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 ABSTRACT 

The portfolio selection problem is one of the main investment management prob-

lems. In the portfolio selection problem, robustness is sought against uncertainty 

or variability in the value of the parameters of the problem. This paper has been 

conducted for Robust portfolio optimization based on the mean-cvar approach. 

And introduces the linear mean-cvar  model as a criterion for calculating risk and 

provides an optimal Robust mean-cvar   model. The Robust approach used in this 

research is the Bertsimas and Sim. In this approach, the Robust counterpart pre-

sented for a linear programming model remains linear, maintaining the ad-

vantages of the linear programming model in the optimal model. The model de-

veloped in this research is randomly selected by real data of 20 stocks of the S&P 

500 index for three years, this development help the portfolio selection problem 

to consider uncertainty. Interval optimization is a modeling approach to consider 

parameter uncertainty in this paper. Considering uncertainty make the model 

more realistic. The results of the model show that this approach has computational 

efficiency and on the other hand proposed model produces a better solution from 

a risk and portfolio rate of return point of view. 

 

1 Introduction 
 

The practical relevance of portfolio selection models has constantly increased, since their introduction 

in the financial literature, due to the structural transfer of big private capitals toward investments gen-

erally not required by non-institutional operators. As a consequence, the interest of private and institu-

tional investors in techniques and tools aimed at a more efficient forecast of the dynamics of securities 

prices and rational management of investment capital is hugely increased. The last aspect is the heart 

of this contribution which essentially consists of the application of robust optimization to the minimi-

zation of the conditional value at risk (CVaR) as a way to obtain efficient portfolios [7]. Classical port-

folio selection models, still largely used for their conceptual simplicity and utility in applications, are 

based on a bi-criteria optimization scheme in which the goal is to form a portfolio in which expected 

https://portal.issn.org/resource/ISSN/2538-5569
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return is maximized, while some index of risk is minimized [14]. Portfolio selection and portfolio man-

agement are the most important problems from the past that have attracted the attention of investors. 

To solve these problems, Markowitz.  proposed his model which was named Markowitz or the mean-

variance (MV) model. He believed that all investors want a maximum return and minimum risk in their 

investments. So, he presented his model that expresses investors want minimum risk for each level of 

expected return. Markowitz results in an area with an efficient frontier of return and risk. For which 

point along an efficient frontier, there is no point with higher return and less risk [13].  

Most authors have tried to make optimal solutions to portfolio selection issues by balancing between 

return maximization and investment risk minimization. Given the assumption of the normal or abnormal 

return of assets, two different theories have been proposed. In modern theory, the distribution of return 

is assumed to be normal. Accordingly, the standard deviation is introduced as a risk measure. However, 

the research shows that the distribution of the asset’s return is not normal. Given the assumption, risk 

measures vary from standard deviation to values at risk. stock portfolio optimization is one of the most 

important stages of the portfolio, stock selection is the most important stage of a proper investment 

[11].In the classical Markowitz, model risk is measured utilizing a dispersion measure, such as variance 

or standard deviation. More recently, starting from the observation that positive and negative deviations 

of the returns from their mean play a greatly asymmetric role in the investor’s perception, financial 

practice and related theory showed increasing interest towards quantile-based measures, such as value 

at risk (VaR) [16]. Value at Risk, if studied in the framework of coherent risk measures, lacks subaddi-

tivity, and therefore convexity , in the case of general loss distributions (although it may be subadditive 

for special classes of them, e.g. for normal distributions). This drawback entails both inconsistencies 

with the well-accepted principle of diversification (diversification reduces risk) and greater problems 

from the point of view of numerical tractability  [15]. 

 To overcome these problems, recent literature on portfolio selection focused on coherent risk measures 

and in particular on conditional value at risk (CVaR) [16]. Another weak point of classical selection 

models has been recently illustrated: the optimization process leads to solutions that are likely to depend 

heavily on the parameter perturbations. As data are often, for several reasons, only known approxima-

tively, this dependence makes the theoretical and numerical results highly unreliable for practical pur-

poses [8]. This feature has been initially dealt with through the methods of stochastic programming and, 

in the last few years, with the help of a methodology that was recently introduced in the optimization 

literature [2,21]. In recent years, a body of literature is developing under the name of robust optimization 

to consider uncertainty in the value of parameters of the model. Soyster proposed a linear optimization 

model to construct a solution that is feasible for all data that belong in a convex set [18]. The solutions 

of the Soyster model are too conservative in the sense that it causes us to give up too much optimality 

for the nominal problem in order to ensure robustness. The second step forward in developing a theory 

for robust optimization was taken independently by Ben-Tal and Nemirovski [1]. They use an ellipsoi-

dal uncertainty set. This model can adjust conservatism. However, this model is not linear which can 

be problematic in real-world problems. Another development on robust optimization has been done by 

