅𝑉 

I: The initialization function for places. 

3.2. Modeling the Game  

The case study of this paper is a puzzle game 
named Merchant ship that is modeled using CPN with 
different configurations and riddles. The game has a 
two-dimensional environment with static and 
dynamic barriers that we call “Balk” in the modeling. 
The goal of the game is for a merchant ship to go from 
its starting point to a target destination. The ship can 
move in four directions (north, south, west, and east) 
and should not collide with immovable rocks; ship 
mobility is limited by walls. Pirate ships patrol on a 
predefined route with predefined timing and 
destruction radius. If the merchant ship crosses the 
hampering radius, it will be taken by pirates, and the 
game will fail. 

The game environment has been studied in 
different configurations, including Riddle (𝑎) and 
Riddle (𝛽), as illustrated in Figure 1. The problem is 
first investigated in a simple 4x4 context (Riddle (𝑎)) 
to provide a basic description of how the proposed 
solution works. Pirates can have a hindering radius, 
which implies they can destroy or hijack merchant 
ships within a certain radius.  

4. Proposed Modelling of a Merchant Ship Puzzle 

Game as a Case of Study 

In this section, we will illustrate the proposed 
game model, including the colors and functions that 
it employs. The proposed game model's color sets are 
explained first, followed by each function based on 
ML code and the CPN model.  

4.1. Color Sets of the Game Model 

Color sets are usually known as data types in 
programming languages and are used to declare 
variables.  Declarations for color sets, functions, 
variables, and constants are provided by CPN tools. 
A specific color set should be assigned to each place 
in the colored Petri net, and only tokens from that 
color set can be present there. The transitions and arcs 
are inscribed using variables and functions. The 
colored sets of the proposed model are shown in Code 
1. 

The SHIP color set indicates the ship's features, 
including its id and the ship's present latitudinal and 
longitudinal position, which are shown by row and 
col, respectively. trow and tcol show the latitudinal 
and longitudinal positions of their destination target, 
respectively. The SHIPS color represents a set of 
SHIP color sets that can be defined in the game.  

The ROCK color is defined to express the profile 
of a cliff, which includes a latitudinal and 
longitudinal position of it. The ROCKS color is used 

to define a list of ROCK colors (i.e., cliff properties). 
The PSTATUS color is a numerical type and is 
defined to represent the patrolling direction of the 
pirates (north, south, east, and west).  

The PIRATE color indicates the characteristics of 
a pirate ship including the characteristics of the 
current latitudinal and longitudinal position, its 
movement direction, the next position, the next 
movement direction (after a movement), the start of 
the movement, the end of the movement (patrolling 
between these two positions), and in the end the 
radius of damage influence (‘sight’) of the pirate. 
PIRATES color is defined to display a list of PIRATE 
color types.  BALK color shows the hazards and 
obstacles in the game, including pirates and rocks, 
which is a record of PIRATES and ROCKS colors. 
These color sets are shown in Code 1.  

4.2.  Initial Markings and the Model of the Game 

The constants values of intialWidth and 
intialHeight are defined to indicate the length and 
width of the game environment, and their values are 
equal to 4 for the Riddle (𝑎) shown in Figure 1. Code 
2 shows these initial variables. Two more constant 
variables, intialShip, and intialBalk, are used to 
initialize the game's ship attributes (identity, ship 
location, and destination), as well as the game's 
barrier properties (the position of pirate and rocks). 
The initial markings of the game are shown in Figure 
1.  

   

          Riddle (𝑎)                    Riddle (𝛽)       

 

Figure. 1. Two configurations of the game riddle 

colset SHIP=record no:NO* row:INT* col:INT* trow:INT 

*tcol:INT 

closet SHIPS=list SHIP; 

colset ROCK=record row:INT*col:INT; 

colset ROCKS=list ROCK; 

colset PSTATUS=with E|W|N|S; 

colset PIRATE=record row:INT*col:INT* 

pstatus:PSTATUS*nrow:INT*ncol:INT*  nstatus: PSTATUS 

* starte:INT*    ende:INT* sight:INT; 

colset PIRATES=list PIRATE; 

colset BALK=record pirates:PIRATES*rocks: ROCKS; 

