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A B S T R A C T  

Blockchain is a technology that enables distributed and secure data structures for various business domains. 

Bitcoin is a notable blockchain application that is a decentralized digital currency with immense popularity 

and value. Bitcoin involves many concepts and processes that require modelling for better comprehension and 

development. Modelling is a technique that simplifies and abstracts a system at a certain level of detail and 

accuracy. Software modelling is applied in Model-Driven Engineering (MDE), which automates the software 

development process using models and transformations. Domain-specific languages (DSLs) are languages that 

are customized for a specific domain and offer intuitive syntax for domain experts.  To address the need for 

specialized tools for Bitcoin blockchain modelling, we propose a novel Unified Modelling Language (UML) 

profile that is specifically designed for this domain. UML is a standard general-purpose modelling language 

that can be extended by profiles to support specific domains. A meta-model is a model that defines the syntax 

and semantics of a modelling language. The proposed meta-model, which includes stereotypes, tagged values, 

enumerations, and constraints defined by Object Constraint Language (OCL), is defined as a UML profile. 

The proposed meta-model is implemented in the Sparx Enterprise Architect (Sparx EA) modelling tool, which 

is a widely used tool for software modelling and design. To validate the practicality and effectiveness of the 

proposed UML profile, we developed a real-world case study using the proposed meta-model and conducted 

an evaluation using the Architecture Tradeoff Analysis Method (ATAM). The results showed the proposed 

UML profile promising. 

Keywords— Meta-model, UML profile, Bitcoin, Blockchain, OCL, Domain-specific language. 
 

 

1. Introduction  

Blockchain is a revolutionary technology that 
offers enormous advantages for various business 
domains. It enables the creation of decentralized 
applications that run on a distributed network of 
nodes, without the need for intermediaries or central 
authorities. Blockchain applications can provide 
transparency, trust, security, and efficiency for 
various transactions and processes. One of the most 
prominent and pioneering applications of blockchain 
is Bitcoin, a digital currency that operates on a peer-
to-peer network and uses cryptographic techniques 
to ensure its security and validity. Bitcoin has 
attracted significant attention from researchers, 
developers, investors, regulators, and the general 
public. However, Bitcoin also involves many 

complex concepts and processes that need to be 
modeled for better understanding and development. 

Modeling is a technique that is used in many 
fields to share ideas, reduce complexity, align 
different viewpoints, and provide abstractions of a 
system at some level of precision and detail. 
Modeling is also a prerequisite for developing 
blockchain-specific software engineering best 
practices [1] and modeling profiles, as well as 
relevant methodologies and reference architectures 
[2]. Models are used in model-driven engineering 
(MDE), which is an approach that aims to provide 
feedback on model’s correctness prior to 
development [3], help reduce complexity, focus on 
software development goals, and leave other aspects 
aside. In addition, Domain-specific languages 
(DSLs) are languages that provide domain-specific 
primitives which not only ease model development 
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but also present intuitive syntax for domain experts, 
and the possibility of code generation for narrow 
domains [4].  

Moreover, complementary models might be used 
to provide important insights into some complex 
phenomena. Unified Modeling Language (UML) is 
a graphical language standardized by the Object 
Management Group (OMG) for modeling software-
intensive systems, and is executable, at least in part 
[5]. While different UML diagrams are 
complementary and appropriate for different aspects 
of software systems, UML provides extensibility 
mechanisms to define meta-models known as UML 
profiles [6-7]. A profile is a lightweight mechanism 
to extend the UML standard [6] and defines domain-
specific or platform-specific elements, connectors, 
and diagrams which aim to facilitate the modeling of 
applications for people interested in that domain or 
platform. 

Various studies have been carried out on 
blockchain modeling, but few of them have focused 
on Bitcoin-specific modeling. For example, 
Bartoletti and Zunino [8] formalized the bitcoin 
contract by defining a calculus; their work 
introduces formalism to validate defined contracts 
but its usage requires prior knowledge of formal 
methods and underlying mathematical constructs. 
Moreover, in contrast to our work, their work 
concentrates on validation instead of abstraction and 
simplification that can foster software development 
in the bitcoin application domain. Rocha and 
Ducasse [9] used a UML class diagram to model 
smart contracts; they used a class with “chain” icon 
to represent the smart contracts, but they used 
neither stereotyping (i.e. stereotypes, tagged values, 
and constraints) nor comprehensive combinations of 
connectors (e.g., dependencies, composition, and 
aggregation). Bollen [10] applied fact-based 
modeling to provide conceptual model of 
Hyperledger Fabric using fact definition and rule 
validation, but his model requires a significant 
cognitive load to cross through annotated diagrams 
and the provided tables. The integration and 
orchestration [11] of blockchain-specific services 
with other organizational services have also been 
studied [12]. Vingerhouts et al. [12] used i* 
modeling notation and UML Use Case and 
Sequence diagrams for requirement engineering and 
modeled contract interactions in lieu of detailed 
design. Despite these attempts at blockchain 
modeling, most of them are modeling instead of 
meta-modeling and to the best of our knowledge, 
there is no bitcoin-specific meta-model supported by 
tools, and this study is the first one to have aimed at 
assisting application development using profiling. 

