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Abstract— With the widespread using Internet in any device 

and services, several homes and workplace applications have 

been provided to avoid attacks. Connecting a system or device to 

an insecure network can create the possibility of being infected 

by unwanted files. Detecting such files is a vital task in any 

system. Employing machine learning (ML) is the most efficient 

method to detect these penetrations. On the other hand, malware 

programmers try to design malicious files that are hard to detect. 

A file can hide from detection in a feature view, but concealing in 

all views would be very difficult.  

In this paper, inspiring Multi-View Learning (MVL), we 

proposed to incorporate some various features such as Opcodes, 

Bytecodes, and System-calls to achieve complementary 

information to identify a file. In this way, we developed a 

modified version of Sparse Representation based Classifier 

(SRC) to aggregate the effect of all modalities in a unified 

classifier. To show the efficiency of the proposed method, we used 

several real datasets. Experimental results show the high 

performance of the proposed approach and its ability to cope 

with the imbalanced conditions. 

Keywords—Multiview Learning, Sparse Representation, 

Malware Detection, Malware Identification, Imbalanced Condition 

1.  INTRODUCTION  

Malware stands for Malicious Software is a program to 
perform malicious purposes [1]. They can be divided into 
categories such as virus, Trojan, worm, rootkit, backdoor, and 
DoS. However, some files can be classified in more than one 
category. The easiest way for malware detection is to employ a 
prepared database from the signature of known malware. 
Nevertheless, this can not apply to zero-day attacks, and using 
machine learning (ML) findings can improve the model 
performance [2]. 

Multi-View Learning (MVL) is a notable ML approach that 
combines several distinct attributes of data to improve 
detection performance [3]. For example, in image processing, 
color and texture information are two different features, which 
can boost each other as two-view data. As well, in malware 
identification, static and dynamic features are two complement 
feature sets. The static view can be extracted from the files and 
includes Bytecodes, Opcodes, and format features as three 
basic views [2]. On the other hand, dynamic features need to 
run the executable file and observe their behaviors, such as 
system calls and access to the ports [1]. 

Malware programmers try to write malicious files in a way 
that seems like ordinary files. Then, extracting only a single 
feature view from malware may not be successful in detecting 
them. By analyzing multiple views, it can be more probable to 
reveal malfunctions. Because different feature views can 
provide complementary information about the actual payload 
of an executable file and lead to a better analysis [4].  

It is an underlying assumption in ML that the instances of 
each class lie on a subspace/submanifold, then each sample can 
be reconstructed with the neighbor instances [5]. So, each 
sample can be reconstructed by a linear combination of the 
other samples in that class. Inspiring that, Wright et al. 
introduced an efficient classifier so-called Sparse 
Representation based Classifier (SRC) [5]. This idea has 
received a lot of attention in the realm of face recognition in 
the last decade [6]–[9].  

A malware family members have several resemblances, 
e.g., using the same APIs for their functionality and frequent 
access to system resources. As the behavior of malicious files 
is also similar, it can be assumed that they lie on a 
subspace/submanifold, and a new file can be locally 
reconstructed with a linear combination of the files around it. 
SRC takes the advantages of sparsity; thus, only a few samples 
participate in reconstructing a new sample, i.e., out-of-sample. 
As reconstruction in a sparse environment is only based on 
some available samples, SRC is not sensitive to imbalanced 
data. Whereas most of the real security databases are 
imbalanced, SRC can be an excellent choice for them. 
Furthermore, this method can handle multi-class problems.  

In this research inspired by MVL, we proposed a modified 
version of SRC using various feature sets such as Opcodes, 
Bytecodes, and System calls, extracted from files for malware 
detection and identification. The main advantage of this 
method is that we can consider the importance of all feature 
views in a unified classifier and decide regarding all 
modalities. Figure 1 demonstrates the stages of the proposed 
algorithm in a simple diagram. Evaluating the proposed 
method shows prominent results on various datasets in the 
fields of Windows, Linux, and Android files.  

The main contributions of this paper are as follows: 

- Proposing an efficient framework to combine the results of 
multi views to detect the actual payload of a malicious file. 



International Journal of Web Research, Vol. 2, No. 2, Autumn-Winter, 2019 

46 

 

Fig. 1. Schematic view of the proposed method. From the top section, the 

features are extracted and then passed to the aggregated classifier. The final 
decision is held according to the minimum reconstruction error of all 

modalities. 