Code 1. color sets  of the proposed game model 
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4.3.  Functions of the Proposed Game Model 

In this part, several functions of the game model 
are described. The canGoUp guard function receives 
a merchant ship, a barrier list, and a list of merchant 
ships shown in Figure 1. It checks when the merchant 
ship moves north, whether it hits other ships, rocks, 
and pirates or not. If the ship is free to go return true 
to enable the transition otherwise return false to 
disable the transition. Other guard functions such as 
canGoLeft, canGoRight, and canGoDown are like 
canGoUp to examine the possibility of merchant ship 
movement to the west, east, and south, respectively. 
The function canGoUp calls the checkup function 
defined in Code which is used to check if the next 
location is free from pirates, rocks, and other 
merchant ships. The function members defined in 
Code 5 and membership defined in Code 6 are also 
called hierarchal by checkup function. 

The isDead guard function shown in Code 7, 
checks if the ship is captured by pirates. It is given a 
merchant ship, a list of obstacles (including rocks and 
pirates), and a list of ships. If the merchant ship was 
not at its target and could not move north, south, west, 
or east, the return value is true (the ship is being 
blocked by pirates) to enable the transition of the ship 
from ‘harbor’ place to ‘dead’ place of the model.   

val intialWidth=4; 

val intialHeight=4; 

val intialSHIP=[{no=1,row=2,col=4,trow=4,tcol=4 }]; 

val intialBalk={pirates=[{row=3,col=2,pstatus=E 

,nrow=3,ncol=3,nstatus=E,starte=2,ende=4,sight=0}],Rock

s=[{row=2,col=2},{row=2,col=3]}; 

Code 2. initial markings of the game model for the riddle (𝒂) 

Code 3. canGoUp function of the proposed game model 

fun canGoUp(ship:SHIP,balk:BALK,ships)=   

let  

val sprow= #row ship 
val spcol= #col(ship); 

val sno= #no ship; 

val rocks= #rocks balk; 

val pirate= #pirates balk; 

val stcol= #tcol ship; 

val strow= #trow ship; 
in 

  if sprow=strow andalso spcol=stcol then  false 

    else (if checkup (sprow-1, 
spcol,rocks,pirate,ships) then  

                 true 

else false ) 
end 

Code 4. checkup function of the proposed game model 

For updating the locations of pirates and merchant 
ships, other methods like updateBalk and direct are 
employed, respectively. If the merchant ship is at its 
intended destination, the guard function isGoal will 
return true. 

The proposed model of the game is illustrated in 
Figure 2. This model is captured from CPN-Tools, 
where green boxes at the top of places show the initial 
marking (values) of the place’s colors. A transition 
box with a green border shows that it is ready to fire. 
The proposed model includes four places: harbor, 
balk, dead, and destination. The harbor is where 
merchant ships are serviced. The ‘Balk’ place stores 
the pirate locations and the rocks detailed. The 
merchant ships captivated by pirates are stored in the 
place ‘dead’. The place ‘destination’ stores the 
merchant ships that reach their destination. 

5. Proposed State Space Analysis Methods of the 

Game Model 

The model's simulation can be executed in two 
forms: 1) interactive, and 2) automated using CPN-
tools software. In interactive form, the user selects the 
desired transition and fires it in each step to change 
the system state. In the automatic simulation form, 
the CPN-tools fire enabled transitions non-
deterministically to obtain all potential model states. 

This form generates a state-space graph for all 
sequences of states which could represent a specific 
execution scenario. The complete state-space graph 
contains all possible execution scenarios of the 
system. In the state space graph, each node represents 
a state of the system and the nodes are connected by 
arcs. Arcs represent the firing of an enabled transition  

fun members(y,x,st:ROCKS):BOOL =  
    if st= [] then true  

    else      

       let  
val head = List.hd st 

val tail = List.tl st 

val col= #col head; 
val row= #row head; 

       in 

           if y=row andalso x=col then false  
           else members (y,x,tail)  

       end; 

Code 5. members function of the proposed game model 

fun membership(y,x,st:SHIPS):BOOL =  

if st= []  then true  

else        
let  

         val head = List.hd st 

val tail = List.tl st 
val col= #col head 

val row= #row head 

       in 
           if y=row andalso x=col then false 

           else membership (y,x,tail) 

      end; 

Code 6. membership function of the proposed game model 

fun checkup(y,x,rock,pirate,ships):BOOL = 

    if y> intialHeight  orelse y< 1 orelse x>intialWidth orelse 
x<1 then false 

    else if memberp(y,x,pirate) andalso members(y,x,rock) 

andalso membership(y,x,ships)  
         then true    

    else false 
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of the model in the current state of the system and the 
next system state. 