The motivation for this study stems from the 
observation that Bitcoin, as a prominent and 
pioneering application of blockchain technology, 

involves many complex concepts and processes that 
need to be modeled for better understanding and 
development. However, there is a lack of adequate 
and effective modeling tools and techniques that can 
capture the essence and specifics of Bitcoin 
applications. Existing studies on blockchain 
modeling have mostly focused on general aspects of 
blockchain or other platforms, such as smart 
contracts, Hyperledger Fabric, or Ethereum. 
Moreover, most of these studies are modeling 
instead of meta-modeling, and do not provide tool 
support or automated conformance checking. 
Therefore, there is a need for a domain-specific and 
platform-specific meta-model that can facilitate the 
modeling of Bitcoin applications, and that can be 
implemented in a widely used modeling tool, such 
as Sparx EA. 

This study aims to build on extant research to 
design and evaluate a new viable meta-model for 
Bitcoin applications. Hence, in this study, we build 
on UML, OCL, and bitcoin’s ontology to propose a 
UML profile which aligns models with bitcoin’s 
ontology and automates evaluation of conformance. 
The former is achieved by defining relevant 
stereotypes, tagged values, and enumeration inside 
our profile, while the latter is achieved by defining 
relevant OCL constraints. Our profile has been 
implemented in the Sparx EA modeling tool. 

We believe that our study contributes to the 
advancement of knowledge and practice in the field 
of blockchain and Bitcoin modeling, by providing a 
novel and useful meta-model that can assist 
developers and researchers in creating and analyzing 
Bitcoin applications. We also hope that our study 
inspires further research on the topic, such as 
extending the profile to cover other aspects of 
Bitcoin, or applying the profile to other blockchain 
platforms or applications. 

The remainder of this paper has been structured 
as follows: Section 2 briefly introduces some 
concepts upon which our approach is built. Our 
proposed UML profile is presented in Section 3. In 
the next section, a case study investigated and 
modeled by the proposed UML profile is presented. 
Section 5 elaborates the conducted evaluation. 
Finally, the paper is summed up in Section 6, and 
conclusions and future works are discussed. 

2. Background 

2.1. Bitcoin and Blockchain 

Blockchain is a distributed ledger that does not 
rely on a central node of control. It records 
cryptographically signed, irrevocable, and auditable 
events (i.e. transactions) that are shared across 
participants who can independently store, verify, 
and audit information over a peer-to-peer network. 
`and each block contains some transactions and uses 
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a hash value [13] to refer to a previous block. This 
makes blockchain traceable and transparent. When 
the majority of participants agree and append a 
block of transactions to their local copy of 
blockchain, the content of that block becomes 
immutable [14]. 

There are different types of blockchain, 
depending on the level of access and control. A 
public blockchain allows anyone to join, and 
participants are anonymous with equal rights to 
access and validate transactions. A private 
blockchain is controlled by a single organization that 
decides on membership and assigns the roles that 
each node can play in the blockchain. A consortium 
blockchain, also known as federated blockchain, is 
controlled by a group of organizations that 
collaborate to find solutions. A hybrid blockchain is 
a combination of a private and a public blockchain. 
It is controlled by a single organization, and 
transactions are made and stored privately, but they 
can be made public and verified by public 
blockchain members. Finally, emerging fourth and 
fifth generation blockchains use microprocessors, 
mobile devices, and Artificial Intelligence (AI) to 
improve security and scalability, and assist mining 
by features such as AI based consensus algorithms. 
Bitcoin is powered by a public blockchain. The rest 
of this sub-section explains the bitcoin blockchain in 
more detail. 

Bitcoin is secured by mining through significant 
computational efforts and consensus through the 
commitment of the majority of blockchain nodes. 
Mining is a process that enhances the security of 
bitcoin by introducing the computational effort 
required for adding a new block to the blockchain 
[15]. Miners are rewarded with new coins generated 
in each new block, and they receive a transaction fee 
from each transaction included in that new block. 

To achieve these rewards, miners have to 
compute a cryptographic hash function several 
times, until they find a block hash value that is 
smaller than a predefined threshold called Target 
Value. The resulting solution is called hashcash, 
which is a Proof-of-Work (PoW) system invented by 
Adam Back in 1997 [16] that ensures that issued 
coins are backed by significant computational 
efforts. The computed hash and all contained 
transactions are evaluated by all nodes of the bitcoin 
network, and each node adds the confirmed block to 
its local copy of the blockchain. When the majority 
of nodes participating in the bitcoin network add the 
new block to their local copy of blockchain, 
consensus is achieved. Miners use Nonce to 
compute hash values. Nonce is a random 32-bit (4-
byte) number stored in a bitcoin block header to 
achieve a block hash that is smaller than Target 
Value (i.e. a hash value that has enough leading 
zeros). Target Value is used to adjust mining 

difficulty. In addition to the 4-byte nonce, miners 
can use 8 bytes of the coinbase transaction as an 
extra nonce field [15]. 

There are different types of mining. A miner 
may perform mining operations with no help (i.e. 
solo mining), use cloud resources (i.e. cloud 
mining), or join a mining pool composed of a large 
number of miners (i.e. pooled mining). These types 
of mining use different protocols that are included in 
our proposed meta-model. Bitcoin blockchain stores 
financial transactions and defines a coin as a chain 
of digital signatures [17]. Each transaction encodes 
the transfer of money between participants and 
includes at least one input, at least one output, and a 
transaction fee. An exception in this case is the first 
transaction of each block, which is a special 
transaction that generates a new coin and is called 
coinbase transaction [15]. 

