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A B S T R A C T  

Multilevel thresholding is recognized as a fast and effective technique for image segmentation. Although 

exhaustive search provides a comprehensive solution, its computational complexity increases with the number 

of threshold levels. This paper introduces a novel meta-heuristic search algorithm called Ensemble Searching 

(ES), designed to tackle complex nonlinear optimization problems. The focus is on applying ES to image 

multilevel thresholding. Initially, the population is divided into predefined groups, each guided by an 

evolutionary algorithm that independently searches for better positions within the search space. If an algorithm 

encounters a local optimum, a diversity-maintaining mechanism is activated to relocate the group. Throughout 

the iterative process, all algorithms share the best global solution�(Gbest). The proposed structure’s effectiveness 
is evaluated using ten test images and the energy curve method. Kapur’s entropy, a well-established measure, 

is used to assess the algorithm’s performance. A comparative analysis with eight different search algorithms 
demonstrates the proposed framework’s rapid convergence, confirming its efficiency and effectiveness. 

Keywords— Image segmentation, multilevel thresholding, ensemble searching, energy curve, Kapur entropy, 

swarm intelligence. 

 

1. Introduction 

Image segmentation is crucial for analyzing and 
interpreting images. Multi-level thresholding is a 
foundational technique for isolating significant 
objects across various domains, including image 
analysis, character recognition, target recognition, 
MPEG-4 object-based coding, map processing, and 
computer vision. Image segmentation methodologies 
are categorized into parametric and non-parametric 
approaches. Parametric methods estimate statistical 
parameters for two or more classes, which can be 
time-intensive and heavily reliant on initial 
conditions. Conversely, non-parametric methods 
determine threshold values by optimizing evaluation 
criteria, such as Otsu and Kapur measurements. The 
primary challenge in multi-level thresholding is 
identifying threshold values that maximize these 
criteria. Meta-heuristic algorithms have shown great 
promise in multi-level image thresholding, but there 

are still several research gaps that need to be 
addressed: 

1. Automatic Threshold Determination: 
Determining the optimal number of thresholds 
automatically remains a difficult task. Most current 
methods require manual input or predefined 
parameters, which can limit their applicability in real-
world scenarios. 

2. Diversity Preservation: Ensuring diversity in 
the population of solutions is crucial for the success 
of meta-heuristic algorithms. Techniques to maintain 
or enhance diversity during the optimization process 
are still being explored. 

3. Hybrid Approaches: Combining meta-heuristic 
algorithms with other optimization techniques or 
machine learning methods could potentially improve 
performance. However, finding the right combination 
and integration strategy is a complex task. 
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To tackle these gaps, a new framework of meta-
heuristic algorithms is proposed in this paper. The 
main contributions of this work are listed as: 

1. A novel structure of meta-heuristic algorithm is 
proposed in this paper, which leverages the benefits 
of all combined algorithms. 

2. The introduced methodology is equipped with 
a Darwinian rule, which improves the diversity of the 
population. 

3. After conducting numerical evaluations and 
nonparametric statistical analysis, it was determined 
that the proposed method consistently delivers results 
that are highly comparable to, and often superior to, 
standalone algorithms. 

2. Related Works 

Nature-inspired algorithms frequently face sub-
optimal regions, especially in high-dimensional 
spaces, and need finely-tuned parameters to perform 
effectively. The complexity introduced by numerous 
control factors represents a significant limitation of 
heuristic search algorithms. In response to these 
challenges, a variety of algorithms have emerged 
over recent decades [1-2]. In the realm of multilevel 
thresholding, methods leveraging metaheuristic 
algorithms have been introduced, including krill herd 
[3], fruit fly [4], thermal exchange [5], pigeon [6], 
differential evolution [7-10], human-mental [11], 
elephant herd [12], symbiotic organisms [13], moth 
swarm [14], grasshopper [15], and bird mating [16]. 
Cuckoo Search (CS) algorithm was applied in 
multilevel thresholding to reduce its complexity [17]. 
A chaotic version of Darwinian Particle Swarm 
Optimization was suggested to fly away from the 
local optima [18]. Chakraborty et al. modified 
Particle Swarm Optimization (PSO) algorithm by 
decomposing high dimensional population into some 
one-dimensional populations to escape from 
premature converge [19]. In multilevel thresholding 
literature, Gao et al. improved Artificial Bee Colony 
(ABC) algorithm by defining adaptive parameters 
and accelerating convergence rate [20]. Water Cycle 
algorithm is another bio-inspired search optimizer 
which was considered as an efficient method and was 
applied to color images [21]. A multilevel image 
segmentation method by bat algorithm with Kapur, 
Otsu, Renyi and Shannon entropies was published for 
color images [22]. Another research, a non-local 
mean 2D histogram was introduced for multilevel 
thresholding and used by gravitational search 
algorithm [23]. Oliva et al. applied antlion optimizer 
and sine cosine algorithms to thresholding, using 
energy curve, to consider the spatial information of 
neighbour pixels [24]. In another research, a novel 
thresholding method using animal migration 
optimization was reported for image segmentation 
[25]. Kotte et al. implemented adaptive Wind Driven 
algorithm to find the threshold values of MRI images 
and the comparative results were presented in view of 
between-class and Kapur entropy [26]. 

This study presents a new structure for heuristic 
search algorithms, improving the efficiency of 
optimization methods. It employs multilevel 
thresholding and introduces a parallel framework that 
reduces iterations and prevents individuals from 
getting trapped in local sub-regions. The algorithm is 
applied to the energy curve of gray images. tionally, 
eight renowned methods—differential evolution 
(DE) [27], particle swarm optimization (PSO) [28], 
bat algorithm search (BAT) [29], flower pollination 
algorithm (FPA) [30], artificial bee colony (ABC) 
[31], harmony search (HS) [32], grey wolf optimizer 
(GWO) [33], and whale optimization algorithm 
(WOA) [34]—are implemented and evaluated 
against benchmark images using Kapur entropy. The 
subsequent sections of this work are organized as 
follows: The next section reviews the related works 
on this issue. Section 3 outlines the fundamental 
theory of multilevel thresholding, histogram, energy 
curve, and Kapur criterion. Section 4 details the 
proposed ensemble searching algorithm. Section 5 
presents empirical results, performance evaluation, 
and search capability. The final section discusses 
conclusions and directions for future research. 

3. Image Thresholding 

Multilevel thresholding is a technique used to 
segment an image I into multiple regions by applying 
t threshold values. In the context of a grayscale image 
with L intensity levels, multilevel thresholding can be 
mathematically represented as Equ(1): 

𝑅0 = {𝑔(𝑥, 𝑦) ∈ 𝐼|0 ≤ 𝑔(𝑥, 𝑦) ≤ 𝑡1 − 1 
⋮                                                                                    

𝑅𝐾 = {𝑔(𝑥, 𝑦) ∈ 𝐼|𝑡𝐾 ≤ 𝑔(𝑥, 𝑦) ≤ 𝐿 − 1     (1) 

In the given context, g(x,y) represents a pixel in 
the image,  𝑡𝑖 where ( i=1, …, k ) denotes a threshold 
value, and K is the total number of thresholds. The 
process of image thresholding constitutes a K-
dimensional problem. To address this optimization 
challenge, the optimal set of thresholds (𝑡1, 𝑡2, … , 
𝑡𝐾) is determined to optimize a cost function, such as 
those proposed by Otsu and Kapur. Utilizing an 
exhaustive search algorithm to identify these 
thresholds becomes impractical and time-intensive as 
the problem scales to two or more levels. The 
complexity of this task is equivalent to a K-
combination of L elements as Equ(2): 

(𝐿
𝐾
) =

𝐿!