In our model, for example, when a merchant ship 
or a pirate advance, a new state is generated. Three 
CPN state-space nodes from a 2-dimensional 
merchant ship game are shown in Figure 3, where the 
place 'harbor' has a ship with no='1' in row '1' and 
column '1'. Node 3 in the state-space graph shows that 
the merchant advanced south, which is represented by 
row '2' and column '3'. Following that, node '5' 
displays the ship at the initial node's location. As a 
result, a circle of game agents could represent various 
nodes in the state space. However, a state-space 
explosion may occur, if a game is not carefully 
modeled in CPN. Hence, we present methods in the 
next part to circumvent the issue. 

fun IsDead(ship:SHIP,balk:BALK,ships)=   

let       

val r= #row ship 

val c= #col(ship); 

val sno= #no ship; 

val rocks= #rocks balk; 

val pirate= #pirates balk; 

val tr= #trow ship; 

val tc= #tcol ship; 

in 

   if r=tr andalso c=tc then  false 

   else (if  checkup(r,c+1,rocks,pirate,ships)=false andalso 

checkup(r,c-1,rocks,pirate,ships) =false andalso 

checkup(r+1,c,rocks, pirate,ships ) =false andalso 

checkup(r-1,c,rocks,pirate,ships)=false  

then true  else  false ) 

end 

 Code 7, isDead function of the proposed game model 

 

Figure. 2.  modeling of a merchant ship game on the CPN-tools 

5.1. Proposed methods for avoiding the state 

space explosion  

One of the most problematic issues in CPN 
models is the state space explosion. This problem 
leads to a block on model-checking the model. This 
paper proposes two methods for controlling the state-
space explosion: 1) Sorting the color sets; 2) Using 
complex functions on transitions; in other words, 
creating transitions that perform extensive processing 
on the system's state. 

When the placements of items in a list change, 
CPN tools assume a new state of the system; 
nevertheless, in most models, the list is used to 
represent a set, and the order of its components is 
irrelevant. Sorted tokens of a place, which is a list 
type in the model of this study, result in a huge 
reduction in the size of the state-space model.  The 
presented model sorts the list of pirates' color sets 
following each transition. This method avoids the 
needless generation of redundant states. Our study 
leads to the conclusion that sorting tokens of a list in 
the places of a model in CPN can reduce over 20 
percent of redundant state spaces generated by CPN 
tools.  

The second strategy advocated in this paper for 
modeling with CPN is to employ sophisticated CPN 
features such as defining list and record data types 
and using programming functions. Complex color 
sets (data types) serve as the foundation for the 
complex processing of system states via transition 
firing. Every fire of transitions in the CPN generates 
a state in the state-space graph; therefore, if we can 
build a transition that performs more operations per 
fire than a standard Petri net transition, we can avoid 
the production of redundant states in the model. For 
example, in the proposed model, we built advanced 
functions such as updateBalk and direct, which can 
update the direction of a merchant ship and a pirate at 
the same time, eliminating the need to update each 
actor in a game separately. This method alone can 
reduce redundant states by 50%. In addition, we also 
built advanced guard functions such as canGoUp, 
canGoLeft, canGoRight, canGoDown, IsGoal, and 
IsDead to determine whether a transaction can fire. 

 

Figure. 3. state-space of a 2-dimensional riddle game 
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Figure 4 shows the time of generating state space 
of the modeled game in various environment sizes. 
This result shows that all states of the modeled game 
can be calculated at a very convenient time. In our 
initial models, we were facing state space explosion 
and the CPN tools could not calculate all the states of 
the model in a convenient time.  However, applying 
the proposed methods dramatically reduced the state 
space size and calculation time which is shown in 
Figure 4. 