A transaction output specifies the number of 
Satoshis to be transferred and provides a locking-
script that indicates the next owner of the coin(s). A 
transaction output can be locked by any equation 
defined by the Script language of bitcoin [15], but 
most of them (i.e. Pay-to-Public-Key (P2PK), Pay-
to-Public-Key-Hash (P2PKH), Multi-Signature 
(multisig), and Pay-to-Script-Hash (P2SH) [15]) use 
an Elliptic Curve Digital Signature Algorithm 
(ECDSA) as proof of ownership [18]. A transaction 
input consists of two fields: the address of an 
Unspent Transaction Output (UTXO) and an 
unlocking-script, which is checked against the 
locking-script of the referred transaction output. A 
transaction fee is collected by mining nodes. The fee 
is not explicitly stated in a transaction and is defined 
as the difference between the sum of transaction 
inputs and the sum of transaction outputs [15]. 

2.2. UML Profiling 

Different notations and meta-modeling 
frameworks [19, 20, 21] and extension of these 
meta-models [4, 7, 22, 23, 24] exist. Meta Object 
Facility (MOF) [20] is a well-accepted framework 
developed by OMG, and approaches model 
development in multiple levels of abstraction (e.g., a 
four-layered metamodel architecture including meta-
meta-models, meta-models, models, and user 
objects). Subsequent layers allow navigation from 
an instance to its meta-object (its classifier) and vice 
versa. UML itself has been defined by MOF. 
Profiles are lightweight mechanisms to extend the 
UML standard [6]. This section describes UML 
profiling and related concepts which are used to 
define our proposed profile for bitcoin. 

A profile is a mechanism for customizing UML 
to meet the needs of a particular context. A profile 
can be defined for a platform that is being targeted 
(e.g., Java EE or .NET) or a domain with which one 
is working (e.g., financial or blockchain) [25]. UML 
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profiles define a concise dialect of UML for a 
specific family of applications (e.g., UML profile for 
wireless sensors [7], electronic and electrical waste 
[22], big data [26], aerospace systems safety [27], 
hazard mitigation [23], and publish/subscribe 
paradigm [24]) and are composed of Stereotypes, 
tags, and constraints [28].  

Stereotypes explicitly specify that an element has a 

special intent or role in a model [25, 28]. A 

stereotype is shown using guillemots at either end 

of the stereotype name, as in «stereotype_name». 

However, they can be substituted by angle brackets, 

as in <<stereotype_name>>. In Sparx EA, 

stereotype definition and implementation are 

denoted by specifying the name of the stereotype 

between and before two angle brackets, as in 

<<stereotype_name>> and stereotype_name <<>>, 

respectively. 
Tagged values define information needed by a 

stereotype to perform its responsibilities [28]. They 
are meta-attributes which show some properties of 
model elements such as stereotypes [6]. To 
encourage reuse, UML 2.0 restricted declaration of 
stereotypes and tagged values to UML profiles [25].  

Finally, constraints restrict model elements. 
They are defined in the profile but evaluated in the 
model. Constraints are defined by OCL, a formal yet 
easy-to-understand expression language for 
specifying constraints, which allows values to be 
checked but not changed [25]. OCL is helpful in 
creating the metamodel of a language, which is a 
description of all the concepts that can be used in 
that language and includes all meta-classes of that 
language and the relationships between them [29].  

Figures 1 and 2 show an example of stereotype 
definition and usage, respectively. In the first figure 
(Figure 1), an extension arrow with a solid 
arrowhead pointing from ExampleStereotype 
stereotype to Class meta-class depicts that the 
ExampleStereotype stereotype which is tagged with 
ExampleTaggedValue tagged value can be applied 
to classes. Figure 2 depicts a stereotyped class 
containing an attribute, an operation, and two tagged 
values. This example also includes an OCL 
constraint. The mentioned OCL invariant states that 
the firstAttribute attribute of ExampleClass class 
must be greater than zero.  

In this paper, the stereotypes, tags, and 
constraints are represented by UML standard 
notation, and the proposed UML profile was 
implemented using Model Driven Generation 
(MDG) Technologies [30] feature of Sparx EA 
modeling tool. We defined OCL constraints on our 
proposed metamodel to allow greater integrity of 
application models. 

 

Figure. 1.  Example of stereotype definition 

 

Figure. 2.  Example of stereotype usage 

3. Proposed Meta-Model  

This section describes our UML profile and its 
implementation in Sparx EA modeling tool. The 
proposed profile is called Bitcoin Modeling (BitML) 
and is defined using UML notation. This notation is 
common for profile definition with some exceptions 
that are considered irrelevant.  

3.1. Profiling Definition 

BitML includes two types of diagrams, i.e. a 
Transaction Processing diagram and a Network 
diagram. As profiles extend UML, our proposed 
diagrams are intended to be used along with UML 
standard diagrams. For example, BitML stereotypes 
can be used in both a Transaction Processing 
diagram and a UML sequence diagram to show both 
application structure and its runtime behavior. 

A Transaction Processing diagram is defined as 
an extension of UML class diagram and provides 
stereotypes, tagged values, enumerations, and 
constraints to model both on-chain and off-chain 
transactions in a way consistent with bitcoin 
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ontology. Network diagram is defined as an 
extension of the UML deployment diagram and 
provides stereotypes, tagged values, enumerations, 
and constraints to model different bitcoin node types 
and protocols. Figures 3 and 4 depict profile 
elements (i.e. stereotypes, tagged values, and 
enumerations) and an exemplar set of constraints on 
the proposed UML profile, respectively. 
Furthermore, Figures 5 and 6 depict how the 
proposed connectors (i.e. Spend connector, Uplock 
connector, PBKDF2KeyStretching connector, 
HMAC-SHA512 connector, and 
RIPEMD160HashOfSHA256Hash connector) are 
defined and constrained, respectively. 