Bertsimas and Sim [3]. This model is linear, applicable, and extendable to discrete optimization and can 

flexibly adjust the level of conservatism of the robust solutions in terms of probabilistic bounds of 

constraint violations. In this paper, we use Bertsimas and Sim methodology for the development of our 

model.  There are some practical models of robust optimization in finance. El-Ghaoui et al proposed a 

robust portfolio model under the uncertainty of covariance matrix which is developed by semi-definite 

programming (SDP) and considers worst-case value-at-risk [5]. Tutuncu and Koenig developed a robust 



Pouraskari Jourshari et al.  

 
 

 

 
Vol. 8, Issue 1, (2023) 

 
Advances in Mathematical Finance and Applications 

 

[65] 

 

portfolio optimization problem formulated in a quadratic program (QP) [20]. Kawas and Theile devel-

oped a log robust portfolio model to consider the heavy-tailed property of stock prices [9]. Chen and 

Tan developed robust portfolio selection based on asymmetric measures of variability of stock returns. 

In this paper, they showed a robust model for the mean-cvar model [4]. Moon and Yao developed a 

robust mean absolute deviation model for portfolio optimization [12]. Miryekemami et al. using a ge-

netic algorithm in an issue aimed at maximizing returns and stock liquidity show that the selected model 

provides good performance for selecting the optimal portfolio for investors with specific goals and 

constraints [11]. Rezaei and Elmi showed that the reaction of the stock price in the stock market was 

modeled by the behavioral finance approach.  

The population of this study included the companies listed on the Tehran Stock Exchange. In order to 

forecast the stock price, the final price data of the end of December,  March, June, and September 2006-

2015 and the stock prices of 2014 and 2015 were analyzed as the sample. In this study, Bayes' rule was 

used to estimate the probability of the model change. Through this rule, the probability of an event can 

be calculated by conditioning the occurrence or lack of occurrence of another event. The results of 

model estimation showed that there is a probability of being placed in high-fluctuated regimes  (over-

reaction)  and low-fluctuated  (under-reaction of stock price)  despite the shocks entering the stock 

market. In models with the -month’s final prices, it was proved that the real stock price had no difference 

from the market price [6]. ShahNazari et al developed Climate Policy Uncertainty and Power Genera-

tion Investments: A Real Options-CVaR Portfolio Optimization Approach.  findings show that there is 

potential for investors to fully hedge their existing fossil fuel-based generation assets through the addi-

tion of on-shore wind capacity [17]. Liwei et al developed A CVaR-robust-based multi-objective opti-

mization model and three-stage solution algorithm for a virtual power plant considering uncertainties 

and carbon emission allowances [10]. Tao et al developed the Optimal position of supply chain delivery 

window with risk-averse suppliers: A CVaR optimization approach. Obtained the results show that a 

numerical case is executed to compare the optimal position with minimum CVaR and the one minimiz-

ing the expected penalty and to illustrate the influence of several parameters on the optimal position 

[19]. 

Investors must always decide to get the best results in the financial markets. They seek the highest return 

and the lowest risk. Undoubtedly, providing models that are most compatible with the real world and 

financial markets will be of particular importance; because they allow financial managers and portfolio 

decision-makers to make reliable decisions. In fact, the importance of this issue becomes more apparent 

with the expansion of increasing competition in the financial markets. In Iran, little research has been 

done in the field of portfolio optimization using unfavorable risk criteria, and the criteria for evaluating 

the mean-Cvar ratio remain unknown. The reason for selecting these variables in this study is that the 

Mean-Cvar ratio itself is a new and fundamental approach in postmodern risk and mitigation risk ap-

proaches . Therefore, in a situation where the correct decision of managers and investors is considered 

and consequently their accurate understanding of the optimal portfolio is considered. In this regard, 

understanding the need for research on the issue of robust optimal portfolio model with the Mean-Cvar 

approach which is the postmodern perspective on investment management and financial theories has 

been examined. 