(𝐿−𝐾)!𝐾!
             (2) 

Figure 1.a illustrates the computational load for 
L=256. Despite threshold repetitions, multilevel 
thresholding remains a K-dimensional challenge, 
requiring exploration within a discrete K-
dimensional hypercube ranging from 0 to L-1 along 
each axis. Consequently, the problem’s complexity is 
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on the order of 𝐿𝐾 . Figure 1.b depicts viable solutions 
when K=3. These visual representations underscore 
that an exhaustive search is not only inefficient but 
also demands significant computational resources to 
identify optimal thresholds. This inefficiency 
necessitates the adoption of bio-inspired search 
algorithms for resolving multilevel thresholding 
issues. 

3.1. Image Thresholding Fundamentals 

Given an image with L gray levels ranging from 
{0, 1, …, L-1}, the normalized histogram can be 
derived as Equ(3): 

𝑝𝑖 =
ℎ(𝑖)

𝑁
     0 ≤ 𝑖 ≤ 𝐿 − 1         (3) 

In this context, 𝑝𝑖  represents the probability of 
intensity level i, while N signifies the total count of 
pixels within the image, and h(i) indicates the number 
of pixels that share the identical gray intensity i. The 

equation 𝑁 = ∑ 𝑝𝑖
𝐿−1
𝑖=0   encapsulates this relationship. 

However, this approach overlooks the neighborhood 
factor, a crucial element often missed in histograms. 
In multilevel thresholding, another key criterion is the 
energy function. To accurately define an image’s 
energy function, it is essential to first introduce a 
pixel’s neighborhood system. The neighborhood 
mask N of order d for a pixel at position (i, j) is 

defined as 𝑁𝑝𝑞
𝑑 = {(𝑖 + 𝑢, 𝑗 + 𝑣), (𝑢, 𝑣) ∈ 𝑁𝑑)} 

[35]. Our focus is solely on the second-order 
neighborhood, denoted as d=2. The second-order 

neighborhood mask ( 𝑁𝑖𝑗
2  ) is depicted in Figure 2. 

The energy function is computed for each distinct 
gray level. For a specific gray level l, we construct a 
binary matrix  𝐵𝑙  of dimensions 𝑚 × 𝑛 (matching the 

original image’s size) defined by 𝐵𝑙 = {𝑏𝑖𝑗 , 1 ≤ i ≤

𝑚, 1 ≤ 𝑗 ≤ 𝑛}, where 𝑏𝑖𝑗 = −1  if ( 𝑔(𝑥, 𝑦) > 𝑙; 
otherwise, 𝑏𝑖𝑗 = −1. Essentially, 𝐵𝑙  designates 

whether a pixel in the original image possesses an 
intensity that is either below or above the threshold 
level l. In a similar vein, we introduce another matrix 

C as 𝐶 = {𝑐𝑖𝑗 , 1 ≤ i ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛}, populated 

entirely with ones, that is, 𝑐𝑖𝑗 = 1 for all (i, j). The 

energy function at gray level l is then formulated as 
Equ(4): 

𝐸𝑙 = ∑ ∑ ∑ (𝑐𝑖𝑗𝑐𝑝𝑞 − 𝑏𝑖𝑗𝑏𝑝𝑞)𝑝𝑞∈𝑁𝑖𝑗
2

𝑛
𝑗=1

𝑚
𝑖=1       (4) 

The matrix C is constructed to ensure the positive 
energy condition, where 𝐸𝑙 ≥ 0. Unlike the 
histogram diagram, the energy curve incorporates 
spatial information from adjacent pixels. This results 
in a more seamless and accurate differentiation 
between various objects within the image. 

 
a) complexity of thresholding problem   

 
b) Searching space K = 3 

Figure. 1. image thresholding problem 

(𝑖 − 1, 𝑗 − 1) (𝑖 − 1, 𝑗) (𝑖 − 1, 𝑗 + 1) 

(𝑖, 𝑗 − 1) (𝑖, 𝑗) (𝑖, 𝑗 + 1) 

(𝑖 + 1, 𝑗 − 1) (𝑖 + 1, 𝑗) (𝑖 + 1, 𝑗 + 1) 

Figure. 2. Neighbourhood of pixel (𝑖, 𝑗) 

3.2. Kapur entropy 

 The Kapur method, an entropy-driven criterion, 
seeks to centralize the probability density function 
(PDF) distribution for each segment within the 
histogram [36]. Initially introduced for bi-level 
thresholding, it focuses on finding the optimal 
threshold to segregate the object from its background. 
This methodology has been subsequently extended to 
multilevel thresholding and has been incorporated 
into numerous research investigations [37]. The issue 
of thresholding is described as Equ(5). 

Maximize 𝑓(𝑡0, … , 𝑡𝐾) = ∑ 𝐻𝑖
𝐾
𝑖=0  

Where 

 𝐻0 = −∑
𝑝𝑖

𝜔0
ln

𝑝𝑖

𝜔0

𝑡1−1
𝑖=0   , 𝜔0 = ∑ 𝑝𝑖

𝑡1−1
𝑖=0  

⋮ 

     𝐻𝐾 = −∑
𝑝𝑖

𝜔𝐾
ln

𝑝𝑖

𝜔𝐾

𝐿−1
𝑖=𝑡𝐾

  , 𝜔𝐾 = ∑ 𝑝𝑖
𝐿−1
𝑖=𝑡𝐾

   (5) 

The Kapur fitness function is established as the 
objective function within heuristic search algorithms. 
The goal is to ascertain a set of multiple thresholds 
𝑡1, … , 𝑡𝐾  that will optimize this function. 



International Journal of Web Research, Vol. 7, No. 3, 2024 

18 

4. The Proposed Structure 

There are two major problems in heuristic search 
algorithms: 

1-If the global optimum is not presented to 
individual routines, it will not be detected. Therefore, 
the method of searching the space is crucial. Each 
algorithm has a unique technique to cover the space. 
For example, combining a circular search like the 
Whale Optimization Algorithm (WOA) with a linear 
search like the Crow Search Algorithm (CSA) can be 
more effective. 

2-All heuristic search algorithms struggle with 
getting stuck in suboptimal regions. Avoiding 
premature convergence is a significant weakness, and 
many strategies have been proposed in the literature 
to address this issue. In this study, the introduced 
algorithm incorporates a strategy to bypass local 
optima. 

With these assumptions, the ensemble searching 
structure can be proposed. Figure 3 shows the 
framework of the ensemble searching. Ensemble 
searching structures outperform other methods 
because meta-heuristic algorithms have different 
procedures to reach the global optimum. Each 
procedure can lead the algorithm to obtain the best 
answer; however, they are not complete, and the 
success rate of each algorithm is limited. For 
example, PSO searches the space linearly following 
Gbest, while WOA moves in a spiral. By combining 
these two algorithms, a method is created that can 
search the space both linearly and spirally. 
Additionally, this combination helps the algorithm 
escape local optima. 