- Modifying SRC, which is not sensitive to imbalanced data 
and can handle multi-class classification problems. 

The rest of this paper is organized as follows: Section 2 
reviews the related work on MVL and its applications in 
several malware detection tasks. As Deep Learning (DL) is 
also a challenging approach to the current decade, we also 
introduce some salient methods in this realm for the 
comparison. In Section 3, the proposed method is introduced in 
detail. In Section 4, experimental results are presented, and the 
proposed method is compared with the original SRC using 
each single feature set and the supervector of all features and 
the rival methods on some real datasets. Section 5 concludes 
the paper with a summary of the proposed work and 
discussions. 

2. RELATED WORK 

In this section, first, the concept of learning a model using 
multi-views is explained, and then, some worthy works in the 
realm of malware detection and identification are investigated. 

2-1. Multi-View Learning (MVL) 

Considering a problem from various standpoints can lead to 
a better understanding and has become a prevalent task in the 
real-world [3]. Recently, many learning methods regarding the 
diversity of different feature views have been proposed. The 
motivation of MVL is to solve the problem with data 
represented by multiple distinct feature sets [10].  

The simplest solution for MVL is to concatenate all views 
into a unified vector, i.e. supervector, and apply a common 
learning algorithm directly [3]. The drawback of this approach 
is the curse of dimensionality that often leads to overfitting. In 
this case, employing some dimensionality reduction algorithms 
can be useful, but still, the specific statistical property of each 
view is ignored [3].  

In recent literature, MVL methods are divided into three 
major categories: co-training, co-regularization, and margin 
consistency [3]. Co-training learners train alternately on 

distinct views. Co-EM [11], Co-testing [12], and Robust Co-
training [13] are representatives of this family.  

For Co-regularization algorithms, the disagreement 
between the discriminant functions of two views is considered 
as a regularization term in the optimization function. Sparse 
multi-view SVMs [14], multi-view TSVMs [15], multi-view 
Laplacian SVMs [16] and multi-view Laplacian TSVMs [17] 
are some representative examples of this family. Another work 
proposed by Taheri et al. has been used in the security fields to 
detect ransomware [18]. 

Margin-consistency algorithms use the latent consistency of 
classification results from multiple views [19]–[22]. This 
family is newer than the others and recently has been employed 
in security tasks. Multiview ensemble learning is the most 
famous method in this realm. In ensemble learning, multiple 
models, such as classifiers or experts, are combined to solve 
the problem. A significant application of ensemble learning is 
data fusion that improves the confidence of the decision made 
by the model [23]. Several studies have employed ensemble 
learning for malware detection tasks [4], [24]–[26]. 

2-2. Previous Work 

Several applicable features can be extracted from files. 
Opcode n-grams are extracted from the code section of the 
portable executable (PE) files, which contain significant 
information [27]–[30]. Bytecode n-grams are the entire binary 
executable program that has no explicit semantic information, 
but considering their sequences can be meaningful to use in 
ML approaches [31]–[33]. Format features are also useful 
attributes. They contain explicit semantic information extracted 
from the PE header, section header, import, and resource 
section. They have been used in many malware detection 
projects [34]–[37].  

Each feature set, as mentioned above, reveals some details 
about a file, but all together provide complementary 
information for better diagnosis. Bai and Wang used multiview 
ensemble learning for unknown malware detection and 
employed all three mentioned features together in their 
proposed method [4]. 

Other useful features that have been used several times in 
malware detection tasks are function-based. We can extract 
these features from the behaviors of an executable file that is 
running in a dedicated system or an isolated environment [1]. 
Menahem et al. employed function-based features besides PE 
features and bytes n-grams. Then, they used different feature 
extraction parameters to provide five datasets. They trained 
five classifiers: C4.5 Decision Tree, Naïve Bayes, KNN, VFI, 
and OneR based on the datasets above, respectively. 
Consequently, they used an ensemble of the mentioned 
classifiers for a final decision. The combination methods 
include majority voting, performance weighting, distribution 
summation, Bayesian combination, Naïve Bayes, stacking, and 
Troika. Experimental results showed that using multi-view 
features and ensemble methods improved the accuracy and 
outperformed each of the mentioned single view classifiers. 
The flaw of them was the high computational burden [25].  