5.2. Proposed Model-Checking for the Model of 

a Game Riddle 

In this part, the state space graph of the proposed 
model will be analyzed. In addition, we also propose 
a method to recognize sequences of state space nodes 
leading to a termination of the game riddle. All the 
modeling of this paper has experimented with an Intel 
Core i7 3630QM processor and 16 GB of memory. 

Figure 5 illustrates the automatically generated 
complete state-space graph of the modeled game with 
the initial marking of the riddle (𝑎) using CPN tools. 
In another word, this graph display all possible events 
that could occur in the simulated game with initial 
markings of riddle (𝑎). Nodes with a red border line 
and font color (i.e. 9, 27) in Figure 5 are the dead 
markings which are also shown in the state-space 
report of the game model in Table 1. The first state of 
the state space graph is where that model can be 
started which is node 1. In our example of riddle (𝑎), 
the ship can only go up and down as shown in nodes 
2 and 3 in Figure 5, respectively. At the same time 
that the ship moves, pirates are also moving by each 
arc and node.  Each node of the generated state space 
of CPN tools shows the id of a node at the top and 
two numbers separated by ‘:’; where the first number 
indicates the number of incoming nodes and the latter 
denotes the number of outgoing nodes according to 
Figure 5.  

The Riddle (𝛽 ) of this paper is a more complex 
environment of the game to examine the speed of the 
proposed validation and verification functions. 
Riddle (𝛽) in Figure 1 shows the abstract picture of 
the configuration of the second example. The graph 
of state space of the second example, shown in Table 
1, has 609 nodes and 1326 edges. The presented 
methods to reduce the state-space volume and avoid 
its explosion enabled us to run our validation and 
verification tests in the model. The experimental 
implementation illustrates that the presented 
approach in this article is suitable for the validation 
and verification of complex models of Petri Net and 
the extraction of the ideal scenarios from its state 
space. Figure 6 shows the state space graph nodes and 
arc size for various dimensions of the game puzzle. 
We altered the initial markings of the game riddle 
between 10x10 (10 rows and 10 columns) and 50x50, 
and then we demonstrated in Figure 6 the number of 

nodes and arcs that CPN tools generates 
automatically from the model. The number of nodes 
is the all states that can be generated out of the CPN 
tools, and arcs show the transition between them. 

5.3. Proposed Functions for Model-Checking of 

the Modeled Game Riddle 

In this part, we propose a methodology to 
discover the expected scenarios from state space, by 
another meaning, methods to identify different sets of  

 

Figure. 4. time to calculate state space for various dimensions of 

the game riddle 

 
Figure. 5. A complete state-space graph of riddle (𝑎) generated 

by CPN-Tools  

Table 1. Report of generated state space of the riddle (𝑎) by 

CPN-Tools 

Properties of the 

proposed model 
Riddle (𝒂) Riddle (𝜷) 

Number of Nodes 27 609 

Number of Arcs 49 1326 

Time to generate 

state-space 
0 Sec 1 Sec 

Status of state-space Full Full 

Number of Dead 
marks 

2 17 

Id of Dead markings 27, 9 
594,580,58,561, 

537, … 
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Figure. 6.  state space graph nodes and arc size for various 

dimensions of the game puzzle. 

sequential state space nodes that follow a scenario 
from the start to the termination of the model will be 
proposed.  

Dead markings of the state-space graph are 
divided into two different categories 1) solution of the 
riddle and 2) gamer failure. For example, in our 
model, when a merchant ship successfully reaches its 
destination, we call that the game successfully 
terminated. However, if a pirate captures or destroys 
all the merchant ships then it will be terminated by 
failure. 

We can discover state space nodes from the 
starting state to the dead marking states by knowing 
the success and failure dead markings. Hence, we 
propose methods for discovering success and failure 
dead markings, as well as a set of paths from the start 
state to these dead markings and explicit paths (paths 
without an unnecessary circle) from the start to a dead 
marking. We also find the complexity of a game by 
model-checking its state space. The complexity of the 
game is defined as the ratio of explicit successful 
solution paths to the total number of solution paths 
(both success and failure solution paths). 