 

Figure. 3. Structure of ensemble searching 

To improve the efficiency of searching, 
Darwinian theory is also applied. Darwinian theory, 
also referred to as natural selection or survival of the 
fittest, posits that the robust members of a population 
thrive and reproduce, while the weaker ones perish 
and are weeded out. This concept is operationalized 
in the algorithm through a parameter called 
MOTIONLESS, which tracks the iterations a group 
remains stationary. The methodology of Darwinian 
ensemble searching is depicted in Figure. 4. 

The implementation process unfolds as outlined: 
An initial population is established by randomly 
generating N particles, each with K dimensions as 
Equ(6): 

𝑥𝑖⃑⃑⃑  = 𝐿𝑚𝑖𝑛 + (𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛) × 𝑟𝑎𝑛𝑑      (6) 

 

Figure. 4.  Flowchart of Darwinian ensemble searching 
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Within this framework, rand represents a random 
number selected from the interval ([0,1]), while  𝐿𝑚𝑖𝑛  
and 𝐿𝑚𝑎𝑥 denote the minimum and maximum 
grayscale levels of the image, respectively, for 
i=1,…,N. To avoid expending time on infeasible 
solutions, 𝐿𝑚𝑖𝑛  and 𝐿𝑚𝑎𝑥  are not fixed at 0 and 255. 
Next, the initial solutions are determined by 
calculating the fitness values of the particles. The 
algorithm then sets various control parameters, such 
as weighting values, maximum iterations, the range 
of group numbers, a cap on group members, and 
MOTIONLESS. It organizes members into G groups, 
each steered by a nature-inspired algorithm aiming 
for the Global optimum. Concurrent operation of 
groups within the same search domain bolsters search 
capabilities and hastens convergence. 

To circumvent entrapment in sub-optimal zones, 
a safeguarding mechanism is in place. The fitness of 
each group member is assessed, with the premier 
point discovered by a group designated as GroupBest, 
and the supreme position identified by all participants 
termed GBest. The ensemble search structure is 
managed by incorporating GroupBest into the 
algorithms’ update equations. The new position for 
each individual i is thus established as Equ(7): 

𝑋𝑖
𝑡+1 = 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑡𝑒𝑟𝑚𝑠

+ 𝛼1  × 𝑟1 × (𝐺𝑟𝑜𝑢𝑝𝐵𝑒𝑠𝑡𝑖
𝑡 − 𝑋𝑖

𝑡)
+ 𝛼2 × 𝑟2 × (𝐺𝐵𝑒𝑠𝑡 − 𝑋𝑖

𝑡)       (7) 

Here 𝛼1 and 𝛼2 represent the step sizes for 
exploration and exploitation, respectively, 𝑟1 and 𝑟2 
come from [0,1] distribution and 𝑡 indicates current 
iteration. 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑡𝑒𝑟𝑚𝑠 depends on updating the 
relation of each algorithm. For example, in Cuckoo 
Search algorithm (CS), the updating rule is given by 
Equ(8): 

         𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝛼(𝑥𝑖
𝑡 − 𝐺𝐵𝑒𝑠𝑡)𝐿𝑒𝑣𝑦(𝜆)      (8) 

The location of nest i (i = 1, 2, ..., N) in the next 

generation t + 1 is denoted by 𝑥𝑖
𝑡+1. This position is 

determined by three factors: a step-size control 
parameter (α), the current best solution found in the 
iteration (GBest), and a random walk term (Levy(λ)) 
drawn from a Levy distribution. Equation (9) 
expresses this relationship 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝛼1  × 𝐿𝑒𝑣𝑦(𝜆) × (𝑃𝐵𝑒𝑠𝑡𝑖
𝑡 − 𝑋𝑖

𝑡) +
        𝛼2  × 𝐿𝑒𝑣𝑦(𝜆) × (𝐺𝐵𝑒𝑠𝑡 − 𝑋𝑖

𝑡)                       (9) 

 In the optimization process, GBest guides the 
particles towards significant regions, while Pbest 
assists them in discovering new optimal solutions. 

Consider 𝑋𝑖
𝑡 = [𝑥𝑖1

𝑡 …𝑥𝑖𝐾
𝑡 ] as the newly generated 

position in a K-dimensional space during iteration t. 
The subsequent step involves verifying the viability 
of these solutions. Should a position fall outside the 

predefined boundaries, it will be adjusted through a 
specific mapping technique to ensure its correctness 
as Equ(10): 

𝑥𝑖𝑝
𝑡 = {

𝐿 − 1              𝑥𝑖𝑝
𝑡 > 𝐿 − 1   

𝑥𝑖𝑝
𝑡           0 ≤ 𝑥𝑖𝑝

𝑡 ≤ 𝐿 − 1  

0                           𝑥𝑖𝑝
𝑡 < 0

      

                       , 𝑝 = 1,… , 𝐾                        (10) 

The fitness scores of all candidates are reassessed, 
and the PBest, GroupBest, and GBest metrics are 
modified as needed. When a group discovers an 
improved solution, its stagnancy count remains at 
zero, signifying that its GroupBest is refreshed each 
cycle. A group maintaining zero stagnancy with 
fewer members than the maximum allowed may 
introduce a new member, created randomly as in the 
initial population setup. Conversely, a group’s 
inability to enhance the GroupBest results in a 
penalty through the expulsion of a member. The 
member with the poorest fitness level is located and 
expelled. Rather than resetting the group’s stagnancy 
count to zero after this removal, it is instead set to (11) 
[38]. 

   𝑚𝑜𝑡𝑖𝑜𝑛𝑙𝑒𝑠𝑠 = 𝑆𝐶𝐶
𝑚𝑎𝑥 [1 −

1

𝑁𝑘𝑖𝑙𝑙+1
]          (11) 

Where 𝑆𝐶𝐶
𝑚𝑎𝑥represents the maximum 

acceptable stagnancy of groups, and 𝑁𝑘𝑖𝑙𝑙 indicates 
the number of individuals removed from a weak 
group. If a group loses too many members, it suggests 
that it is converging to a local optimum and cannot 
update its position, necessitating a reset to save time. 

5. Exprimental Results 

To assess the performance of the suggested 
algorithms, eight search algorithms (DE, PSO, BAT, 
WOA, GWO, FPA, ABC, and HS) were applied to 
the test images depicted in Figure 5 to highlight the 
advantages of our approach. These test images have 
been selected from the University of Waterloo’s 
repository [39]. This repository includes several 
classical image datasets that are widely used in 
machine learning and computer vision research. The 
collection includes both photographic and synthetic 
images, providing a diverse range of graphical 
material to assess the performance of image 
processing algorithms. The image repository is 
categorized into three sets: 

• Greyscale Set 1: 12 small greyscale images 

• Greyscale Set 2: 12 medium greyscale images 

• Color Set: 8 large full-color images 

Figure 6 illustrates the energy curves associated 
with the images. 
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 (a) image 1   (b) image 2  (c) image 3   (d) image 4   (e) image 5   

     
 (f) image 6   (g) image 7   (h) image 8  (i) image 9     (j) image 10 

Figure. 5. Benchmark Images for Assessing the Performance of 

the Newly Developed Algorithm 

 
       (a)                (b)                (c)                (d)                (e) 

 
       (f)                 (g)                (h)                (i)                 (j) 