It is trivial to extract some features from a feature view, 
e.g., extracting 2-grams and term frequency-inverse document 
frequency (TF-IDF) from Opcodes. But, they are the 
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derivations of a single-view and cannot boost each other 
significantly. Landage et al. made three different kinds of 
Opcode sequence representations of the instances. Then, 
trained three base classifiers with each representation and 
combined them with the veto-based and majority voting [38]. 
The final results did not show a significant improvement from 
the individual classifiers that can approve the advantages of 
combining some classifiers based on some distinct views. 

API calls are the other feature view of the files that can be 
extracted while a file is running in a dedicated environment, so 
it is a dynamic view. Sheen et al. extracted features from PE 
header beside the API calls and ran different learning 
algorithms to construct a set of classifiers. Then selected the 
best subset of classifiers and combined them, and reached out 
to better results than individual classifiers [26]. Caruana et al. 
stated that combining a proper subset of base classifiers to 
constitute an ensemble may work better than using all of them 
[24]. They called this method Ensemble Selection (ES), which 
can achieve strong generalization performance with small-sized 
base classifiers. 

Android malware is another family of malicious files that 
have been mentioned in past years. Ozdemir et al. extracted 
some different static and dynamic features from APK files and 
employed multiple learning algorithms to construct diverse 
base classifiers. Then selected a subset of base classifiers using 
a simple heuristic algorithm and combined them by majority 
voting. Experimental results show the superiority of this 
ensemble over the rival methods [39]. There were other 
proposed works in this realm that employed MVL in API calls 
of android executable files besides the other features and 
improved detection rate [40]. 

DL has been attracted much attention in recent years and 
has become a salient trend in ML. So, we introduce some 
outstanding research in this field to compare with the proposed 
method. Hashemi et al. [41] employed an image classification 
method that aims to extract micro-patterns of digital textural 
images, to detect malicious executable files. In this way, they 
converted executable files to digital images and then extracted 
visual features such as Local Binary Pattern (LBP). Finally, 
they used a Convolutional Neural Network (CNN) to 
distinguish malware and benign files. Their proposed method 
suffered from low accuracy. So, in another attempt [42], they 
created a graph of Opcodes within an executable file and then 
embedded this graph into eigenspace using the Power Iteration 
method. Consecutively, they represented an executable file as a 
linear combination of eigenvectors proportionate to their 
eigenvalues. It was beneficial to train ML classifiers such as 
KNN and SVM. Although this method has achieved good 
accuracy, the computational burden made this method hard to 
run. 

Because of the recurring patterns in malware families, 
Recurrent Neural Network (RNN) has become increasingly 
popular for cyber-attack detection on different domains. 
Haddadpajouh et al. [43] have explored the potential of using 
RNN to detect IoT malware. Specifically, they used RNN to 
analyze ARM-based IoT Opcodes. They evaluated the trained 
models with three different Long Short Term Memory (LSTM) 
configurations. The configuration with 2-layer neurons 
performed better results to detect new malware samples. 
Homayoun et al. [44] identified three ransomware and benign 

families by combining sequential pattern mining for feature 
identification in a proposed RNN framework.  

Most of the DL-based methods achieved considerable 
accuracies, while the bottleneck of such approaches is needing 
numerous samples for training and also high running 
complexity. So, we seek a low-cost framework with high 
accuracy to detect the zero-day attacks. 

3. PROPOSED METHOD 

MVL [3] is an applicable trend in ML, which considers 
some feature views simultaneously to reach a final decision. 
MVL combines some feature sets in one or more classifiers to 
obtain better results than could be reached from any of them 
[45]. The major strength of such methods depends on the 
diversity of feature sets. It is also essential to choose a fit base 
classifier for the problem in hand. Some prevalent methods 
employ decision trees and neural networks as base classifiers. 
Most methods use a single base algorithm to produce 
homogeneous base learners, while some others benefit different 
classifiers.  

SRC is an applicable classifier [5] that has attracted much 
attention in the past decade. There are several improvements in 
this method that has been proposed recently [6]–[9]. In this 
paper, we modified SRC as a sparse-based classifier that is fit 
to the field of malware detection and identification in a low-
cost manner. 