 

1.1 Definitive Model of Mean-Cvar 
 

Rockafellar and Ursayev established a new risk measure called Conditional value at risk (CVaR). Value 

at risk measures the minimum loss corresponding to a certain worst number of cases but it does not 

https://www.sciencedirect.com/science/article/pii/S1876610215011352#!
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quantify how bad these worst losses are. An investor may need to know the magnitude of these worst 

losses to discern whether there are possibilities of losing huge sums of money CVaR quantities this 

magnitude and is a measure of the expected loss corresponding to several worst cases, depending on 

the chosen Confidence level. Using CVaR makes the portfolio selection problem linear and when we 

solve it a minimum VaR is found since CVAR ≥ VAR  [16] CVaR is derived as follows: 

Let f(Χ, ξ)be the loss function of the portfolio. Usually, losses are in monetary terms, but we list losses 

in terms of returns (percentage). Given a confidence level α, CVaR is the expected value of all(1 − α)% 

losses and can be found using the following function: 

CVaRα(x, η) = η + (1 − α)−1 ∫ [f(x, ξ) − η]+P(ξ)dε
ξεRn

 

η: VaR 

ξ: random variable 

Z+ = max{z, 0} 

 

The Mean-CVaR portfolio selection can be formulated as a linear programming problem when sce-

narios of future returns are available. Since r is the return matrix, rΧ is the portfolio returns. Therefore 

the losses will be   −rΧ. The problem tries to find the expected Value of the worst (1 − α)%  losses. 

The following linear program would solve the problem: 

Uncertain return on j share in scenario i r̃ij 

specic expected return for the portfolio E0 

the mean return of the securities for j scenario    μj =
∑ r̃ij

S
i=1

S
 μj 

ondence level α 

Percentage of investment per share j Xj 

Var η 

Auxiliary variable that measures the value between the missing scenario i and Va yi 

(1 ) min η +
1

(1 − α)s
∑ (yi)

s

i=1
 

 s. t 

(2 ) yi ≥ ∑ [(−rijΧj) − η]
n

j=1
            i = 1,2, … , s 

(3 ) yi ≥ 0         i = 1,2, … , s 

(4 ) x́μ = E0 

(5 ) ∑ xj = 1

n

j=1

 

(6 ) x ≥ 0 

 

1.2 Robust Counterpart of the Mean-Cvar Model 

The proposed model in the second case is related to the uncertainty of the model. This model is based 

on the model of robust optimization proposed by Ben-Tal and Nemirovski [2]. Consider the following 

deterministic linear optimization model. 
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(7) 

Min cx + d 

s. t.: 

Ax ≤ b 

Based on the research of Ben-Tal and Nemirovski, the uncertainty linear optimization model, which 

includes a set of linear optimization problems, is defined as follows. 

(8) 

Min cx + d 

s. t.: 

Ax ≤ b 

c, d, A, b ∈ U 

In this model, the parameters C and A in the uncertainty set U are assumed to be variable. The vector x 

is a robust answer to a problem (8) if it can satisfy all the constraints with an uncertainty parameter 

belonging to the set U. According to Ben-Tal and Nemirovski, the robust model of the problem is de-

fined as follows. 

(9) Min {Ĉ(x) =
sup

(c, A ∈ u)[cx + d] : Ax ≤ b, ∀c, A ∈ U} 

The optimal solution to problem (9) will be the optimal solution to problem (7). This optimal solution 

satisfies the constraints of the problem for all possible data in the set U and guarantees the optimality 

of the objective function in such a way that even in the worst case it is not more than Ĉ(x∗)  Problem 

(9) is a semi-infinite linear optimization problem and is considered computationally impossible. How-

ever, for convex sets, it seems that Model (9) will become a convex polynomial problem that can be 

computed. For a better understanding, the following model for the studied problem can be defined as 

follows: 

(10) 

Min fy + cx 

s. t.: 

Ax ≤ dy 

y, x ∈ {0,1}  

The vectors d, r, C, and f correspond to the parameters of the problem, respectively. Similarly, all var-

iables zero and one are defined in the form of y and x vectors. To describe the robust model correspond-

ing to the above model, parameters d and c are assumed to be indefinite. It is assumed that each of these 

indefinite parameters can be changed within a defined framework. The general form of this framework 

can be defined as follows: 