Figure. 6. Energy curve of test images 
(a) Test 1, (b) Test 2 

(c) Test 3, (d) Test 4 

(e) Test 5, (f) Test 6 
(g) Test 7, (h) Test 8 

(i) Test 9, (j) Test 10 

Kapur’s entropy method was utilized to evaluate 
the effectiveness of various approaches and the 
precision of the resulting solutions. The Peak Signal-
to-Noise Ratio (PSNR) is a metric that quantifies the 
quality of a reconstructed image compared to the 
original, defined by Equ(12): 

𝑃𝑆𝑁𝑅 = 20 log (255/𝑅𝑀𝑆𝐸)         

    𝑅𝑀𝑆𝐸 = √∑ ∑ (𝐼(𝑖, 𝑗) − 𝐼′(𝑖, 𝑗))2𝑁
𝑗=1

𝑀
𝑖=1 𝑀𝑁⁄       (12) 

In this context, M and N represent the dimensions 
of the test image. The terms I(i,j)  and I’(i,j) 
correspond to the original and segmented images, 
respectively. The Root Mean Squared Error (RMSE) 
is used to quantify the error between the original and 
segmented images. The Structural Similarity Index 
(SSIM) is a metric that measures the similarity 
between the original and processed image and is 
calculated as Equ(13): 

         𝑆𝑆𝐼𝑀 =
(2𝜇𝐼𝜇𝐼′

+𝑐1)(2𝜎
𝐼𝐼′

+𝑐2)

(𝜇𝐼
2+𝜇

𝐼′
2 +𝑐1)(𝜎𝐼

2+𝜎
𝐼′
2 +𝑐2)

               (13) 

In this equation, 𝜇 and  𝜎 denote the mean and 
variance of the images I and  I’, respectively. The 
term  𝜎𝐼𝐼′ represents the covariance between  I and  I’. 
The constants 𝑐1 and 𝑐2 are parameters associated 
with the pixel values of the images. The Feature 
Similarity Index (FSIM) is defined as Equ(14) [40]: 

           𝐹𝑆𝐼𝑀 =
∑ 𝑆𝐿(𝑥)𝑃𝐶𝑚(𝑥)𝑥∈Ω

∑ 𝑃𝐶𝑚(𝑥)𝑥∈Ω
                (14) 

Let Ω denote the entire image domain. The term 
𝑆𝐿(𝑥) represents the similarity parameter, while 
𝑃𝐶𝑚(𝑥) signifies the phase consistency. These 
parameters are defined as (15): 

𝑃𝐶𝑚(𝑥) = 𝑚𝑎𝑥(𝑃𝐶1(𝑥), 𝑃𝐶2(𝑥))     

𝑆𝐿(𝑥) = [𝑆𝑃𝐶(𝑥)]𝛼 . [𝑆𝐺(𝑥)]𝛽     

𝑆𝑃𝐶(𝑥) =
2𝑃𝐶1(𝑥) × 𝑃𝐶2(𝑥) + 𝑇1

𝑃𝐶1
2(𝑥) × 𝑃𝐶2

2(𝑥) + 𝑇1

       

             𝑆𝐺(𝑥) =
2𝐺1(𝑥)×𝐺2(𝑥)+𝑇2

𝐺1
2(𝑥)×𝐺2

2(𝑥)+𝑇2
                   (15) 

𝑃𝐶1(𝑥) and 𝑃𝐶2(𝑥) indicate the phase 
consistency and 𝛼, 𝛽, 𝑇1 and 𝑇2 are constants 
parameters. It is observed that an increase in PSNR, 
SSIM, or FSIM values typically signifies enhanced 
image segmentation quality. These metrics tend to 
rise in conjunction with elevated threshold levels, 
which correlates with improved segmentation 
precision. The control parameters for the algorithms 
presented are detailed in Table 1. These parameters 
have been selected based on their optimal 
performance as reported in the original publications 
and have been fine-tuned through a trial-and-error 
process. 

For a balanced evaluation of the search 
algorithms, each is run for 50 iterations with a 
population size of 40. The Kapur method serves as 
the fitness function, optimized by all algorithms 
during the testing phase to determine the ideal 
threshold levels. 

Tables 2 to 6 display the outcomes for varying 
threshold values K=3,4,5. The fitness values shown 
represent the average of 30 runs per algorithm, with 
additional data pertaining to the optimal solution 
identified in these trials. Four algorithms—PSO, DE, 
BAT, FPA—comprise the first ensemble, 
ENSEMBLE 1 (ENS1). Similarly, ENSEMBLE 2 
(ENS2) includes ABC, HS, GWO, WOA. The 
Darwinian outcomes for both ENS1 and ENS2 are 
also documented in these tables (DENS1 and 
DENS2). Figures 7 and 8 illustrate the segmented 
images using the Kapur method for level 5, while 
Figure 9 depicts the convergence curves for test 
images based on the Kapur method over 30 iterations. 

The data from these tables indicate that both 
ENSEMBLE 1 and 2 outperform individual 
algorithms. Moreover, the Darwinian variants of 
ENSEMBLE 1 and 2 exhibit superior performance 
compared to other algorithms in metrics such as 
PSNR, SSIM, FSIM, or the mean objective function. 
As the thresholding size increases, the efficacy of 
other search methods diminishes, often converging  



Ensemble Searching: A New Concept of Heuristic Search Algorithms and Its 

Application in Multilevel Thresholding Optimization 

21 

meth

od 

test 1 test 2 test 3 test 4 test 5 

PSO 

     
DE 

     
BAT 

     
FPA 

     
ENS 

1 

     
DEN

S 1 

     
ABC 

     
HS 

     
GWO 

     
WOA 

     
ENS 

2 

     
DEN

S 2 

     

Figure. 7. Segmented images by Kapur entropy (level = 5) 
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Figure. 8.  Segmented images by Kapur entropy (level =5) 
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                          a) test 1                                        b) test 2 

  

                           c) test 3                                    d) test 4 

            

                           e) test 5                                      f) test 6  

 

                         g) test 7                                      h) test 8   

      

                         i) test 9                                           j) test 10 

Figure. 9. Convergence Trajectories Utilizing the Kapur Method 

(Level 5) 

 

Table 1. Optimization Parameters for Metaheuristic Search 

Algorithms 

Algorithm Parameters 

ABC 𝑙𝑖𝑚𝑖𝑡 =  0.1 × 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

BAT 𝑙𝑜𝑢𝑑𝑛𝑒𝑠𝑠 = 0.5 

𝑝𝑢𝑙𝑠𝑒 𝑟𝑎𝑡𝑒 = 0.5 

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑟𝑎𝑛𝑔𝑒: [0,1] 
DE 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0.1 

𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 = 0.5 

FPA 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑠𝑤𝑖𝑡𝑐ℎ = 0.7 

GWO 
𝛼 = 2 −

1

𝑚𝑎𝑥 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 

HS 𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒: 0.75 

𝑃𝑖𝑡𝑐ℎ 𝑎𝑑𝑗𝑢𝑠𝑡𝑖𝑛𝑔 𝑟𝑎𝑡𝑒: 0.5 

𝑛𝑒𝑤 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑒𝑠 = 0.1 × 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

PSO 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑟𝑎𝑛𝑔𝑒: [−2,2] 

𝐶𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 1.5 

𝑆𝑜𝑐𝑖𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 1.5 

WOA 𝑙𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚𝑖𝑐 𝑠𝑝𝑖𝑟𝑎𝑙 = 1 

Darwinian 

Ensemble 
𝑔𝑟𝑜𝑢𝑝 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑛𝑔𝑒 = [8,12] 