The seminal work was proposed by John Wright [5]. The 
goal is to represent a test example as a linear combination of 
some selected samples. If there are sufficient training examples 
from each class, it is feasible to represent the test sample as a 
linear combination of just those samples from the same 
category [5]. For reconstructing an example based on other 
samples, the simple objective is: 

‖    ‖                                   

where sϵℝd 
is a new example, Xϵℝd×n

 contains the available 
samples, and wϵℝn

 is the coefficient vector. We need to make 
w sparse enough to choose a few samples for reconstruction. 
Minimizing the cardinality by adding l0-norm of w, forces 
many coefficients to be zero, but as the problem is NP-hard 
and intractable in the general case, according to the convex 
envelope, the constraint can be approximated with l1-norm 
[46]. 

          
 

‖    ‖   ‖ ‖                      

  is the regularization parameter to specify the sparsity 
level. It can be determined regarding the size of the dictionary 
by an expert or using cross-validation [47]. There are several 
toolboxes, such as NESTA [48] and SPAMS [49] to solve this 
function in polynomial time, using coordinate descent [50].  

For malware identification, suppose X is the matrix of 
labeled samples, each one is presented with d features in the 
rows. Consider n samples in the columns, n1 belong to class 1, 
n2 belong to class 2, and so on, like in Figure 2.  

The calculated vector w contains n elements pertain to all 
available samples, n1 coefficients according to samples of class 
1, n2 coefficients for samples of class 2, and so on. Only a few 
coefficients are considerable, and the rest of them are 
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negligible. Consequently, the test sample can be reconstructed 
with the samples of each class separately. As it was a pre-
assumption that the samples of each class lie on a 
subspace/submanifold, the new sample can be reconstructed by 
a locally linear combination of the samples in the same class. 
Figure 3 schematically depicts this motivation. 

Since each class samples lie on a subspace/ submanifold, 
the new sample can be reconstructed through a linear 
combination of its neighbors. So, the class with the minimum 
reconstruction error can classify the test sample [5]. 

          
  {       }

‖      
 ‖                     

j shows the label of each class through J classes, and j* is 
the label of the class with the minimum reconstruction error. 
Equations 2 and 3 show the seminal method of SRC [5]. 

Inspired by the idea behind MVL, we modified SRC to 
combine the effect of several views. In the proposed 
framework, the new file is reconstructed with a linear 
combination of available samples. The objective is to minimize 
the reconstruction error according to all feature views. 
Considering K views, the best coefficient vector w* is the one 
that minimizes the sum of errors according to all views. The 
modified function can be rewritten as Equation (4): 

          
 

∑‖       ‖ 

 

   

  ‖  ‖                      

As the number of features in all views are not the same, it is 
necessary to exert a normalization on each reconstruction error 
term and divide each one to the number of features in that 
view: 

          
 

∑
‖       ‖ 

  
  ‖  ‖ 

 

   

                   

 

Fig. 2. The simple structure of a database for reconstructing an out-of-

sample. 

 

Fig. 3. The spanned space of the samples of a  class can be considered 

locally linear, and each sample can be reconstructed with the linear 

combination of its adjacent on this path. 

where d
k
 is the dimension of the k

th
 view and w* is the best 

weight vector, including the coefficients of training samples 
according to all views. Finally, the class with the minimum 
sum of reconstruction errors regarding all feature sets, 
determine the label of the test sample: 

          
  {       }

∑
‖     

   
  ‖

  

 

   

                     

As the aim of this optimization function is to minimize the 
sum of reconstruction errors, all views participate in finding w* 
as a shared vector. So, the effect of all feature sets can lead to 
finding the best samples for describing the out-of-sample. 
Algorithm 1 shows the stages of the proposed model to label an 
unknown file. 

In the first step of Algorithm 1, we need to extract some 
useful features from each file. As the platform of any file can 
be different, regarding the ability of the host devices, we 
extract some relevant features. For example, extracting 
Opcodes and Bytecodes for Android files is more feasible than 
controlling their behavior. So, we can extract 2-grams and TF-
IDF from Opcodes and Bytecodes to use in the algorithm. TF-
IDF considers the repetition of each Opcode in a file 
individually vs. the presence of this Opcode in the other files, 
while 2-grams considers the importance of Opcode sequences. 
On the other hand, for Windows files, we can use a Sandbox to 
extract system calls as a dynamic feature. This can be a useful 
complementary feature set for Opcodes that has been discussed 
in detail in the Experimental Results Section. 