As shown in Figures 3 and 5, the profile is 
composed of 42 stereotypes (16 for classes, 14 for 
attributes, eight for operations, and five for 
connectors), 23 tagged values, six datatypes, and a 
set of constraints. Proposed meta-model includes the 
following enumerations: 

ScriptType: This enumeration defines five values.  

1. Pay-to-Public-Key (P2PK) 

2. Pay-to-Public-Key-Hash (P2PKH)  

3. Pay-to-Script-Hash (P2SH) 

4. Pay-to-Witness-Public-Key-Hash (P2WPKH) 

5. CustomScript. 

The first four values correspond to the 

most common script types in bitcoin, while 

the last value reflects the custom script 

development capability [15] which made 

bitcoin an extendable and programmable 

form of currency. 

TransactionPosition: A transaction may be either 

 on-chain or off-chain, which will be executed 

on or out of the blockchain, respectively. An 

off-chain transaction will be executed outside of 

the blockchain, but its execution is bonded to 

some blockchain data, and its results will be 

saved on the blockchain too. This enumeration 

includes two values for on-chain and off-chain 

transactions. 

PayToScriptHashType: Regarding Pay-to-Script  

functionality, a mining node may support either 

Pay-to-Script-Hash (P2SH) or 

CheckHashVerify (CHV). P2SH or CHV 

correspond to BIP-16 or BIP-17, respectively. 

CommunicationProtocol: Bitcoin nodes communicate 

 over the Bitcoin P2P protocol. In addition, 

some miners and mobile wallets communicate 

over the Stratum protocol. Finally, a pool miner 

may communicate over a specialized mining 

pool protocol. This enumeration defines these 

three values. 

HashCashFucnctionType and 

HashCashVerificationFunctionType: 

These enumerations correspond to 

Hashcash. As mentioned, Hashcash is a 

PoW system. Depending on the hash 

function that is used, there are three 

Hashcash variants (i.e. SHA-1, scrypt hash 

function, and double SHA-256). Bitcoin 

uses Hashcash with double SHA256 hash. 

Depicted in Figure 3, our profile includes 42 
stereotypes, 16 of which (BitcoinNode, Block, 
BlockHeader, Transaction, TransactionOutput, 
AbstractTransactionInput, TransactionInput, 
CoinbaseTransactionInput, LockingScript, 
UnlockingScript, EllipticCurveSignature, 
MnemonicCodeWord, Seed, PrivateKey, PublicKey, 
and PublicAddress) extend UML class. Two types 
of transaction inputs are abstracted by the 
AbstractTransactionInput abstract class. The UML 
Composition relationship between 
AbstractTransactionInput and Transaction 
stereotypes indicates that each transaction requires at 
least one transaction input. Depicted by UML 
Generalization, TransactionInput and 
CoinbaseTransactionInput stereotypes are 
specializations of AbstractTransactionInput 
stereotype. The former represents a normal 
transaction input which includes three attributes that 
point to a UTXO, which will be unlocked by an 
instance of a class, which is stereotyped as 
UnlockingScript. The latter represents a coinbase 
input. Coinbase is the input of coinbase transaction 
which is the first transaction of each block and 
generates new coins as mining rewards. The 
MinerPay2ScriptHashStandard tagged value of the 
CoinbaseTransactionInput stereotype uses 
PayToScriptHashType enumeration to specify either 
P2SH or CHV, which is supported by the miner. 
Coinbase transaction input stores a block height and 
possibly an extra-nonce value which correspond to 
BlockHeight and ExtraNonce stereotyped attributes. 
Furthermore, the Spend connector, which is defined 
in Figure 5 and constrained in Figure 6, applies to 
instances of classes stereotyped as 
TransactionOutput, AbstractTransactionInput, 
TransactionInput, and CoinbaseTransactionInput, 
showing that a transaction output may spend either a 
coinbase transaction or a normal transaction. As 
Figure 6 shows, a tool-level constraint is defined to 
constrain classes stereotyped as 
AbstractTransactionInput and TransactionOutput as 
the allowed source and destination of the Spend 
connector, respectively. Hence, the Spend 
relationship can be drawn solely from classes 
stereotyped as AbstractTransactionInput, 
TransactionInput, or CoinbaseTransactionInput to 
classes stereotyped as TransactionOutput. In the 
same way, a constraint is defined to constrain 
classes stereotyped as UnlockingScript and 
LockingScript as the allowed source and destination 
of the Unlock relationship, respectively.  In the same 
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(a)

 

(b) 

Figure. 4. (a) Example metamodel level OCL constraints; (b) Example application level constraints 
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Figure. 5. Connector definition meta-model 

manner, the Unlock relationship can be drawn solely 
from classes stereotyped as UnlockingScript to 
classes stereotyped as LockingScript. As Figure 5 
depicts, the Spend connector extends the UML 
Association and shows that transaction inputs will 
provide proof of ownership (i.e. unlocking script) of 
the referenced UTXOs. The Unlock relationship 

extends the UML Dependency and is self-
explanatory. In the same way, the remaining 
connectors (i.e. PBKDF2KeyStretching, HMAC-
SHA512, and RIPEMD160HashOfSHA256Hash 
connectors) are defined in Figure 5 and constrained 
in Figure 6 and are used for bitcoin key management 
capabilities that may be used by a wallet or an 
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Figure. 6. Connector usage constraint definition 

exchange to access bitcoin blockchain and/or 
generate new transactions (here wallet term is used 
to refer to Hierarchical Deterministic (HD) wallets 
as the most common type of bitcoin wallets). The 
PBKDF2KeyStretching connector can be used to 
model generating seeds from mnemonic code words 
that are presented by Seed and MnemonicCodeWord 
stereotypes. Bitcoin uses 12-to-24-word mnemonic 
phrases. A wallet may use a mnemonic code word to 
generate a seed, and user private keys will be 
derived from that seed. The HMAC-SHA512 
connector models HMAC function which uses 
SHA512 hash function and its usage in bitcoin 
wallets is twofold: to derive a private key from a 
seed and a child private/public key from a parent 
private/public key. Finally, the 
RIPEMD160HashOfSHA256Hash connector models 
the double hashing process used by Bitcoin to 
generate public addresses from public keys. Initially, 
the SHA256 hash of the public key is computed, and 
the result is then hashed using the RIPEMD160 hash 
function. This double hashing is represented by the 
RIPEMD160HashOfSHA256Hash connector and is 
employed to calculate a public address: 
PublicAddress = Ripmed160(SHA256(PublicKey)). 