(11) ubox = {ξ ∈ Rn: |ξt − ξ̅t| ≤ ρGt     t = 1, … , n} 

Whereξ̅t is the nominal value ξt of the t parameter of the vector c (it is a 1-dimensional vector), respec-

tively. Also, the two positive values of Gt and ρ indicate the degree of uncertainty and the level of un-

certainty, respectively. According to the above description, the robust model corresponding to the model 

will be as follows: 
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(12) 

Min Z 

s. t.: 

fy + cx ≤ z,     ∀c ∈ uBox
c  

Ax ≤ dy,     ∀A ∈ uBox
A  

y, x ∈ {0,1}  

Ben-Tal et al. showed that in a limited framework the robust model could be transformed from a semi-

infinite problem to a balanced problem in which the set Ubox is replaced by a finite set Ubox. In this 

problem, set Ubox contains the maximum values in the set Ubox. To show the formability of the prob-

lem(12), the constraints of the problem must be made formable. So for the first limitation, we have the : 

(13)   cx ≤ z − fy,   ∀c ∈ uBox
c |uBox

c = {C ∈ Rnc : |Ct − C̅t| ≤ ρcGt
c     t = 1, … , nc} 

The left side of the above inequality has an indeterminate parameter while all the parameters on the 

right are definite. Therefore, the controlled form of the semi-infinite inequality will be as follows: 

(14) 

∑(C̅txt + ηt)

t

≤ z − fy 

ρcGt
cxt ≤ ηt,     ∀t ∈ {1, … , nc} 

ρcGt
cxt ≥ −ηt,     ∀t ∈ {1, … , nc} 

For the second constraint of the model (12), the semi-infinite controlled equation is as follows: 

(15) 

aix ≤ diy,     ∀i ∈ {1, … , na}      ∀a ∈ uBox
a |uBox

a

= {a ∈ Rna: |ai − a̅i| ≤ ρaGi
a     i = 1, … , na} 

 a̅i + ρaGi
a ≤ diy,     ∀i ∈ {1, … , na} 

The relations below show the general form of the linear robust model for the hypothetical problem. 

(16) 

𝑀𝑖𝑛 𝑍 

𝑠. 𝑡. : 

∑(𝐶�̅�𝑥𝑡 + 𝜂𝑡)

𝑡

≤ 𝑧 − 𝑓𝑦 

𝜌𝑐𝐺𝑡
𝑐𝑥𝑡 ≤ 𝜂𝑡 ,     ∀𝑡 ∈ {1, … , 𝑛𝑐} 

𝜌𝑐𝐺𝑡
𝑐𝑥𝑡 ≥ −𝜂𝑡 ,     ∀𝑡 ∈ {1, … , 𝑛𝑐} 

�̅�𝑖 + 𝜌𝑎𝐺𝑖
𝑎 ≤ 𝑑𝑖𝑦,     ∀𝑡 ∈ {1, … , 𝑛𝑎} 

𝑦, 𝑥 ∈ {0,1}  

According to the index, decision parameters and variables expressed, the mathematical planning model 

of the Mean-Cvar robust counterpart is as follows: 
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(17) 𝑚𝑖𝑛 𝐶𝑣𝑎𝑟 =  𝑍 

 𝑠. 𝑡.: 

(18) 

𝜂 +
1

(1 − 𝛼)𝑆
∑(𝑦𝑖 + 𝜗𝑖)

𝑆

𝑖=1

≤ 𝑍 

(19) 

−𝜗𝑖 ≤ ∑(−𝑟𝑖𝑗𝑥𝑗) − 𝜂

𝑁

𝑗=1

≤ 𝜗𝑖,     ∀𝑖 

(20) 

𝑦𝑖 ≥ ∑ (−𝑟𝑖𝑗𝑥𝑗(1 + ρ)) − η

𝑁

𝑗=1

,     ∀i 

(21) 

∑(μjxj)

N

j=1

= E0 

(22) 

∑ xj

N

j=1

= 1 

(23) xj, yi, ϑi ≥ 0,     ∀i, j 
 

Table 1: Changes in The Objective Function and The Return on The Portfolio versus The Robust Cost of the 

Robust Counterpart Model 

𝚪  Mean-Cvar Return 

0  0.01 0.03 

1  0.0095 0.03 

2  0.0085 0.03 

3  0.007 0.03 

4  0.0063 0.04 

5  0.0061 0.04 

6  0.006 0.05 

7  0.0058 0.05 

8  0.0056 0.05 

9  0.0055 0.06 

10  0.0053 0.06 

11  0.0052 0.06 

12  0.0051 0.06 

13  0.005  0.07 

14  0.0048 0.07 

15  0.005 0.07 

16  0.0048 0.08 

17  0.0047 0.08 

18  0.0046 0.07 

19  0.0047 0.08 

20  0.0047 0.08 

 