In the next steps, a unified SRC decides based on the 
consensus of all views and finds the class with the minimum 
overall reconstruction error regarding all features. In 
conclusion, this algorithm aggregates the effects of several 
views in a unified objective function that leads to detect a file’s 
payload. 

Another advantage of the proposed method besides the 
accuracy is the insensitivity to imbalanced datasets. To 
reconstruct a new sample, we use a linear combination of 
available instances. So, it can be considered a locally linear 
reconstruction, and the rest of the samples do not participate in 
reconstruction, like in Figure 3. So, it is not dependent on all 
samples of a class and only needs the samples that lie on the 
subspace/submanifold near the test sample. To prove these 
assertions, we used several real datasets in the experiments. 

Algorithm 1 

Input: a raw file 

output: the selected class 

1. Extract features of several views from all files. 

2. Find the best coefficient vector of    that leads to a 

minimum reconstruction error based on all features: 

          
 

∑
‖       ‖

 

  
  ‖  ‖

 

 

   

 

3. Choose the class which best describes the out of sample 

through all views: 

          
  {       }

∑
‖     

   
  ‖
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4. EXPERIMENTAL RESULTS 

In this Section, several benchmarks and collected datasets 
on various platforms, e.g., Android and Windows, are 
investigated. Then, the effectiveness of the feature combination 
in the proposed method is illustrated and compared with the 
based method using the individual feature sets and some other 
rival methods.  

The used datasets and their specifications are introduced 
briefly in Table 1. The first column shows the name of 
datasets, and the second one is according to the environments 
of the files. The third and fourth columns are due to the number 
of samples and classes, respectively. Also, other columns show 
the extracted feature sets from each dataset. 

Whereas the proposed method does not need many samples 
from each class for reconstruction, first, some samples from 
each category are selected, and then, the required features are 
extracted. If we select 100 samples for each class, the 
computational burden of running the algorithm is less than a 
second. So, we exerted leave-one-out in each case to show the 
superiority of the proposed model. 

The results of the proposed method are compared with SRC 
using each extracted feature set and the concatenation of all 
feature sets. Employing a supervector of all features was the 
seminal idea of MVL that was used in the previous work. We 
implemented the algorithm in Matlab 2016b and used a 
personal desktop equipped with a Core i7-3770 CPU and 32GB 
of memory for its running. 

4-1. Evaluation Metrics 

For evaluation, some metrics are required. Accuracy is a 
useful metric that has been used widely in the ML assessments 
and considers the rate of correct predictions to all. True 
Positive (TP) and True Negative (TN) are the malicious and 
benign files that have been classified truly, respectively. Also, 
False Negative (FN) and False Positive (FP) are the malicious 
and benign files that have been classified wrongly, 
respectively. So, accuracy will be the number of true classified 
samples out of all test samples that have been shown in 
Equation (7): 

          
     

           
                     

True Positive Rate (TPR) is the percentage of actual 
positives that are correctly identified. So, it is the rate of 
detected malicious files out of all malware. 

     
  

     
                     

Also, False Positive Rate (FPR) is the rate of incorrectly 
rejected files, which is the benign files that are identified as 
malware out of all malicious files. 

     
  

     
                     

4-2. Internet of Things (IoT) Dataset 

Nowadays, IoT devices become more and more prevalent, 
and consequently, many malware developers target IoT devices 
[51]. Thus, one of the selected datasets to challenge our method 
includes IoT files. In this dataset, 280 malware samples were 
collected from 32-bit ARM-based malware in the Virus Total 
Threat Intelligence platform. For compatibility of the malware 
and benign files, 271 standard files of the Linux Debian 
package repository were chosen [43]. The files were unpacked 
by the Debian installer bundle, and the Object-Dump tool was 
employed to decompile all samples.  

The sequence of Opcodes in each sample was obtained 
from all files, and consequently, two feature sets were extracted 
from them: TF-IDF and 2-grams. Bytecode is another 
applicable view of the files. Then, two sets of features, 
according to Bytecode TF-IDF and 2-grams, were extracted as 
well. Eventually, we had four feature sets to learn classifiers. 

For the first evaluation, 100 samples were selected 
randomly from each class, and then leave-one-out was exerted 
to reconstruct each sample with the rest of 199. Table 2 
compares the results of the proposed method to the original 
SRC according to each set of features individually and using a 
supervector of all features. The results are due to the average of 
a 10-times random-selection of samples from the initial dataset. 
The first row of the table is, according to Haddadpajouh et al. 
[43], due to this dataset. 