MnemonicCodeWord, Seed, PrivateKey, PublicKey, 

and PublicAddress stereotypes along with the last 

three described connectors (i.e. 

PBKDF2KeyStretching, HMAC-SHA512, and 

RIPEMD160HashOfSHA256Hash connectors), 

provide key management capabilities from which 

applications such as wallets and exchanges may 

benefit. 

In the bitcoin network, nodes play different 
roles, including wallet, miner, full blockchain, 
network routing, stratum node, stratum server, and 
pool server [15]. Our profile introduces a 
BitcoinNode stereotype, 12 tagged values, and a 
CommunicationProtocol enumeration which may be 
used in BitML Network diagrams to model 
application deployment and communication over the 
bitcoin network. These roles are specified as tagged 
values for the BitcoinNode stereotype, representing 
distinct functionalities. However, not all 
combinations of these roles are allowed. For 
example, no nodes are allowed to play stratum node 
and stratum server roles at the same time as defined 
by OCL constraint presented in Fig 4 (a). 
Furthermore, common combinations of the 
mentioned roles are defined as node types. For 
example, a node that serves as a wallet, miner, 
maintains the full blockchain, and handles network 
routing is commonly referred to as a bitcoin core 
node, or a reference client node. As another 
example, a node that fulfills both wallet and network 
routing roles is termed a lightweight wallet node. 
The corresponding OCL constraints are illustrated in 
Figure 4-a. In addition to BitcoinNode constraints, 
two other meta-model level constraints are provided 
in Figure 4-a. The first avoids empty block creation, 
and the second mandates the use of exactly one 
previous block hash attribute. Finally, application-
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level constraints may be utilized, as illustrated by    
two examples in Figure 4-b. The first constraint 
ensures that the block hash of each valid block is 
smaller than the network's difficulty target value, 
while the second enforces a dust limit of 546 
Satoshis. 

3.2. Implementation 

The proposed profile has been implemented in 
the Sparx EA modeling tool. Figure 7 shows an 
example snippet of XML generated by Sparx MDG 
technology for the defined UML profile. It shows 
that the Unlock relationship and the UnlockingScript 
stereotype extend the UML Dependency and Class 
meta-class, respectively. Furthermore, it 
demonstrates the applicability of the Unlock 
relationship on UnlockingScript stereotype and the 
definition of the LockingScriptType tagged value 
and its possible values.  

As previously mentioned and illustrated in 
Figure 8, the Transaction Processing diagram 
extends the Logical diagram (i.e., UML class 
diagram), while the Network diagram extends the 
Deployment diagram. Figures 9 and 10 showcase the 
definition and presentation of the toolbox designed 
to provide access to BitML class stereotypes, BitML 
enumerations, and BitML connectors. 

In this context, a class stereotype refers to a 
stereotype that extends the Class meta-class. Each 
element (i.e., class stereotype, enumeration, or 
connectors) is linked to the BitML toolbox by 
defining a tagged value for the extended toolbox. As 
depicted in Figure 8, the BitML toolbox is associated 
with the Transaction Processing diagram and 
Network diagram through the toolbox attribute of the 
Diagram_Logical and Diagram_Deployment meta-
classes, respectively.   

The appearance of the defined toolbox shown in 
Figure 10 aims to ease access to defined stereotypes, 
enumerations, and connectors. Users have the option 
to utilize the provided toolbox interchangeably or 
directly apply stereotypes to the base elements (i.e., 
class or node). 

It's worth noting that attribute/operation 
stereotypes have not been directly bound to the 
toolbox because they are not utilized directly; 
instead, they are accessed through their associated 
class stereotypes. In this context, attribute and 
operation stereotypes refer to stereotypes that extend 
the Attribute and Operation meta-classes, 
respectively.  

4. Case Study 

To validate its practical utility and efficacy of 
proposed UML profile, we turn to a compelling case 
study: the development of a fast payment system 

powered by Bitcoin's robust infrastructure. This 
study transcends mere demonstration; it acts as a 
rigorous testing ground, revealing the strengths and 
potential limitations of our profile in a real-world 
context. 

Through the lens of meticulously crafted 
diagrams, we delve into the heart of the fast payment 
system. These diagrams, crafted using our UML 
profile, serve as a testament to its capabilities. They 
reveal:  

• Precise representation of Bitcoin 
transactions: Witness how our profile 
seamlessly captures the intricate dance of 
data within the Bitcoin network, from 
transaction initiation to confirmation. 

• Clear communication between system 
components: Observe how our profile 
facilitates efficient interaction between 
diverse system elements, ensuring smooth 
processing and rapid transaction finalization. 

• Enhanced developer clarity and 
understanding: Designed to empower 
developers with a profound understanding of 
the system's inner workings. 