2 Mean-Cvar Computational Results 

 Now a numerical example for Mean-Cvar optimization with the approach of Bertsimas and Sim will 

be presented and compared with the definite case. In the example, 20 stocks under the 500 S&P index 

are randomly selected for three years from 2018 to 2020, and the monthly returns of these stocks are 
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used for analysis. The obtained data are historical data and these data are used to form the optimal 

portfolio of stocks. However, in estimating the expected return of each stock, the relevant uncertainty 

should be taken into account. Therefore, in order to consider the uncertainty, a robust approach to Bert-

simas and Sim is used for modeling, and a 20% volatility (average monthly volatility) is considered. 

The role of a parameter  in the constraints is to adjust the degree of robustness against the conservative 

level of the answer that controls the level of robustness for the objective function.  

The value of  is the value of the uncertainty parameter of the research. In this research, we have 20 

uncertainty portfolios that are specified up to level 20. In the solved model and constraints with uncer-

tainty, there are 20 coefficients with uncertainty, so the protection level up to 20 is examined. It has 

been proven that if the protection level changes up to the number of uncertainty parameters, the feasi-

bility of a robust answer is guaranteed . The relevant robust model is developed using the relations (23) 

to (17) which due to the linearity of the resulting model, with the help of one of the common software 

for solving research problems in operations, the solution model and the results of Table 1 have been 

obtained which is shown in Fig. 1. 

 

 

Fig. 1: Changes in The Objective Function and the Return on The Portfolio versus The Robust Cost of the 

Robust Counterpart Model 

 

2.1 Expected Return of Mean-Cvar Model 

 

In this section, the risk based on the robust model of the Mean-Cvar model is presented. According to 

the expected return determined at the level of 0.001, 0.002, and 0.003, the Mean-Cvar linear model has 

been examined. To consider the uncertainty, the robust approach of Bertsimas and Sim is used for mod-

eling and a 20% volatility (average monthly volatility) is considered. In the solved model and con-

straints with uncertainty, there are 20 coefficients with uncertainty. The level of protection up to 20 has 

been examined, which is shown in Table 2 according to the level of uncertainty shown in Figs. (2), (3), 

and (4). Figs. 2, 3, and 4 are presented to examine the rate of change in the return on the portfolio by 

considering different values of Γ In the solved model and the constraints with uncertainty, there are 20 

uncertain coefficients; therefore, the level of protection up to 20 is examined. It has been proven that if 

the protection level changes up to the number of uncertain parameters, the feasibility of a robust answer 

is guaranteed. The information in Tables 1 and 2 indicates the sensitivity of the model to data volatilities 

and uncertainty. The first row of Table 1 is data with zero protection level, meaning that the uncertain 

parameters do not fluctuate. The results of Tables 1 and 2 show the ability of the proposed model con-

cerning the data uncertainty in the problem. As can be seen, with increasing Γ0 , the values of the ob-

jective function have not improved and in fact show that as Γ0 increases, the answers become more 

conservative. When Γ0 is assumed zero, no volatility is allowed, and in fact forΓ0 , the answer to the 

problem is no volatility. 
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Table 2: Return on Financial Portfolio by Considering Different Amounts μ_0 and Γ based on The Mean-Cvar 

Robust Counterpart Model 

µ Γ 

0.001 0.002 0.003  

0.009 0.0085 0.01 0 

0.01   0.0072 0.0074 1 

0.0095 0.0078  0.0075 2 

0.0085 0.0076 0.0074 3 

0.007 0.0072 0.0074 4 

0.0063 0.0056  0.007 5 

0.0061 0.0055 0.0064 6 

0.006 0.0056 0.0062 7 

0.0058 0.0052 0.0061 8 

0.0056 0.0051 0.0063 9 

0.0055 0.005 0.0062 10 

0.0053 0.0051 0.0061 11 

0.0052    0.0053 0.0065 12 

0.0051 0.0054 0.0061 13 

0.005 0.0051 0.0064 14 

0.0048 0.0052 0.0063 15 

0.0047 0.0054 0.0065 16 

0.0047 0.0054 0.0064 17 

0.0046 0.0054 0.0063 18 

0.0047 0.0053 0.0064 19 

0.0047 0.0054 0.0064 20 

 