Let us call the set of connected nodes from the 
start to a dead marking node as a solution path. 
Therefore, based on the complexity of the modeled 
game, it can have many solution paths, however, 
these paths may contain unnecessary circles in the 
state space.  Therefore, in the following, we will 
illustrate advanced ML functions for model-checking 
to discover different game features. 

Numerous functions are written to model 
checking of the proposed game model. This part only 
illustrates important model-checking functions and 
briefly describes the remaining. Table 2 provides an 
overview of the functions used that are not covered in 
an ML code format. 

5.4. Model Checking of the Successful 

Termination Scenarios for the Game Riddle 

Successful termination is dependent on our 
concept in the game riddle. In the modeled game 
riddle, when a merchant ship reaches its destination 

in a two-dimensional environment, CPN considers it 
as the termination of the game riddle since no 
transition in the model will be enabled.  

We proposed the successDeadmarkings function 
of the state space to find a list of dead markings 
known as a successful termination of the game riddle. 
It traverses the dead marking list and returns a list of 
dead marking state nodes where the merchant ship 
has arrived at its destination; these dead markings are 
known as the game riddle's success dead markings. 
Code 8 displays the function's ML code. We can use 
the successDeadmarkings function to find the 
shortest scenario from the state space of the modeled 
game riddle.  Hence, the shortest scenario to game 
termination is another property of a game riddle that 
can be discovered by model-checking. This can be 
regarded as a criterion for assessing the complexity of 
the modeled game riddle. Therefore, we proposed the 
function ShortestSenario in Code 9, which receives a 
list of dead markings and returns the shortest dead 
marking node.  

When the shortest dead marking node of the state 
space is found, a list of state nodes from the beginning 
node to the dead marking node (solution path) can be 
found by calling the following function: 
NodesInPath(1, ShortestSenario()).  

Using the NodesInPath and ShortestSenario 
functions, the CPN-tools software reaches four 
sequential state space nodes (solution path) from state 
1 to a dead marking state 9, as illustrated in Figure 7. 
In this figure, node 1 shows the place harbor 
containing the merchant ship with id 1 in row 2 and 
column 4. In node 3, the location of the merchant ship 
is updated to row 3 and column 4. In node 6, the 
merchant ship has moved to row 4 and column 4. 
Node 9, shows the state that the merchant ship marker 
transitioned from place harbor to place destination, 
where no transition is enabled anymore which 
indicates a dead marking.  

5.5. Model Checking for the Presence of a 

Deadlock in the Modeled Game Riddle 

Formal methods are used to evaluate design 
defects. If a gaming riddle reaches a point when no 
action can be taken and the riddle can not be solved 
(in this case, all ships have not arrived at their 
destination), it signifies that there is a deadline in the 
riddle. To avoid deadlines, we created the 
‘DeadlockExistance’ function that analyzes the 
modeled game state space demonstrated in Code 10. 
Testing the code for both presented game riddles (𝑎) 
and (𝛽) in CPN tools will return ‘False’ which 
indicates the riddles do not encounter deadlock.   

5.6. Model Checking for Solution Paths in the 

Modeled Game Riddle 

In this part, we will illustrate how model- checking
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Table 2. Notations of functions used in the proposed model 

Description of the proposed model-checking functions 

RemoveFromList1(list1, list2) Returns list1 - list2 

List.length list Returns count of a list of members 

extractColAgent Extracts the longitude (column) location of a ship 

extractRowAgent Extracts the latitude (row) location of a ship 

List.hd Returns the first content of the list 

List.tail Returns all content of the list except the first one 

hasCommonNodes 
This function takes two solution paths and returns true if they have at least one common 

node, and false otherwise. 

isMemberOfPath 
Receive a state node and a solution path and determine whether or not a merchant ship has 

passed through the locations of the solution path. 

nodeRepetition 

Receive a state node and solution path and based on the merchant ships’ location of the state 
node, calculate the number of times, they were standing in the same location on the solution 

path states.  

failDeadmarkings Returns a list of dead markings that the merchant ship is destroyed by pirates.  

NodesInPath(s,e) Find the shortest state nodes connecting the nodes s and e. 