By dissecting these diagrams, we not only 
showcased the practical application of our profile 
but also embarked on a critical appraisal of its 
effectiveness. We meticulously analyzed its ability 
to: 

• Handle the nuances of fast payment 
protocols: Discover how our profile adapts to 
the unique demands of high-speed 
transactions within the Bitcoin network. 

• Maintain transparency and traceability: 
Explore how our profile ensures clarity and 
integrity throughout the transaction lifecycle, 
fostering trust and security within the system. 

• Identify potential areas for improvement: 
Through this rigorous analysis, we uncover 
valuable insights that can further refine and 
strengthen our profile, paving the way for 
even more powerful applications in the 
future. 

Let's delve into the case study: Since a secure 
bitcoin payment requires at least 6 block 
confirmations, bitcoin is not suitable for payments 
that rely on quick transaction confirmation. Bitcoin 
fast payment algorithms [31, 32] aim to expedite the 
payment process while mitigating the risk of double 
spending. A sub-set of these algorithms facilitate a 
large number of off-chain transactions recorded by a 
small number of on-chain transactions. Therefore, 
the challenge is to either reuse, combine, or devise a 
new blockchain consensus algorithm to expedite 
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Figure. 7. An example of generated XML snippets 

 

Figur 8. Diagram definition meta-model 

primary blockchain payments. In a companion 
research project, we designed a fast payment 
application, implemented it using the NBitcoin 
library1 and tested it on the Bitcoin Testnet2. 
Presented UML profile has been applied to model 
this application. This section presents one of these 
models along with defined constraints to illustrate 
how BitML can be used to model applications 
belonging to bitcoin application domain.  

To this end, we utilized a bond transaction to 
create a specific UTXO, which can be employed for 
off-chain payments and is resistant to double 
spending. A refund transaction, spending that 
UTXO in its entirety after a specified period, was 
defined with a transaction-level lock time.  
Additionally, the fast payment application has the 

 
1 https://github.com/MetacoSA/NBitcoin 
2 https://en.bitcoin.it/wiki/Testnet 

capability to generate settlement transactions, 
facilitating the transfer of funds from the fast 
payment account to merchants’ accounts. A 
settlement transaction can yield one or two outputs: 
one for transferring bitcoins to the intended recipient 
and optionally, another output for returning the 
remaining bitcoins in change back to the user's 
wallet. Each settlement transaction spends the 
UTXO of either a bond transaction or a change-back 
settlement transaction. 

 We modeled this application using the UML 
profile proposed in this paper. Our algorithms were 
depicted using BitML Transaction Processing 
diagrams and corresponding UML sequence 
diagrams. The on-chain transactions of our fast 
payment application are shown in Figure 11. In 
addition to profile-defined constraints, Figure 11 
introduces two application-level constraints. The 
first constraint, titled “Lock Time Validation,” 

https://github.com/MetacoSA/NBitcoin
https://en.bitcoin.it/wiki/Testnet
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Figure. 9. Toolbox definition meta-model 

 

Figure. 10. Layout of the defined toolbox in Sparx EA 

specifies that bond transactions must use zero 
transaction-level lock times, while refund 
transactions should use non-zero lock times. The 
second constraint, titled “Subsequent Transaction 
Constraint,” ensures that each settlement transaction 
spends the UTXO of either a bond transaction or a 
change-back settlement transaction, and has either a 
transaction-level lock time of zero or a smaller 
transaction-level lock time than the lock time of the 
referenced transaction. This constraint ensures that 
the referenced UTXO cannot be spent beforehand. 
This model, exemplifying a BitML Transaction 
Processing diagram, was employed alongside other 
models in the analysis and design of the developed 
bitcoin fast payment application. It played a crucial 
role in helping us formulate and communicate a 
mathematically proven and algorithmically 
sophisticated solution, eliminating any potential 
ambiguity. 

5.  Evaluation 

We utilized the ATAM framework [33] to assess 
the proposed UML profile for bitcoin application 
development. With its emphasis on tradeoffs, 
scenario-driven analysis, stakeholder collaboration, 
and a structured process, the ATAM framework 
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Figure. 11. An Example BitML Transaction Processing diagram for On-chain transactions of a bitcoin fast payment application 

aligns well with comprehensiveness, usability, and 
domain relevance goals of the proposed profile. 
Three individuals with expertise in software 
architecture and four in the bitcoin blockchain 
actively participated in the evaluation. This section 
aims to provide a thorough assessment of the 
effectiveness of BitML UML profile for supporting 
bitcoin application development. 

5.1. Architectural Drivers 

To ensure our UML profile effectively addresses 
the multifaceted requirements of bitcoin blockchain 
modeling, we identified the following list of 
architectural drivers: 

1) Domain Complexity and Conceptual 
Clarity: Addressing the inherent complexity 
of bitcoin and ease the development of clear 
conceptual models. 

2) Modeling Precision and Detail: Ensuring 
precise and detailed representation of 

classifiers present in the processes and 
concepts of applications belonging to the 
targeted application domain. 

3) Decentralization and Distributed Systems: 
Effectively supporting the decentralized 
nature and distributed architecture of the 
blockchain. 

4) Security and Cryptographic Techniques: 
Accurately modeling and incorporating 
bitcoin's reliance on cryptography for both 
security measures and transaction 
validation. 

5) Software Engineering Best Practices: 
Aligning with and contributing to 
blockchain-specific software engineering 
best practices, methodologies, and reference 
architectures. 

6) Automation in Model-Driven Engineering 
(MDE): Facilitating automated model 
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transformations and potential for code 
generation (in future). 