The accuracy and FPR of the proposed method outperform 
all other methods in Table 2, while the TPR is somehow near 
to Haddadpajouh et al. [43] and SRC using supervector of all 
extracted features. 

To investigate the imbalanced effect on the proposed 
methods, we selected a subset of 100 benign and 30 of malware 
samples. Table 3 shows the results according to 10-times 
random-selection in the mentioned methods that show no 
significant changes compared to the balanced condition. This 
can prove the ability of the proposed method to handle 

 

TABLE 1. THE INTRODUCED DATASETS AND THEIR SPECIFICATIONS. TO EVALUATE THE METHODS, TWO BINARY CLASS DATASETS INCLUDE MALWARE AND BENIGN 

FILES AND TWO MULTI-CLASS DATABASES CONSIST OF SOME MALWARE TYPES ARE EMPLOYED. 

dataset environment # samples # classes feature set 1 feature set 2 feature set 3 feature set 4 

IoT dataset Linux 551 2 opcodes 
TF-IDF 

opcode 
2-grams 

bytecode 
TF-IDF 

bytecode 
2-grams 

VXHeaven Windows 330 2 opcodes TF-
IDF 

opcode 
2-grams 

bytecode 
TF-IDF 

bytecode 
2-grams 

Ransomware 
dataset Windows 1627 4 System 

call 
opcodes 
TF-IDF 

opcode 
2-grams  

Microsoft 
malware Windows 10825 9 

opcodes 
TF-IDF 

opcode 
2-grams 

opcode 
3-grams  
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imbalanced conditions. To show the merit of the proposed 
method, our results are compared to the original SRC using 
Opcode TF-IDF as the best single feature set in Table 2 and 
also using supervector of all features, which is a type of MVL 
in the literature. 

4-3. VXHeaven Dataset 

VXHeaven is a benchmark dataset contains windows 
malware [52] and was used to evaluate several methods [41], 
[42], [53]. 1000 samples were picked randomly from the 
dataset and labeled as malware and benign. Then, TF-IDF and 
2-grams, according to Opcodes and Bytecodes of the selected 
files, were extracted as four feature sets. 

The results are presented in Table 4. The mentioned 
algorithms were applied on samples 10-times; each time, 100 
samples were picked randomly from each class. Leave-one-out 
was exerted, while the runtime for each sample was less than a 
second. The first three rows of the table are due to some 
available methods that have evaluated this dataset, recently. 

As the available samples in this dataset are due to the 
Windows environment, the files are more complicated, and the 
overall accuracies are a bit lower than the IoT samples. 
Nevertheless, the accuracy and TPR of the proposed method 
outperform the rivals. Also, the FPR of Hashemi et al. [42] is 
comparable to the proposed method. 

As we faced to a binary class dataset, we examined 
imbalanced conditions again. To do so, a subset of 100 benign 
and 30 malware samples are selected randomly, 10-times. 
Table 5 implies the ability of the proposed methods to 
challenge the imbalanced conditions. 

The results of the proposed method have not diminished 
meaningfully compared to the balanced condition. This is due 
to the ability of the proposed method to handle imbalanced 
conditions. To show the superiority of the proposed method, 
our results are compared to the original SRC using supervector  

TABLE 2 .COMPARING THE RESULTS OF THE PROPOSED METHOD ON IOT 

DATASET WITH SRC (BASED ON FOUR FEATURE SETS AND THE 

CONCATENATION OF ALL) AND HADDADPAJOUH ET AL. [55]. 

IoT (100/100) TPR (%) FPR (%) Accuracy (%) 

Haddadpajouh et al. [43] 98.6 2.1 98.1 

SRC Opcode TF-IDF 96.1 3.2 95.3 

SRC Opcode 2-grams 92.5 4.4 94.4 

SRC Bytecode TF-IDF 91.3 5.2 92.6 

SRC Bytecode 2-grams 93.1 3.8 90.3 

SRC Supervector 97.9 2.8 96.7 

Proposed Method 98.8 1.1 99.1 

TABLE 3. THE AVERAGES RESULT FROM THE PROPOSED METHOD AND SRC 

USING THE BEST FEATURE SET AND SUPERVECTOR OF ALL EXTRACTED 

FEATURES ON THE IMBALANCED DATASET OF IOT FILES. 