ContainCommonNodes (n, list) Receive a state space node and a list then returns true if the node is in the list. 

solutionPathsDetail 

Receives a solution path (list of state space node) and describes the merchant ship locations in 

a list of lists (each list is solution path) from start to a dead marking. Only works for the riddles 

that one merchant ship is defined.   

RemoveFromList Receives two lists and subtract them (i.e., list1- list2) 

ListDeadmarkings This is an inbuilt CPN tools function to obtain a list of dead markings from the state space 

NodesInPath 
This is an inbuilt CPN tools function that receives two node states of the state space graph and 

returns a list of shortest sequential nodes states between them. 

OutNodes 
This is an inbuilt CPN tools function that receives an id of a state space node and returns a list 

of its output nodes in the state space.  

ShortestDeadmarking 
Receives a list of dead markings and returns an integer as an id of the shortest dead marking 

(steps from start to termination) 

 

can help discover desired scenarios of the modeled 
case. Therefore, we investigate the complexity of a 
riddle utilizing the model's automatically created 
state space for the modeled game riddle by 
determining the number of solution paths to success 
and failure. Success solution path means the process 
of a game from start to successful finish of the game 
riddle. Here it means paths that a merchant ship 
reaches its destination at the end of the game. Three 
straightforward explicit success solution paths can be 
deducted for the riddle (a) of the modeled game 
which is illustrated in Figure 8.  

We will illustrate functions to acquire these 
solution paths from the state space of the modeled 
game riddle. Therefore, only by changing the initial 
markings of the modeled game, we can study 
different riddles by their state space. Different 
features of the game riddle such as solution paths, 
deadlines, and the complexity of the game riddle can 
be revealed using the proposed functions at the 
following. Figure 9 demonstrates the proposed 
function that we used for model-checking and 
analyses of the state space graph.  

PathExtractor is the first function to extract 
simple movements of a merchant ship from the 
modeled riddle. It is a recursive function that can be 
recalled at most n times, where n is the number of 
nodes in the state space. It accepts as a first argument 
the node index at which the state space search begins 
(i.e., index 1 at the first call). In each recursion, it 
finds a list of reachable nodes in the first argument 
and adds to the second argument. In every recursion, 
the first parameter (state node) is tested to determine 
if it is eligible; if it is, the function will invoke the 
state node’s output nodes. Code 11 illustrates the ML 
code of the PathExtractor.  

Two constraints apply to an eligible node: 1) its 
index is not repeated in any of its ancestor nodes in 
the list of the second argument (i.e. a path from the 
initial state of the system to that node) 2) the position 
of the merchant ship in that node is not repeated in 
any of the predecessor nodes; however, an exception 
occurs when all of the index node children are 
repeated in the path, in which case it is eligible.  This 
function is an application-specific extension of a BFS 
algorithm. To illustrate, consider the function called  
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fun successDeadmarkings() =  

let    
val harbor=List.hd (Mark.PAgent 'harbor 1 1) 

val harborlen=List.length harbor 

val L= ListDeadMarkings() 
val len = List.length( L ) 

val n = ref (List.nth( L, 0)) 

val dead=ref (Mark.PAgent'destination 1 (!n)) 
val lendead= ref 0 

val j= ref 0 

val ls= ref [] 
in 

while !j<len do( 
n := List. Hd; 

dead:= Mark.PAgent'destination 1 (!n); 

lendead:= List.length(!dead); 
if !lendead<>0 then ls:= !ls ^^[!n] 

else ls:= !ls; 

j:= !j+1); 
!ls 

end 

Code 8. successDeadmarkings function of MLcode 

fun ShortestSenario(deadstates):INT =   
let   

val index= ref (List.hd deadstates) 

val i= ref 0 
val min= ref (!index) 

in 

while !i<(List.length deadstates) do( 
  let 

val item= ref (List.nth 

(deadstates,!i)) 
  in 

 index:= !item; 

 if !index< !min then min:= 
!index 

 else min:= !min; 

 i:= !i+1 
       end 

); 
!min 

end; 

Code 9. ShortestSenario to find the id of the shortest dead 

marking state 

 