7) Correctness and Validation Prior to 
Development: Supporting pre-development 
model validation, in accordance with bitcoin 
operational principles (through the use of 
defined OCL constraints). 

8) Intuitive Syntax for Domain Experts: 
Offering intuitive syntax in the form of a 
domain-specific language. 

9) Simplification and Focus on Development 
Goals: Capable of reducing complexity and 
concentrating on key development goals by 
providing clear abstractions within the 
targeted application domain. 

10) Extension and Domain-Specific Modeling: 
Extending UML to define domain-specific 
elements, connectors, and diagrams. 

11) Tool Compatibility and Integration: 
Ensuring compatibility and effective 
implementation in popular modeling tools 
such as Sparx Enterprise Architect. 

12) Alignment with Bitcoin’s Ontology and 
Automated Conformance Evaluation: 
Aligning models with bitcoin's ontology and 
automating conformance evaluation using 
OCL constraints. 

13) Practical Applicability and Utility: 
Demonstrating usefulness in real-world 
application development contexts. 

14) Standardization and Extensibility (UML 
Profiles): Adhering to UML standards while 
providing extensibility to address domain-
specific needs. 

5.2. Utility Tree 

We utilized the following quality attributes and 
sub-attributes to conduct evaluation: 

1) Correctness and Consistency: Ensures 

models accurately represent bitcoin's 

ontology and maintain consistency in 

conformance to relevant rules. 

a) Transaction validity: 

i) Conformance to transaction 

format and signature 

requirements. 

ii) Accurate representation of valid 

transaction types and fees. 

iii) Handling of edge cases and 

invalid transactions. 

b) Compliance with bitcoin protocols: 

i) Alignment with consensus 

mechanisms and rules. 

ii) Accurate modeling of network 

communication and message 

exchanges. 

iii) Adherence to relevant Bitcoin 

Improvement Proposals (BIPs). 

c) Internal consistency: 

i) Absence of contradictions or 

inconsistencies within the model. 

ii) Logical relationships between 

elements and constraints. 

iii) Traceability between model 

elements and Bitcoin concepts. 

To maintain brevity, the remaining quality 
attributes are described more succinctly. 

2) Understandability and Clarity: Models 

should be clear and easy to comprehend for 

both domain experts and developers, 

facilitating communication and 

collaboration. 

a) Syntax and notation: 

i) Familiarity and ease of use for 

target audience. 

ii) Conciseness and avoidance of 

ambiguity. 

iii) Alignment with established UML 

conventions. 

b) Documentation and examples 

c) Visual representation: 

i) Readability and intuitiveness of 

diagrams and model elements. 

3) Completeness and Expressiveness: Ensures 

the profile includes sufficient elements and 

relationships to capture all critical aspects 

of the targeted application domain. 

a) Coverage of core bitcoin entities 

b) Modeling of decentralized aspects 

c) Extensibility and customization: 

i) Capability to extend the profile 

with additional elements for 

domain-specific needs. 

4) Tool Integration and Support: Evaluates the 

compatibility of the profile with existing 

modeling tools and its effectiveness within 

those tools. 

a) Feature support: 

i) Availability of tools that fully 

implement the profile's features 

and constraints. 
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ii) Ability to utilize tool-specific 

functionalities for validation, 

simulation, or code generation. 

b) Usability and performance: 

i) Intuitiveness and ease of use of 

profile features within the chosen 

tool. 

ii) Availability of error messages for 

validation issues. 

Other quality attributes and sub-attributes, such 
as automated code generation and automated secure 
code generation, are beyond the scope of this paper 
and are dedicated to the future work of the authors. 

5.3. Analysis  

Table 1 presents evaluation scenarios, risks, and 
countermeasures. This sub-section highlights 
sensitivity points and tradeoffs identified in the 
ATAM evaluation. To maintain brevity of this 
section, descriptions are provided solely for the first 
sensitivity point and the first trade-off point. 
Sensitivity points are critical elements with 
significant impact on quality attributes, while 
tradeoff points require balancing competing 
attributes.  

Exemplars of identified sensitivity points are 
provided below: 

1) Cryptographic Modeling: 

• Sensitivity: Small changes or inaccuracies 

in modeling cryptographic processes can 

significantly impact the security aspect of 

the UML profile. 

• Impact: A minor error or oversight could 

lead to a substantial misunderstanding of 

bitcoin’s security mechanisms. 
2) Scalability Representation (application 

scalability) 

3) Tool Compatibility (tool update 

adjustments) 

Furthermore, the following are exemplars of 

tradeoff points identified in the conducted 

evaluation: 

1) Complexity vs. Understandability: 

• Tradeoff: Balancing the need for detailed, 

accurate modeling of bitcoin processes 

against the need for the model to be 

understandable to non-technical users. 

• Decision: Classifier with different level of 

abstraction are provided in the proposed 

UML profile. 

2) Model Flexibility vs. Standardization 

(domain-specific adaptations) 

3) Security Detailing vs. General Usability 

(being both accurate and accessible to a 

broader audience) 

In ATAM, pinpointing sensitivity and tradeoff 
points provides foresight into the ramifications of 
changes and design choices. This ensures that our 
UML profile is adaptable and effective for its 
intended use in blockchain application development. 

Regarding the addressed risks, and the identified 
tradeoffs and sensitivity points, the evaluation 
showed that the proposed profile is promising. 
Furthermore, it has led us to implement 
improvements mentioned in Section 6 to foster 
further adoption by application development 
communities.  