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑠𝑡𝑎𝑔𝑛𝑎𝑛𝑐𝑦 = 2 

Table 2. Average Fitness Scores Across Algorithms Using 

the Kapur Method 

method K test 1 test 2 test 3 test 4 test 5 test 6 test 7 test 8 test 9 test 10 

PSO 3 15.85 16.13 16.38 15.92 15.71 16.20 15.76 15.89 16.28 15.81 

4 19.00 19.12 19.43 18.98 18.73 19.05 18.72 18.94 19.35 18.82 

5 21.98 21.87 22.23 21.89 21.64 21.68 21.58 21.91 22.26 21.79 

DE 3 15.90 16.14 16.38 15.94 15.74 16.21 15.78 16.06 16.29 15.86 

4 19.19 19.17 19.44 19.06 18.75 19.05 18.74 19.15 19.40 19.02 

5 22.13 22.04 22.23 21.93 21.74 21.75 21.67 22.11 22.28 21.86 

BAT 3 15.86 16.14 16.37 15.91 15.71 16.19 15.76 15.94 16.28 15.81 

4 19.09 19.11 19.40 18.99 18.73 19.02 18.70 19.07 19.34 18.93 

5 22.03 21.94 22.22 21.89 21.60 21.64 21.57 22.02 22.21 21.77 

FPA 3 15.89 16.14 16.37 15.93 15.73 16.20 15.77 16.02 16.28 15.85 

4 19.10 19.15 19.41 19.03 18.74 19.03 18.73 19.11 19.36 18.96 

5 22.03 22.06 22.18 21.86 21.64 21.67 21.60 21.99 22.20 21.78 

ENS 1 3 15.90 16.14 16.38 15.95 15.74 16.21 15.78 16.07 16.29 15.86 

4 19.19 19.17 19.45 19.09 18.78 19.06 18.75 19.16 19.41 19.03 

5 22.16 22.03 22.26 21.97 21.71 21.74 21.66 22.15 22.31 21.88 

DENS 

1 

3 15.89 16.14 16.38 15.95 15.74 16.21 15.78 16.07 16.29 15.84 

4 19.16 19.17 19.45 19.11 18.78 19.06 18.76 19.16 19.41 19.03 

5 22.16 22.07 22.27 21.98 21.75 21.77 21.70 22.16 22.32 21.89 

ABC 3 15.90 16.14 16.38 15.94 15.74 16.20 15.77 16.04 16.29 15.85 

4 19.18 19.17 19.43 19.06 18.75 19.04 18.74 19.13 19.38 18.99 

5 22.10 22.09 22.21 21.87 21.70 21.69 21.66 22.07 22.24 21.84 

HS 3 15.89 16.13 16.37 15.93 15.73 16.20 15.77 16.04 16.28 15.84 

4 19.09 19.15 19.41 19.02 18.73 19.03 18.72 19.10 19.37 18.95 

5 22.00 22.05 22.18 21.84 21.64 21.68 21.58 21.98 22.17 21.77 

GWO 3 15.91 16.14 16.38 15.92 15.73 16.21 15.78 16.06 16.29 15.82 

4 19.17 19.15 19.44 19.08 18.74 19.05 18.76 19.14 19.40 18.98 

5 22.13 22.10 22.23 21.95 21.74 21.73 21.67 22.10 22.24 21.86 

WOA 3 15.89 16.14 16.38 15.92 15.73 16.20 15.78 16.05 16.29 15.85 

4 19.14 19.16 19.44 19.05 18.75 19.04 18.74 19.11 19.40 18.98 

5 22.09 22.06 22.24 21.91 21.69 21.72 21.65 22.02 22.25 21.82 

ENS 2 3 15.91 16.14 16.38 15.93 15.74 16.21 15.78 16.06 16.29 15.85 

4 19.19 19.18 19.45 19.09 18.77 19.06 18.75 19.14 19.40 19.01 

5 22.14 22.14 22.25 21.96 21.76 21.75 21.70 22.13 22.30 21.87 

DENS 

2 

3 15.91 16.14 16.38 15.95 15.74 16.21 15.78 16.06 16.29 15.86 

4 19.20 19.18 19.45 19.09 18.78 19.06 18.77 19.15 19.41 19.02 

5 22.15 22.15 22.26 21.97 21.79 21.76 21.71 22.14 22.31 21.88 
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Table 3. Threshold Values Determined by Various Algorithms Using the Kapur Method 

method K test 1 test 2 test 3 test 4 test 5 

PSO 3 33,107,178 74,130,191 61,128,196 40,114,188 82,136,192 

4 33,98,162,219 67,113,161,208 54,105,154,206 40,92,145,203 25,85,139,193 

5 33,83,129,177,221 25,78,123,170,214 50,94,135,176,216 40,80,128,167,214 25,82,133,188,227 

DE 3 33,105,178 75,130,191 61,128,196 40,115,188 82,136,192 

4 33,99,163,219 25,79,136,195 56,106,155,206 40,95,148,203 74,130,188,228 

5 33,82,132,176,221 25,69,112,158,207 48,91,132,174,215 26,68,115,162,208 26,77,136,188,226 

BAT 3 33,107,178 74,130,191 61,128,196 40,114,188 82,136,192 

4 33,98,161,219 25,79,136,195 54,105,154,206 40,94,148,202 80,133,188,227 

5 33,83,129,175,220 25,68,113,160,206 50,94,134,174,215 40,80,126,172,212 24,85,134,186,226 

FPA 3 33,108,181 75,129,191 59,127,196 40,108,186 82,136,193 

4 34,93,155,219 25,80,135,196 56,110,152,208 40,93,144,199 82,129,188,227 

5 33,89,129,174,222 25,76,122,168,212 45,88,131,178,217 40,75,118,159,205 27,78,133,187,229 

ENS 1 3 33,107,178 74,130,191 61,128,196 40,114,188 82,136,192 

4 33,98,162,219 25,79,136,195 54,105,154,206 40,94,148,202 80,133,188,227 

5 33,83,130,176,221 25,69,114,162,208 50,94,135,176,215 40,80,125,170,213 25,83,135,188,227 

DENS 1 3 33,107,178 74,130,191 61,128,196 39,113,187 82,136,192 

4 33,98,162,219 25,79,136,195 54,105,154,206 40,94,148,202 80,133,188,227 

5 33,83,130,176,221 25,69,114,162,208 50,94,135,176,215 40,80,125,170,214 25,83,134,188,227 

ABC 3 33,107,178 75,130,191 61,128,196 40,112,186 82,136,192 

4 33,101,163,220 25,78,136,195 55,107,160,212 40,96,146,198 81,131,185,226 

5 33,81,132,175,220 25,71,116,163,210 48,96,135,174,218 26,69,124,167,212 24,77,122,186,228 

HS 3 33,107,179 75,129,191 61,129,196 40,111,187 80,135,191 

4 32,93,154,218 25,78,133,193 57,107,154,206 40,93,149,199 81,134,186,226 

5 33,90,140,175,220 25,65,113,156,206 48,92,139,183,217 40,82,118,169,208 26,83,128,176,227 

GWO 3 33,107,178 74,130,191 61,128,196 40,112,188 82,136,192 

4 33,96,162,220 25,79,136,195 53,104,153,206 40,94,150,202 83,135,188,227 

5 33,81,127,172,220 25,69,114,162,209 50,95,136,175,215 26,67,113,160,209 26,81,132,186,227 

