

Malware Detection and Identification

using Multi-View Learning based on

Sparse Representation

Elham Velayati

Department of Information Technology

Sharif University, Tehran, Iran

d.evelayati@gmail.com

Seyed Mehdi Hazrati Fard

Department of Computer Science and Engineering

Shiraz University, Shiraz, Iran

hazrati@cse.shirazu.ac.ir

Received: 2020/04/09 Revised: 2020/06/06 Accepted: 2020/07/04

Abstract— With the widespread using Internet in any device

and services, several homes and workplace applications have

been provided to avoid attacks. Connecting a system or device to

an insecure network can create the possibility of being infected

by unwanted files. Detecting such files is a vital task in any

system. Employing machine learning (ML) is the most efficient

method to detect these penetrations. On the other hand, malware

programmers try to design malicious files that are hard to detect.

A file can hide from detection in a feature view, but concealing in

all views would be very difficult.

In this paper, inspiring Multi-View Learning (MVL), we

proposed to incorporate some various features such as Opcodes,

Bytecodes, and System-calls to achieve complementary

information to identify a file. In this way, we developed a

modified version of Sparse Representation based Classifier

(SRC) to aggregate the effect of all modalities in a unified

classifier. To show the efficiency of the proposed method, we used

several real datasets. Experimental results show the high

performance of the proposed approach and its ability to cope

with the imbalanced conditions.

Keywords—Multiview Learning, Sparse Representation,

Malware Detection, Malware Identification, Imbalanced Condition

1. INTRODUCTION

Malware stands for Malicious Software is a program to
perform malicious purposes [1]. They can be divided into
categories such as virus, Trojan, worm, rootkit, backdoor, and
DoS. However, some files can be classified in more than one
category. The easiest way for malware detection is to employ a
prepared database from the signature of known malware.
Nevertheless, this can not apply to zero-day attacks, and using
machine learning (ML) findings can improve the model
performance [2].

Multi-View Learning (MVL) is a notable ML approach that
combines several distinct attributes of data to improve
detection performance [3]. For example, in image processing,
color and texture information are two different features, which
can boost each other as two-view data. As well, in malware
identification, static and dynamic features are two complement
feature sets. The static view can be extracted from the files and
includes Bytecodes, Opcodes, and format features as three
basic views [2]. On the other hand, dynamic features need to
run the executable file and observe their behaviors, such as
system calls and access to the ports [1].

Malware programmers try to write malicious files in a way
that seems like ordinary files. Then, extracting only a single
feature view from malware may not be successful in detecting
them. By analyzing multiple views, it can be more probable to
reveal malfunctions. Because different feature views can
provide complementary information about the actual payload
of an executable file and lead to a better analysis [4].

It is an underlying assumption in ML that the instances of
each class lie on a subspace/submanifold, then each sample can
be reconstructed with the neighbor instances [5]. So, each
sample can be reconstructed by a linear combination of the
other samples in that class. Inspiring that, Wright et al.
introduced an efficient classifier so-called Sparse
Representation based Classifier (SRC) [5]. This idea has
received a lot of attention in the realm of face recognition in
the last decade [6]–[9].

A malware family members have several resemblances,
e.g., using the same APIs for their functionality and frequent
access to system resources. As the behavior of malicious files
is also similar, it can be assumed that they lie on a
subspace/submanifold, and a new file can be locally
reconstructed with a linear combination of the files around it.
SRC takes the advantages of sparsity; thus, only a few samples
participate in reconstructing a new sample, i.e., out-of-sample.
As reconstruction in a sparse environment is only based on
some available samples, SRC is not sensitive to imbalanced
data. Whereas most of the real security databases are
imbalanced, SRC can be an excellent choice for them.
Furthermore, this method can handle multi-class problems.

In this research inspired by MVL, we proposed a modified
version of SRC using various feature sets such as Opcodes,
Bytecodes, and System calls, extracted from files for malware
detection and identification. The main advantage of this
method is that we can consider the importance of all feature
views in a unified classifier and decide regarding all
modalities. Figure 1 demonstrates the stages of the proposed
algorithm in a simple diagram. Evaluating the proposed
method shows prominent results on various datasets in the
fields of Windows, Linux, and Android files.

The main contributions of this paper are as follows:

- Proposing an efficient framework to combine the results of
multi views to detect the actual payload of a malicious file.

International Journal of Web Research, Vol. 2, No. 2, Autumn-Winter, 2019

46

Fig. 1. Schematic view of the proposed method. From the top section, the

features are extracted and then passed to the aggregated classifier. The final
decision is held according to the minimum reconstruction error of all

modalities.