 
Fig  . 2: Changes in The Objective Function and The Return on the Portfolio versus 𝚪 Including Expected Re-

turn 0.001 

 

 
Fig. 3:Changes in The Objective Function and The Return on The Portfolio versus 𝚪 Including Expected 

Return 0.002 
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Fig. 4: Changes in The Objective Function and The Return on The Portfolio versus 𝚪 Including Expected 

Return 0.003 

 

3 Conclusions 
 

The issue of choosing the optimal portfolio has always been one of the most important issues in modern 

economics. Extensive efforts are being made every day to improve the methods of analysis and stock 

in the world's financial markets. Efforts to improve stock analysis methods have led to the emergence 

of new methods that, along with previous methods, seek to find an answer to the desire to maximize 

individual profits in financial markets. Therefore, in the present study, a robust optimal model with a 

Mean-Cvar approach has been presented. Although the issue of portfolio selection goes back to Mar-

kowitz's initiative, the use of uncertain approaches to approach the real world in modeling portfolio 

selection is still new. On the other hand, most of the literature in this field has dealt with risk from a 

classical and modern perspective and has not focused on the postmodern perspective; they have only 

compared the previous models with the postmodern perspective, and no research has compared the 

postmodern models to each other. According to the studies conducted in this study, few models have 

been presented considering all the conditions and assumptions mentioned in the present study. In addi-

tion, in previous studies on portfolio selection models, methods such as regression, specific assumptions 

for the type of distribution, or time series models have been used to predict future stock returns and 

neural networks. However, in this research, an optimal model has been used using robust optimization, 

taking into account the Mean-Cvar, which is a postmodern perspective. In this research, it is tried to 

achieve a model that has a Mean-Cvar approach on the one hand and has an advantage over the optimi-

zation of the final model on the other hand, and on the other hand, the final model is linear. One of the 

most important features of financial markets is their uncertainty. 

One of the most important components of financial market uncertainty is a risk. Therefore, the motiva-

tion for choosing the subject of this research is to use a methodology that makes it possible to model 

financial issues in accordance with reality. One of the most important concerns of modeling is the ad-

aptation of mathematical models to reality, and in the real world uncertainty is one of the definite cases. 

Hence, we can understand the importance of including data with uncertainty in mathematical models. 

In real-world applications of linear optimization, no one can ignore the possibility that a small uncer-

tainty in the data could make a typical optimal solution completely meaningless from a practical point 

of view. In robust modeling, the risk of misuse or misuse of uncertain data is much lower. Robust means 

that the output of the model should not be too sensitive to the exact values of the parameters and the 

input of the model. Another advantage of these models is that they can be easily converted to integer 

programming models. The optimal portfolio linear model can be used extensively in portfolio manage-

ment. The purpose of this study was to provide an overview of portfolio optimization using the Mean-

Cvar approach; so that if this relationship is determined, an optimal portfolio can be formed based on 

which the portfolio risk can be estimated. The model presented in this research, on the one hand, has 

Mean-Cvar as a negative risk approach and has an advantage over the optimization of the final model, 

and on the other hand, the final model is linear. 
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In this study, the issue of portfolio selection was examined by considering the uncertainty of input data. 

The risk measure used in this study is Mean-Cvar, which is one of the newest and most up-to-date risk 

measures in investment issues. In order to consider the data uncertainty, the Bertsimas and Sim robust 

optimization approach was used. One of the most important features of the proposed model is the ex-

istence of random dominance in this model. Experimental analysis of the results shows that the robust 

model presented in practice is robust against data volatility and, more importantly, offers more flexibil-

ity in financial analysis for investment. The model presented in this research is a linear programming 

model with computational advantages. In this research, by considering the uncertainty parameter of 

return in the initial certainty linear model, using Bertsimas and Sim method robust optimization has 

become a non-certain model and a robust counterpart. Given that the problem is convex, it has a uni-

versal optimization answer and the optimal answer is definite. The model presented in this study was 

an unrealistic return without considering uncertainty and had high dispersion and volatility, which by 

considering the uncertainty in the model return variable and providing a robust counterpart, the omega 

model had less volatility. Volatilities in the optimal omega model are influenced by uncertainty and 

data that can be affected by the political factors of underdeveloped financial crises and other factors. 
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