WOA 3 33,107,178 74,130,191 61,128,196 40,112,188 82,136,192 

4 33,95,163,219 25,79,136,195 54,104,154,206 40,95,146,203 80,134,186,227 

5 33,85,129,171,220 25,70,114,162,209 49,94,137,176,216 26,67,115,161,209 25,80,129,186,227 

ENS 2 3 33,107,178 74,130,191 61,128,196 40,114,188 82,136,192 

4 33,97,161,219 25,79,136,195 53,105,154,206 40,94,149,202 80,132,189,227 

5 33,83,129,174,221 25,69,114,162,208 50,94,136,176,215 26,67,115,161,206 24,87,138,189,227 

DENS 2 3 33,107,178 74,130,191 61,128,196 40,115,188 82,136,192 

4 33,98,161,219 25,79,136,195 53,105,155,206 40,93,148,202 81,131,187,227 

5 33,85,131,175,220 25,69,114,162,208 49,94,135,177,216 26,67,114,161,208 25,82,134,187,227 

PSO 3 58,112,171 74,130,186 71,147,223 63,126,194 75,148,224 

4 47,88,129,173 23,77,130,187 65,116,168,223 58,115,172,213 61,115,170,224 

5 44,84,124,162,187 23,76,124,172,219 33,75,124,172,223 45,89,131,174,213 51,93,135,179,225 

DE 3 58,112,171 74,129,185 71,148,223 64,127,195 76,147,224 

4 46,88,130,174 23,78,131,185 65,117,170,223 57,112,173,213 60,115,169,224 

5 47,86,124,163,187 23,72,122,174,219 35,77,125,171,223 46,87,133,173,215 52,90,133,175,224 

BAT 3 58,112,171 74,130,186 71,147,223 63,126,194 75,148,224 

4 46,87,129,173 23,77,132,187 62,114,167,223 57,115,172,213 60,113,169,224 

5 44,81,119,161,187 23,74,123,173,220 32,74,122,173,223 42,86,130,174,213 51,93,135,178,224 

FPA 3 57,111,171 74,129,186 70,149,223 64,126,194 74,144,224 

4 49,88,131,175 24,81,131,184 62,121,167,223 59,115,173,212 59,117,175,224 

5 48,86,124,163,187 22,73,126,167,216 38,74,122,165,223 43,88,133,178,212 50,90,137,182,226 

ENS 1 3 58,112,171 74,130,186 71,147,223 63,126,194 75,148,224 

4 47,88,129,173 23,78,133,187 64,116,168,223 58,115,172,213 60,113,169,224 

5 44,83,123,162,187 23,74,123,173,220 34,76,124,172,223 44,88,132,175,214 51,93,135,178,225 

DENS 1 3 58,112,171 74,130,186 71,147,223 63,126,194 75,148,224 

4 46,87,128,172 23,78,133,187 64,116,168,223 58,115,172,213 60,113,169,224 

5 44,83,123,162,187 23,74,123,173,220 34,76,124,172,223 44,88,132,175,214 50,92,134,178,225 

ABC 3 58,111,171 73,129,185 72,146,223 64,126,195 73,147,224 

4 47,87,128,172 23,75,133,186 60,114,164,223 61,117,171,214 62,117,172,224 

5 52,87,126,163,187 23,78,128,176,220 32,77,125,170,222 43,85,127,176,214 50,88,136,180,225 

HS 3 58,111,170 75,130,187 72,146,223 64,127,194 76,150,225 

4 46,89,129,171 24,86,139,189 59,112,170,223 53,115,170,212 57,110,168,224 

5 47,90,123,162,187 22,76,119,171,221 37,80,118,170,223 39,88,131,181,214 36,83,130,180,225 

GWO 3 58,112,171 74,130,186 71,147,223 63,126,194 75,148,224 

4 46,87,128,173 23,78,132,187 63,113,166,223 56,114,172,213 58,112,170,224 

5 44,81,122,162,187 23,75,125,173,220 33,78,125,171,223 43,86,131,175,215 48,88,131,177,225 

WOA 3 58,112,171 74,130,186 70,147,223 63,126,194 76,149,224 

4 47,87,129,173 23,74,127,185 66,118,169,223 59,115,172,213 59,112,168,224 

5 43,84,122,162,187 23,72,124,173,221 35,77,126,175,223 40,86,129,175,214 52,94,133,178,225 

ENS 2 3 58,112,171 74,130,186 72,148,223 63,126,194 75,148,224 

4 46,87,129,173 23,77,132,187 63,113,168,223 59,114,172,213 60,112,167,224 

5 42,83,121,162,187 23,73,123,173,220 33,76,121,170,223 43,86,130,174,214 53,95,136,177,225 

DENS 2 3 58,112,171 74,130,186 71,147,223 63,126,194 74,147,224 

4 46,87,128,172 23,78,133,188 64,115,168,223 56,115,172,213 58,113,169,224 

5 45,83,122,162,187 23,74,122,172,219 34,76,126,175,223 44,88,131,175,214 48,88,132,176,225 

 

 

 

 