Figure. 7.  State space of the CPN tools from the modeled game 

fun DeadlockExistance()   =  

let 

val k=List.hd (Mark.mship'harbor 1 1) 

val lengh=List.length k 

val lst=UpperMultiSet 

(Mark.mship'destination 1) 

val lenlst=List.length lst ; 
in 

lenlst=lengh 

end 

Code 10, DeadlockExistance function determines whether or not 

a deadlock is possible in the modeled game puzzle 

fun pathExtractor(s:INT, path:PATH):PATHS= 
let  

val outs= OutNodes(s)  

val souts=RemoveFromList (outs, path) 
val len= List.length souts 

val i = ref (len-1) 

val ls= ref [] 
val q= ref [] 

val q2= ref[] 

val n=ref 0 
in 

while !i>=0 do( 

n:= List.nth(souts,!i); 
if  (isMemberOfPath(!n, path)  andalso len>= 

nodeRepetition (!n, path)) then 

i:=  !i -1 
else 

(q:= path^^ [!n]; 

ls := !ls^^[!q]^^ pathExtractor(!n, !q); 
i := !i - 1) 

); 

!ls 
end 

Code 11, pathExtractor to find eligible nodes from the parameter 

node 

  
Figure. 8. Schematic description of extracted paths by function 

“PathExtractor” from the graph of Figure 2 and riddle of Figure 

1. 
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Figure. 9. function structure diagram of the state space analysis 

functions, rectangles are the proposed functions, rectangles with 

a dashed border are CPN tools inbuilt functions.  

PathExtractor (4, [1, 2]) of the graph of state-space in 
the riddle (a). It results in a recursive call to 
PathExtractor (7, [1, 2, 4]) and PathExtractor (8, [1, 
2, 4]). Some recursive calls to the PathExtractor 
function may result in the development of the cycle. 
To eliminate these loops, we implemented the 
RemoveFromList method. If any of the nodes 
available with one step from the first input parameter 
node of function calls present in the second parameter 
path, the recursive call to that node will be skipped by 
using the function RemoveFromList, preventing the 
formation of a cycle in the extracted paths.   

PathExtractor can be used to extract all of the 
ship's simple movement paths (1, []). However, we 
require solution paths (game scenarios) from the start 
node of the state space to a dead marking which is the 
‘solution paths’ function defined in Code 12. This 
function receives a list of all cycle-free paths utilizing 
calling PathExtractor and a list of dead markings of 
the state space, respectively. Then, it selects from the 
final list only solution paths, based on the dead 
markings it received, and eliminates those paths that 
do not terminate in any of the received deadmarkings 
in the second argument. 

We have executed the model checking proposed 
functions for the riddle (a) using CPN tools which are 
demonstrated in Figure 10. As can be seen in the 
figure, the result of executing solution paths returns 
three solution paths as a list of lists like the schematic 
paths of Figure 8. The function ‘solutionPathsDetail’ 
in Figure 11 shows the location of a merchant ship 
step by step in the acquired solution paths.  

We can alter the second argument of the solution 
path function to failDeadmarkings to identify failed 
solution paths (failure scenarios of the game's 
puzzle).  

Figure 11 also shows these solution paths based 
on the state space graph nodes in the CPN tools.  This 
figure was generated using CPN tools; however, the 
arc's text and solution path numbers have been added 
to make it more understandable. Arcs depict the firing 
of a transition in the CPN-Tools model. The phrase 
on the arc's edge denotes a transition and type of 
change in the system's states. The word preceding ":" 
in the statement denotes the ship ID. The word  

 

Figure. 10. executed proposed functions of the state space for the 

riddle (𝒂) in the CPN tools 

 

Figure. 11. extracted paths of top-level call of function 

PathExtractor from riddle (𝒂) 

fun SolutionPaths(ls:PATHS,dk:PATH):PATHS= 
let 

val len= List.length ls 

val i = ref 0 
val n= ref [] 

val st= ref [] 

val bol= ref true 
in 

while !i<len do( 

n := List.nth(ls, !i) ; 
if ContainCommonNodes(!n,dk)= true then 

st:= !st ^^ [!n] 

else 
st:= !st; 

i := !i + 1); 

!st 
end 

 

Code 12. Solution paths function to discover explicit paths to 

termination of the riddle 

pathExtractor

solutionPaths

successDeadmarkings DeadlockExistancefailDeadmarkings

ContainCommonNodes

isMemberOfPath

nodeRepetition 
ShortestSenario

solutionPathsDetail

NodesInPath

ListDeadMarkings

RemoveFromList

OutNodes
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following the ":" is a pass marker consisting of Up, 
Down, Right, and Left, which implies traveling to the 
north, south, east, and west, respectively. The term 
Goal denotes the merchant ship's arrival at the target; 
for example, the S1: Up statement in Figure 11 
denotes traveling north to the merchant ship with ID 
1. 