IoT (100/30) TPR (%) FPR (%) Accuracy (%) 

SRC Opcode TF-IDF 93.3 4.2 94.0 

SRC Supervector 95.6 3.6 95.1 

Proposed Method 96.9 1.9 97.1 

of all features and also Bytecode 2-grams as the best single 
feature set in Table 4. 

4-4.  Ransomware Dataset 

As another evaluation, the ransomware dataset has been 
employed [44]. The ransomware dataset contains sequences of 
activities according to some Windows PE ransomware samples 
reported as malicious, from Virustotal

1
. This dataset consists of 

three famous families of ransomware, namely Locky, Cerber, 
and TeslaCrypt. As ransomware samples are in the form of PE 
files, portable applications available online

2
 are considered as 

benign samples. Table 6 shows the summary report of the 
samples in the dataset with three families of ransomware and a 
group of benign samples. 

All samples were launched in a testbed to collect runtime 
behaviors of ransomware and normal files. The runtime 
behaviors were considered as system calls performed by the 
process of a monitored sample that leads to the first view of the 
samples. Moreover, TF-IDF and 2-grams were extracted from 
Opcodes. 

TABLE 4. THE RESULTS OF THE PROPOSED METHOD ON VXHEAVEN SAMPLES 

COMPARED TO SRC (BASED ON FOUR FEATURE SETS AND THE 

CONCATENATION OF ALL) AND SOME RECENT OUTSTANDING METHODS. 

VXHeaven (100/100) TPR (%) FPR (%) Accuracy (%) 

Farrokhmanesh et al. 
[53] 91.3 7.9 90.4 

Hashemi et al. [41] 89.1 7.8 89.7 

Hashemi et al. [42] 96.0 3.1 94.7 

SRC Opcode TF-IDF 86.6 12.8 84.5 

SRC Opcode 2-grams 85.5 14.4 87.4 

SRC Bytecode TF-IDF 88.3 7.6 89.6 

SRC Bytecode 2-grams 90.3 5.2 90.1 

SRC Supervector 92.9 5.5 93.6 

Proposed Method 96.6 3.1 96.3 

TABLE 5. THE AVERAGES OF RESULTS ON THE IMBALANCED DATASET 

COMPARING THE PROPOSED METHOD AND SRC USING SUPERVECTOR OF ALL 

FEATURES AND THE FEATURE SET IN TABLE 4. 

VXHeaven (100/30) TPR (%) FPR (%) 
Accuracy 

(%) 

SRC Bytecode 2-grams 89.4 6.5 89.6 

SRC Supervector 92.1 5.9 93.0 

Proposed Method 97.2 2.6 97.5 

TABLE 6. THE NUMBER OF SAMPLES IN EACH FAMILY OF RANSOMWARE AND 

BENIGN. 

Class number of samples 

Locky 450 

Cerber 470 

TeslaCrypt 507 

Benign 200 

                                                           
1
 https://www.virustotal.com/ 

2
 https://portableapps.com/app 
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As few samples were required for the learning, and a multi-
class classification problem was ahead, we selected 50 samples 
of each class randomly and exerted leave-one-out for 
assessment. These steps were repeated 10-times, and the results 
were summed up in Table 7. The first row of the table is the 
results of Homayoun et al. [44] that were reported in their 
paper according to the prepared database. 

According to Table 7, the results of the proposed model, 
works better than all single classifiers, while the TPR of 
Homayoun et al. [44] is near to the proposed method. 

Similar to the previous datasets, to show the eligibility of 
the proposed method in imbalanced conditions, we aggregated 
the samples of 3 malware families as a malicious class, 
including 150 samples vs. 50 benign instances on the other 
hand. Table 8 indicates the summary of the average results 
achieved on the imbalanced data based on 10-times random 
subsampling and leave-one-out. In this table, only the results of 
the best base classifier (Opcode 2-grams) are reported and 
compared to the results of the SRC supervector and the 
proposed approach.  

It is evident from Table 8 that the results of the proposed 
method in imbalanced conditions are comparable to the results 
of Table 7. 