International Journal of Web Research, Vol. 7, No. 3, 2024 

24 

Table 4. PSNR Outcomes for Various Algorithms Derived 

from the Kapur Method 

metho

d 

K test 1 test 2 test 3 test 4 test 5 test 6 test 7 test 8 test 9 test 

10 

PSO 3 16.2

1 

16.4

2 

18.0

7 

15.7

3 

15.4

7 

18.1

9 

17.0

8 

13.5

5 

18.1

9 

14.84 

4 16.9

5 

17.3

5 

19.1

7 

18.6

2 

17.9

8 

20.3

5 

18.8

4 

16.9

9 

18.6

9 

17.97 

5 19.8

9 

20.7

1 

20.0

1 

20.2

7 

17.9

4 

20.7

0 

19.3

6 

17.9

1 

21.2

1 

20.19 

DE 3 16.2

0 

16.4

0 

18.0

7 

15.7

9 

15.4

7 

18.1

9 

17.1

0 

13.6

6 

18.1

3 

14.85 

4 16.9

0 

20.1

9 

19.2

3 

17.7

7 

15.7

8 

20.2

9 

18.9

2 

17.2

8 

18.6

6 

17.92 

5 19.7

5 

21.4

6 

20.1

9 

18.7

7 

18.3

7 

20.6

7 

19.2

1 

17.7

8 

21.1

0 

19.92 

BAT 3 16.2

1 

16.4

2 

18.0

7 

15.7

3 

15.4

7 

18.1

9 

17.0

8 

13.5

5 

18.1

9 

14.84 

4 17.0

0 

20.1

9 

19.1

7 

19.4

0 

15.5

9 

20.3

4 

18.8

3 

16.8

0 

18.6

9 

17.83 

5 19.9

6 

21.2

1 

20.0

2 

20.1

9 

17.9

6 

20.9

1 

19.2

7 

18.0

7 

21.1

7 

20.24 

FPA 3 16.1

1 

16.4

0 

17.8

0 

15.2

9 

15.4

5 

18.2

2 

17.0

9 

13.7

5 

18.1

6 

14.70 

4 17.3

9 

20.2

0 

19.0

3 

18.9

7 

15.3

3 

20.2

1 

19.0

7 

16.6

9 

18.6

5 

18.17 

5 20.0

1 

20.9

8 

19.8

8 

20.7

0 

18.2

8 

20.6

5 

19.3

1 

16.7

5 

21.0

9 

20.25 

ENS 1 3 16.2

1 

16.4

2 

18.0

7 

15.7

3 

15.4

7 

18.1

9 

17.0

8 

13.5

5 

18.1

9 

14.84 

4 16.9

5 

20.1

9 

19.1

7 

19.4

0 

15.5

9 

20.3

5 

18.8

5 

16.9

7 

18.6

9 

17.83 

5 19.8

9 

21.2

2 

20.0

3 

20.1

1 

18.0

4 

20.7

4 

19.2

7 

17.9

4 

21.1

5 

20.13 

DENS 

1 

3 16.2

1 

16.4

2 

18.0

7 

15.5

6 

15.4

7 

18.1

9 

17.0

8 

13.5

5 

18.1

9 

14.84 

4 16.9

5 

20.1

9 

19.1

7 

19.4

0 

15.5

9 

20.4

0 

18.8

5 

16.9

7 

18.6

9 

17.83 

5 19.8

9 

21.2

2 

20.0

3 

20.1

5 

17.9

8 

20.7

4 

19.2

7 

17.9

4 

21.1

5 

20.08 

ABC 3 16.2

1 

16.4

0 

18.0

7 

15.5

5 

15.4

7 

18.2

2 

17.1

1 

13.4

5 

18.1

5 

14.77 

4 16.8

8 

20.3

1 

19.0

1 

17.9

4 

15.6

2 

20.4

0 

18.7

6 

16.3

1 

18.7

2 

18.13 

5 19.7

2 

21.1

5 

19.7

2 

18.1

9 

17.3

8 

20.4

2 

19.2

9 

17.7

1 

21.0

8 

20.09 

HS 3 16.1

7 

16.4

0 

17.7

9 

15.5

2 

15.5

6 

18.2

3 

17.0

5 

13.4

5 

18.1

4 

14.79 

4 17.4

0 

20.2

5 

19.2

5 

17.9

8 

15.6

7 

20.3

6 

18.9

3 

17.2

0 

18.7

2 

17.63 

5 19.6

7 

20.9

9 

19.8

9 

19.8

4 

18.8

9 

20.6

4 

19.1

9 

17.6

7 

21.0

3 

19.70 

GWO 3 16.2

1 

16.4

2 

18.0

7 

15.6

1 

15.4

7 

18.1

9 

17.0

8 

13.5

5 

18.1

9 

14.84 

4 16.8

8 

20.1

9 

19.0

6 

18.2

3 

15.5

1 

20.4

0 

18.8

6 

16.6

8 

18.6

8 

17.80 

5 20.0

1 

21.2

4 

19.8

7 

19.9

5 

18.1

5 

20.7

6 

19.3

0 

17.7

9 

21.1

1 

19.83 

WOA 3 16.2

1 

16.4

2 

18.0

7 

15.6

1 

15.4

7 

18.1

9 

17.0

8 

13.5

3 

18.1

9 

14.88 

4 16.7

9 

20.1

9 

19.2

1 

17.6

8 

15.7

1 

20.3

4 

18.8

0 

17.1

3 

18.6

8 

17.74 

5 20.0

8 

21.3

0 

19.8

7 

20.1

5 

17.8

9 

20.7

8 

19.1

9 

18.4

4 

21.1

5 

20.10 

ENS 2 3 16.2

1 

16.4

2 

18.0

7 

15.7

3 

15.4

7 

18.1

9 

17.0

8 

13.6

7 

18.1

9 

14.84 

4 16.9

9 

20.1

9 

19.0

3 

18.2

0 

15.5

2 

20.3

4 

18.8

3 

16.9

8 

18.6

8 

17.70 

5 19.9

7 

21.2

2 

19.9

4 

20.0

1 

17.9

3 

20.8

2 

19.2

5 

17.6

2 

21.1

5 

20.12 

DENS 

2 

3 16.2

1 

16.4

2 

18.0

7 

15.7

9 

15.4

7 

18.1

9 

17.0

8 

13.5

5 

18.1

9 

14.80 

4 17.0

0 

20.1

9 

19.0

1 

19.2

9 

15.5

1 

20.4

0 

18.8

3 

16.9

8 

18.6

7 

17.82 

5 19.9

5 

21.2

2 

19.9

5 

20.0

2 

18.0

7 

20.7

9 

19.3

1 

18.4

2 

21.1

5 

19.79 

 

 