- Modifying SRC, which is not sensitive to imbalanced data
and can handle multi-class classification problems.

The rest of this paper is organized as follows: Section 2
reviews the related work on MVL and its applications in
several malware detection tasks. As Deep Learning (DL) is
also a challenging approach to the current decade, we also
introduce some salient methods in this realm for the
comparison. In Section 3, the proposed method is introduced in
detail. In Section 4, experimental results are presented, and the
proposed method is compared with the original SRC using
each single feature set and the supervector of all features and
the rival methods on some real datasets. Section 5 concludes
the paper with a summary of the proposed work and
discussions.

2. RELATED WORK

In this section, first, the concept of learning a model using
multi-views is explained, and then, some worthy works in the
realm of malware detection and identification are investigated.

2-1. Multi-View Learning (MVL)

Considering a problem from various standpoints can lead to
a better understanding and has become a prevalent task in the
real-world [3]. Recently, many learning methods regarding the
diversity of different feature views have been proposed. The
motivation of MVL is to solve the problem with data
represented by multiple distinct feature sets [10].

The simplest solution for MVL is to concatenate all views
into a unified vector, i.e. supervector, and apply a common
learning algorithm directly [3]. The drawback of this approach
is the curse of dimensionality that often leads to overfitting. In
this case, employing some dimensionality reduction algorithms
can be useful, but still, the specific statistical property of each
view is ignored [3].

In recent literature, MVL methods are divided into three
major categories: co-training, co-regularization, and margin
consistency [3]. Co-training learners train alternately on

distinct views. Co-EM [11], Co-testing [12], and Robust Co-
training [13] are representatives of this family.

For Co-regularization algorithms, the disagreement
between the discriminant functions of two views is considered
as a regularization term in the optimization function. Sparse
multi-view SVMs [14], multi-view TSVMs [15], multi-view
Laplacian SVMs [16] and multi-view Laplacian TSVMs [17]
are some representative examples of this family. Another work
proposed by Taheri et al. has been used in the security fields to
detect ransomware [18].

Margin-consistency algorithms use the latent consistency of
classification results from multiple views [19]–[22]. This
family is newer than the others and recently has been employed
in security tasks. Multiview ensemble learning is the most
famous method in this realm. In ensemble learning, multiple
models, such as classifiers or experts, are combined to solve
the problem. A significant application of ensemble learning is
data fusion that improves the confidence of the decision made
by the model [23]. Several studies have employed ensemble
learning for malware detection tasks [4], [24]–[26].

2-2. Previous Work

Several applicable features can be extracted from files.
Opcode n-grams are extracted from the code section of the
portable executable (PE) files, which contain significant
information [27]–[30]. Bytecode n-grams are the entire binary
executable program that has no explicit semantic information,
but considering their sequences can be meaningful to use in
ML approaches [31]–[33]. Format features are also useful
attributes. They contain explicit semantic information extracted
from the PE header, section header, import, and resource
section. They have been used in many malware detection
projects [34]–[37].

Each feature set, as mentioned above, reveals some details
about a file, but all together provide complementary
information for better diagnosis. Bai and Wang used multiview
ensemble learning for unknown malware detection and
employed all three mentioned features together in their
proposed method [4].

Other useful features that have been used several times in
malware detection tasks are function-based. We can extract
these features from the behaviors of an executable file that is
running in a dedicated system or an isolated environment [1].
Menahem et al. employed function-based features besides PE
features and bytes n-grams. Then, they used different feature
extraction parameters to provide five datasets. They trained
five classifiers: C4.5 Decision Tree, Naïve Bayes, KNN, VFI,
and OneR based on the datasets above, respectively.
Consequently, they used an ensemble of the mentioned
classifiers for a final decision. The combination methods
include majority voting, performance weighting, distribution
summation, Bayesian combination, Naïve Bayes, stacking, and
Troika. Experimental results showed that using multi-view
features and ensemble methods improved the accuracy and
outperformed each of the mentioned single view classifiers.
The flaw of them was the high computational burden [25].

It is trivial to extract some features from a feature view,
e.g., extracting 2-grams and term frequency-inverse document
frequency (TF-IDF) from Opcodes. But, they are the

Malware Detection and Identification using Multi-View Learning based on Sparse Representation

47

derivations of a single-view and cannot boost each other
significantly. Landage et al. made three different kinds of
Opcode sequence representations of the instances. Then,
trained three base classifiers with each representation and
combined them with the veto-based and majority voting [38].
The final results did not show a significant improvement from
the individual classifiers that can approve the advantages of
combining some classifiers based on some distinct views.