5.7. Complexity Metric of the Proposed Model 

Another effective indicator for assessing the 
complexity of the puzzle game is the number of 
alternative solution paths that can lead to a successful 
game solution or a game over. The bigger the number 
of individual situations leading to a successful game 
solution, the easier the game.  

This paper proposes a comparable metric, the 
ratio of successful scenarios to failed scenarios, as a 
measure of the puzzle game's complexity. Equ (1) 
calculates the total number of successful scenarios, 
while Equ (2) indicates failed scenarios that lead to 
the termination of a specific riddle. Equ (3) defines 
the riddle complexity of the game, denoted by ω. 

𝑆𝑆 = ∑[𝑆𝑖 = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑝𝑎𝑡ℎ𝑠]

𝑛

𝑖=1

 (1) 

𝐹𝑆 = ∑[𝐹𝑖 = 𝑓𝑎𝑖𝑙𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑝𝑎𝑡ℎ𝑠]

𝑛

𝑖=1

 (2) 

     𝜔 =
𝐹𝑆

𝑆𝑆 + 𝐹𝑆
 (3) 

Examination of the state-space graph for the 
riddle (𝛽), extracts 542 possible scenarios for solving 
the modeled puzzle game. The number of solution 
paths leading to a pirate blockade of the ship before it 
arrives at its destination, as determined by an analysis 
of the state-space graph, is 380. The length of the 
shortest path from the graph of state space that leads 
to the successful end of the game riddle is the second 
metric of riddle complexity. A low number for this 
statistic indicates that the puzzle is simple. 

Figure 12 depicts the average complexity of a 
game riddle determined from Equ (1) with various 
pirate numbers and their sight after 10 experiments in 
a 15x15 (15 rows and 15 columns) riddle with 
random pirate and ship locations. As shown, pirates’ 
sight (destruction of power radios) and the number of 
pirates have a direct impact on the complexity of a 
game riddle.  Another aspect that is clear from the 
results is that increasing pirate sight has a more 
complex effect on the game riddle than increasing 
pirate number. 

Figure 13 shows the shortest steps (movement) of 
the merchant ship to succeed or fail in the modeled 
game. This result was acquired in a 10x10 area of the 
modeled game, using the average values of ten 
experiments with different pirate counts and pirate 
sight. The results reveal that raising the pirate sight 
and pirate number leads to fewer steps to failure and 
more steps to success in the game. For example, when 
the pirate sight and number are one, the shortest step 
to success is 14 and the shortest step to failure is 10. 

6. Conclusion 

The CPN using the ML programming language is 
one of the most powerful formal tools for system 
behavioral analysis. This paper introduced the 
modeling of the Merchant Ship puzzle game. It 
proposed two innovative techniques to address state-
space explosion, a key limitation of CPNs that 
hinders their application to large and complex 
systems. By integrating advanced data structures, 
programming functions, and a model-checking 
technique implemented in ML, we developed a 
framework capable of effectively generating and 
analyzing state-space graphs. In addition, we propose 
two metrics for evaluating game complexity and 
player performance: the success-to-total scenario 
ratio and the minimal trajectory length. These metrics 
provide a quantitative evaluation framework for 
comparing riddles across similar puzzle games. We 
also detail the calculation techniques, their 
implementation, and the resulting efficiency   

 
Figure 12: Complexity of the game riddle in a two-dimensional 

environment 

 

 

Figure 13: Shortest steps to success and failure termination of the 

game riddle 
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improvements, demonstrating that our methods 
significantly reduce the computational overhead to 
acceptable levels. In the future, timed and hierarchal 
colored Petri net and its validation methods through 
time and state space will be studied on time-restricted 
games.  
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