4-5. Microsoft Malware Dataset 

Another Windows-based malicious dataset that has been 
used in our evaluation is Microsoft malware collection that was 
presented in the Microsoft malware classification challenge 
from the Kaggle website [54]. This dataset contains more than 
10000 samples from 9 families of malware variants that have 
been analyzed statically to obtain their Opcodes. Consequently, 
TF-IDF, 2-grams, and 3-grams of the Opcodes from 900 files 
of all classes were extracted. 

We selected 40 samples of each class randomly 10-times 
and repeat our experiments for each subset. Table IX shows the 
average accuracies according to 10 runs. Whereas all three 

TABLE 7. COMPARING THE RESULTS OF THE PROPOSED METHOD ON 

RANSOMWARE WITH SRC (BASED ON THREE FEATURE SETS AND THE 

CONCATENATION OF ALL) AND HOMAYOUN ET AL. [44]. 

Ransomware 

(4 × 50) 
TPR (%) FPR (%) Accuracy (%) 

Homayoun et al. [44] 98.0 2.6 97.2 

SRC System calls 86.3 12.1 85.2 

SRC Opcode TF-IDF 89.5 9.7 92.9 

SRC Opcode TF-IDF 91.5 7.0 90.3 

SRC Supervector 96.2 4.9 94.9 

Proposed Method 98.6 1.3 98.7 

TABLE 8 .THE AVERAGES RESULT FROM THE PROPOSED METHOD AND SRC 

USING THE BEST FEATURE SET AND SUPERVECTOR OF ALL EXTRACTED 

FEATURES ON THE IMBALANCED DATASET. 

Ransomware 

 (150/50) 
TPR (%) FPR (%) Accuracy (%) 

SRC Opcode 2-grams 91.0 6.8 90.1 

SRC Supervector 93.8 4.3 94.4 

Proposed Method 95.9 2.2 97.0 

feature sets are extracted from Opcodes, in this case, the results 
of the ensemble methods are not significantly superior. 

The available results in Table 9 can confirm the assumption 
of diversity according to the employed feature sets to build an 
MVL method. Also, one of the state-of-the-art in this field [38] 
had shown that the dependent feature sets could not boost each 
other in the ensemble and MVL methods. 

We can reach better results by adding some complement 
feature sets to the available data to raise the results of the 
MVL-based methods. Diversity has a significant role in this 
area. So, it shows the importance of using partly independent 
views in the completion of each other and reveals the hidden 
virtue of the samples. 

The runtime of the proposed method is proportional to the 
size of the selected samples for reconstruction. So, in this 
dataset with growing the number of samples, the runtime grows 
highly. For this reason, we used a random selection method in 
previous datasets to reach reasonable running time and used the 
method for online applications. 

5. CONCLUSION AND FUTURE WORK 

In this study, inspired by Multi-View Learning (MVL) and 
Sparse Representation based Classifier (SRC), we proposed a 
model for malware identification and classification. Whereas 
using various views of the files, e.g., Opcodes, Bytecodes, and 
System calls, help the classifiers to reveal the hidden 
dimensions of a file, we combined the reconstruction errors in a 
unified SRC. As the proposed method uses the sparse 
representation to reconstruct an out-of-sample, it can handle 
imbalanced conditions. Another merit of the proposed model is 
the ability to overcome multi-class problems without any extra 
computation. 

The proposed methods outperform any individual based 
classifiers trained on a single feature set and show elegant 
results on several datasets that have been investigated in the 
experimental results. Also, we tested the imbalanced conditions 
for the available datasets and considered about three times 
more samples from a class.  

As future work, we suggest learning the combination phase 
of the algorithms intelligently. To do so, we can learn each 
classifier individually and then learn a model for the best 
combination of them. Another suggestion is to extend these 
methods to the other ML tasks. Various approaches in the real 
world suffer from the nature of imbalanced data and can take 
advantage of the proposed method. 

TABLE 9. COMPARING THE RESULTS OF THE PROPOSED METHOD ON 

MICROSOFT MALWARE DATASET WITH SRC (BASED ON THREE FEATURE SETS 

AND THE CONCATENATION OF ALL). 

Microsoft malware  

(9 × 100) 
TPR (%) FPR (%) Accuracy (%) 

SRC Opcode TF-IDF 91.7 8.8 92.9 

SRC Opcode 2-grams 92.8 4.6 92.3 

SRC Opcode 3-grams 94.7 5.6 93.4 

SRC Supervector 93.2 6.1 94.5 

Proposed Method 94.8 5.7 94.3 
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