6. Conclusions and Future Works 

Blockchain technology has become a 
cornerstone in various industries, featuring diverse 
blockchains such as public, private, consortium, 
hybrid, fourth generation, and fifth generation. 
Among these, Bitcoin, powered by its public 
blockchain, has gained prominence as a highly 
valued and widely used digital currency, spurring 
the development of applications on its blockchain. 
However, the intricacies of bitcoin application 
development present challenges, demanding 
specialized software engineering best practices. 

In response to these challenges, our paper 
introduces a UML profile meticulously crafted for 
the bitcoin blockchain. This profile encompasses 
Transaction Processing and Network diagrams, 42 
stereotypes, 23 tagged values, six datatypes, and a 
set of OCL constraints for automatic conformance 
evaluation. As bitcoin emerged at the convergence 
of distributed computing and mathematical 
cryptography, we advocate developing a UML 
profile as a pragmatic approach. This leverages both 
existing UML diagramming elements and profile-
specific features to adeptly model the intricate 
nature of bitcoin application development. 

The practical implementation of the proposed 
profile in Sparx EA not only confirms its 
applicability but also demonstrates its real-world 
effectiveness. The focal point of our case study was 
the development and modeling of a bitcoin fast 
payment application, showcasing the profile's 
capabilities in a tangible and applied context. 
Specifically designed for secure and rapid bitcoin 
payments, this application served as a robust testbed 
for evaluating the proposed UML profile. 

A rigorous evaluation of the UML profile was 
conducted using the ATAM, providing valuable 
insights into its strengths and areas for enhancement. 
This evaluation, focused on the profile itself, offered 
a comprehensive understanding of its architectural 
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Table 1. Examples of Evaluation Scenarios, Identified Risks, and Countermeasures 

Scenario No. 1 2 3 

Scenario Name Simple Bitcoin Wallet App 
Decentralized Exchange (DEX) 

Platform 
Bitcoin Integration with 

Enterprise System 

Stimulus 

Developer models a basic bitcoin 

wallet app with sending/receiving 
and key management 

functionalities 

Team models a complex DEX 

platform with smart contracts, 
liquidity pools, order matching, 

and so on. 

Team integrates bitcoin payment 

functionalities into an existing 

ERP system 

Environment 

- Development environment 

(chosen tool) 

 - Target users (developers & 
domain experts) 

- Development environment 

(chosen tool) 
 - Target users (DEX development 

team)  

- Security requirements 

- Development environment 

(ERP) 

 - Target users (integration 

specialists)  
- ERP data structures and 

functionalities 

Response 

-Complete and clear model with 

sufficient detail for basic 
transactions 

. - Intuitive syntax for developers 

and domain experts. 
- Efficient implementation within 

the chosen tool. 

Detailed and accurate model of 
the DEX architecture, including 

smart contracts, security 

protocols, and distributed 
communication 

- OCL constraints effectively 

validate model correctness and 
adherence to DEX principles 

- Clear model of the integration 
with delineated responsibilities 

and data flows 

- Simplified abstraction level 
suitable for integration 

development and validation.  

- Demonstrated practical usage in 
a real-world enterprise scenario. 

Architectural 

Decisions 

- Level of detail in profile 
elements. - Syntax complexity for 

different user groups. – 

 Tool compatibility and support. 

- Profile capabilities for capturing 
DEX mechanics and smart 

contracts.  

- Automation support for DEX-
specific aspects. 

 - Validation mechanisms for 

complex interactions. 

- Domain-specific modeling 

capabilities for bridging bitcoin 

and ERP systems. 
 - Abstraction level 

appropriateness for integration 

context.  
- Practical utility and effectiveness 

in real-world scenarios. 

Quality Attribute 

Impact 

- Clarity and comprehensibility. 

 - Developer productivity and ease 
of use.  

- Tool effectiveness and 

integration. 

- Correctness and consistency.  

- Development efficiency and 

automation.  
- Security and reliability. 

- Maintainability and ease of 
integration.  

- Development effort and resource 

optimization. 
 - Practical applicability and value 

proposition. 

Risk Rating Medium High Medium-High 

Mitigation Strategies 

- Refine profile elements to 

provide appropriate detail for 

basic bitcoin concepts. 

 - Offer alternative syntax options 

for varying user expertise.  

- Model the system with the 

profile.  
- Enhance code generation  

capabilities. 

 - Develop OCL constraints to 
validate complex DEX 

interactions and security 

protocols. 

- Develop domain-specific model 

tailored to integration needs.  
- Provide adjustable abstraction 

levels to cater to different 

integration complexities. 
 - Showcase successful case 

studies of real-world 

implementations. 

 

tradeoffs, sensitivity points and addressed risks, and 
highlighted key considerations for further 
refinement. The results from the ATAM assessment 
was promising and contribute to the ongoing 
evolution of the UML profile, ensuring its 
continuous improvement and adaptability for diverse 
blockchain applications. 

Further research can facilitate side-chain 
development, and we aim to extend this work to 
support side-chain modeling. The authors expect 
that this extension, along with the other mentioned 
benefits, will increase the number of rational 
incentives for the wider adoption of the proposed 

UML profile and will encourage researchers, 
practitioners, and decision-makers to conduct 
experiments. In addition, applications such as 
Colored Coin and fast payment algorithms broaden 
the use of bitcoin for non-fungible tokens (asset 
management) [34] and daily shopping [31, 32] 
respectively. While these applications can be 
modelled by the proposed meta-model, the proposed 
meta-model can be extended to define specific 
classifier to further assist modelling in these sub-
domains. Finally, the authors aim to enrich the 
proposed UML profile by adding model 
transformation and automated code generation 
which are two important outcome of MDE.   
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