Table 5. SSIM Outcomes for Various Algorithms Derived 

from the Kapur Method 

method K test 1 test 2 test 3 test 4 test 5 test 6 test 7 test 8 test 9 test 10 

PSO 3 0.63 0.36 0.53 0.79 0.51 0.51 0.58 0.73 0.47 0.63 

4 0.64 0.41 0.59 0.88 0.69 0.57 0.72 0.80 0.49 0.73 

5 0.71 0.73 0.62 0.91 0.67 0.58 0.74 0.82 0.59 0.79 

DE 3 0.63 0.35 0.53 0.79 0.51 0.51 0.58 0.74 0.46 0.64 

4 0.64 0.72 0.59 0.86 0.52 0.57 0.72 0.80 0.50 0.74 

5 0.71 0.77 0.63 0.90 0.68 0.58 0.74 0.82 0.58 0.78 

BAT 3 0.63 0.36 0.53 0.79 0.51 0.51 0.58 0.73 0.47 0.63 

4 0.64 0.72 0.59 0.89 0.50 0.57 0.72 0.80 0.49 0.73 

5 0.71 0.77 0.62 0.91 0.65 0.59 0.74 0.82 0.60 0.78 

FPA 3 0.63 0.35 0.53 0.79 0.51 0.51 0.58 0.74 0.47 0.64 

4 0.65 0.72 0.58 0.89 0.49 0.56 0.73 0.79 0.49 0.73 

5 0.71 0.74 0.62 0.92 0.68 0.57 0.73 0.81 0.59 0.79 

ENS 1 3 0.63 0.36 0.53 0.79 0.51 0.51 0.58 0.73 0.47 0.63 

4 0.64 0.72 0.59 0.89 0.50 0.57 0.72 0.80 0.49 0.73 

5 0.71 0.77 0.62 0.91 0.67 0.58 0.74 0.82 0.59 0.79 

DENS 1 3 0.63 0.36 0.53 0.78 0.51 0.51 0.58 0.73 0.47 0.63 

4 0.64 0.72 0.59 0.89 0.50 0.57 0.72 0.80 0.49 0.73 

5 0.71 0.77 0.62 0.91 0.67 0.58 0.74 0.82 0.59 0.79 

ABC 3 0.63 0.35 0.53 0.79 0.51 0.51 0.58 0.73 0.47 0.63 

4 0.63 0.72 0.58 0.87 0.48 0.57 0.72 0.79 0.48 0.73 

5 0.71 0.75 0.62 0.89 0.65 0.56 0.74 0.80 0.60 0.79 

HS 3 0.63 0.35 0.52 0.79 0.52 0.51 0.58 0.73 0.46 0.64 

4 0.65 0.72 0.58 0.86 0.49 0.57 0.72 0.80 0.50 0.73 

5 0.70 0.77 0.62 0.91 0.69 0.58 0.74 0.82 0.60 0.78 

GWO 3 0.63 0.36 0.53 0.79 0.51 0.51 0.58 0.73 0.47 0.63 

4 0.64 0.72 0.59 0.87 0.50 0.57 0.72 0.80 0.50 0.73 

5 0.72 0.77 0.62 0.91 0.67 0.59 0.74 0.82 0.59 0.79 

WOA 3 0.63 0.36 0.53 0.79 0.51 0.51 0.58 0.73 0.47 0.63 

4 0.65 0.72 0.59 0.86 0.49 0.57 0.72 0.80 0.49 0.73 

5 0.71 0.76 0.62 0.91 0.66 0.59 0.74 0.82 0.60 0.79 

ENS 2 3 0.63 0.36 0.53 0.79 0.51 0.51 0.58 0.74 0.47 0.63 

4 0.64 0.72 0.58 0.87 0.51 0.57 0.72 0.80 0.49 0.73 

5 0.71 0.77 0.62 0.91 0.67 0.59 0.74 0.82 0.59 0.80 

DENS 2 3 0.63 0.36 0.53 0.79 0.51 0.51 0.58 0.73 0.47 0.64 

4 0.64 0.72 0.58 0.89 0.49 0.57 0.72 0.80 0.49 0.73 

5 0.71 0.77 0.62 0.91 0.67 0.58 0.74 0.82 0.59 0.79 

Table 6. FSIM Outcomes for Various Algorithms Derived 

from the Kapur Method 

method K test 1 test 2 test 3 test 4 test 5 test 6 test 7 test 8 test 9 test 10 

PSO 3 0.74 0.76 0.81 0.94 0.85 0.72 0.84 0.78 0.80 0.76 

4 0.76 0.80 0.87 0.97 0.87 0.77 0.85 0.85 0.83 0.85 

5 0.82 0.79 0.89 0.98 0.87 0.78 0.86 0.86 0.89 0.89 

DE 3 0.73 0.76 0.81 0.94 0.85 0.72 0.84 0.78 0.80 0.77 

4 0.76 0.78 0.86 0.96 0.85 0.77 0.85 0.85 0.83 0.85 

5 0.82 0.82 0.89 0.98 0.88 0.78 0.86 0.86 0.89 0.88 

BAT 3 0.74 0.76 0.81 0.94 0.85 0.72 0.84 0.78 0.80 0.76 

4 0.76 0.78 0.87 0.97 0.85 0.77 0.85 0.85 0.83 0.85 

5 0.82 0.83 0.89 0.98 0.86 0.79 0.86 0.86 0.89 0.89 

FPA 3 0.74 0.76 0.81 0.94 0.85 0.72 0.84 0.78 0.80 0.76 

4 0.77 0.78 0.85 0.97 0.84 0.77 0.85 0.84 0.83 0.85 

5 0.82 0.80 0.89 0.97 0.88 0.78 0.87 0.85 0.89 0.89 

ENS 1 3 0.74 0.76 0.81 0.94 0.85 0.72 0.84 0.78 0.80 0.76 

4 0.76 0.78 0.87 0.97 0.85 0.77 0.85 0.85 0.83 0.85 

5 0.82 0.83 0.89 0.98 0.87 0.78 0.86 0.86 0.89 0.89 

DENS 1 3 0.74 0.76 0.81 0.94 0.85 0.72 0.84 0.78 0.80 0.76 

4 0.76 0.78 0.87 0.97 0.85 0.77 0.85 0.85 0.83 0.85 

5 0.82 0.83 0.89 0.98 0.87 0.78 0.86 0.86 0.89 0.89 

ABC 3 0.74 0.76 0.81 0.94 0.85 0.72 0.84 0.77 0.80 0.76 

4 0.76 0.78 0.86 0.96 0.85 0.77 0.85 0.84 0.82 0.85 

5 0.82 0.82 0.89 0.98 0.86 0.78 0.86 0.85 0.89 0.89 

HS 3 0.74 0.76 0.80 0.94 0.85 0.72 0.84 0.77 0.80 0.77 

4 0.77 0.78 0.86 0.96 0.85 0.77 0.84 0.85 0.83 0.84 

5 0.82 0.83 0.89 0.97 0.88 0.79 0.86 0.86 0.89 0.89 

GWO 3 0.74 0.76 0.81 0.94 0.85 0.72 0.84 0.78 0.80 0.76 

4 0.76 0.78 0.87 0.97 0.85 0.77 0.85 0.85 0.83 0.84 

5 0.83 0.83 0.89 0.97 0.87 0.78 0.86 0.86 0.89 0.89 

WOA 3 0.74 0.76 0.81 0.94 0.85 0.72 0.84 0.77 0.80 0.76 

4 0.76 0.78 0.87 0.96 0.85 0.77 0.85 0.85 0.83 0.84 

5 0.83 0.83 0.89 0.97 0.87 0.78 0.87 0.87 0.90 0.89 

ENS 2 3 0.74 0.76 0.81 0.94 0.85 0.72 0.84 0.78 0.80 0.76 

4 0.76 0.78 0.87 0.97 0.85 0.77 0.85 0.85 0.83 0.85 

5 0.82 0.83 0.89 0.97 0.86 0.78 0.86 0.86 0.89 0.89 

DENS 2 3 0.74 0.76 0.81 0.94 0.85 0.72 0.84 0.78 0.80 0.76 

4 0.76 0.78 0.86 0.97 0.84 0.77 0.85 0.85 0.83 0.85 

5 0.82 0.83 0.89 0.97 0.87 0.78 0.86 0.87 0.89 0.89 
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within local sub-regions and failing to yield 
satisfactory threshold values. In contrast, the 
Darwinian ENSEMBLE 1 and ENSEMBLE 2 
consistently achieve higher objective function values 
after more than 30 runs, surpassing other algorithms 
in both exploration and exploitation of the search 
space. Consequently, the Darwinian ENSEMBLE 
approach, grounded in the Kapur method, proves to 
be an effective strategy for multi-level image 
thresholding. It avoids futile searches in non-essential 
areas and adeptly maintains the diversity of the search 
agents.  

To assess the convergence velocity, a 
comparative analysis of processing times for diverse 
methods was conducted using the aforementioned 
benchmarks. Figure 10 illustrates the mean execution 
duration for various algorithms applied to test 
images. The data indicates that ENSEMBLE 
algorithms exhibit satisfactory computational 
efficiency in problem resolution.   

6. Conclusion 

This paper introduces a novel search framework 
for heuristic algorithms, specifically designed for 
object-based MPEG-4 coding. The framework 
incorporates Darwinian natural selection to enhance 
population diversity. The Kapur method is used as a 
segmentation criterion, with results demonstrated for 
three threshold values (K=3, 4, 5) over 30 trials. 
Darwinian theory guides the algorithm’s search 
strategy, improving the movement of search agents 
towards the optimal target. The combination of 
Darwinian theory and shared spatial information 
among algorithms has significantly improved 
segmentation for various benchmark images, 
showing notable enhancements in the objective 
function, PSNR, SSIM, and FSIM metrics compared 
to individual heuristic search methods. The only 
drawback of the proposed method is that it is time-
consuming. Although the ensemble benefits from 
combined algorithms and better convergence, the 
execution time increases, and parallel hardware is 
needed for implementation. Future studies will 
explore the application of Ensemble Searching to 
other areas such as feature selection and assess the 
method's effectiveness in identifying optimal 
solutions. 

 

Figure. 10. Mean Execution Duration for Diverse Algorithmic 

Procedures 
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