API calls are the other feature view of the files that can be
extracted while a file is running in a dedicated environment, so
it is a dynamic view. Sheen et al. extracted features from PE
header beside the API calls and ran different learning
algorithms to construct a set of classifiers. Then selected the
best subset of classifiers and combined them, and reached out
to better results than individual classifiers [26]. Caruana et al.
stated that combining a proper subset of base classifiers to
constitute an ensemble may work better than using all of them
[24]. They called this method Ensemble Selection (ES), which
can achieve strong generalization performance with small-sized
base classifiers.

Android malware is another family of malicious files that
have been mentioned in past years. Ozdemir et al. extracted
some different static and dynamic features from APK files and
employed multiple learning algorithms to construct diverse
base classifiers. Then selected a subset of base classifiers using
a simple heuristic algorithm and combined them by majority
voting. Experimental results show the superiority of this
ensemble over the rival methods [39]. There were other
proposed works in this realm that employed MVL in API calls
of android executable files besides the other features and
improved detection rate [40].

DL has been attracted much attention in recent years and
has become a salient trend in ML. So, we introduce some
outstanding research in this field to compare with the proposed
method. Hashemi et al. [41] employed an image classification
method that aims to extract micro-patterns of digital textural
images, to detect malicious executable files. In this way, they
converted executable files to digital images and then extracted
visual features such as Local Binary Pattern (LBP). Finally,
they used a Convolutional Neural Network (CNN) to
distinguish malware and benign files. Their proposed method
suffered from low accuracy. So, in another attempt [42], they
created a graph of Opcodes within an executable file and then
embedded this graph into eigenspace using the Power Iteration
method. Consecutively, they represented an executable file as a
linear combination of eigenvectors proportionate to their
eigenvalues. It was beneficial to train ML classifiers such as
KNN and SVM. Although this method has achieved good
accuracy, the computational burden made this method hard to
run.

Because of the recurring patterns in malware families,
Recurrent Neural Network (RNN) has become increasingly
popular for cyber-attack detection on different domains.
Haddadpajouh et al. [43] have explored the potential of using
RNN to detect IoT malware. Specifically, they used RNN to
analyze ARM-based IoT Opcodes. They evaluated the trained
models with three different Long Short Term Memory (LSTM)
configurations. The configuration with 2-layer neurons
performed better results to detect new malware samples.
Homayoun et al. [44] identified three ransomware and benign

families by combining sequential pattern mining for feature
identification in a proposed RNN framework.

Most of the DL-based methods achieved considerable
accuracies, while the bottleneck of such approaches is needing
numerous samples for training and also high running
complexity. So, we seek a low-cost framework with high
accuracy to detect the zero-day attacks.

3. PROPOSED METHOD

MVL [3] is an applicable trend in ML, which considers
some feature views simultaneously to reach a final decision.
MVL combines some feature sets in one or more classifiers to
obtain better results than could be reached from any of them
[45]. The major strength of such methods depends on the
diversity of feature sets. It is also essential to choose a fit base
classifier for the problem in hand. Some prevalent methods
employ decision trees and neural networks as base classifiers.
Most methods use a single base algorithm to produce
homogeneous base learners, while some others benefit different
classifiers.

SRC is an applicable classifier [5] that has attracted much
attention in the past decade. There are several improvements in
this method that has been proposed recently [6]–[9]. In this
paper, we modified SRC as a sparse-based classifier that is fit
to the field of malware detection and identification in a low-
cost manner.

The seminal work was proposed by John Wright [5]. The
goal is to represent a test example as a linear combination of
some selected samples. If there are sufficient training examples
from each class, it is feasible to represent the test sample as a
linear combination of just those samples from the same
category [5]. For reconstructing an example based on other
samples, the simple objective is:

‖ ‖

where sϵℝd
is a new example, Xϵℝd×n

 contains the available
samples, and wϵℝn

 is the coefficient vector. We need to make
w sparse enough to choose a few samples for reconstruction.
Minimizing the cardinality by adding l0-norm of w, forces
many coefficients to be zero, but as the problem is NP-hard
and intractable in the general case, according to the convex
envelope, the constraint can be approximated with l1-norm
[46].

‖ ‖ ‖ ‖

 is the regularization parameter to specify the sparsity
level. It can be determined regarding the size of the dictionary
by an expert or using cross-validation [47]. There are several
toolboxes, such as NESTA [48] and SPAMS [49] to solve this
function in polynomial time, using coordinate descent [50].

For malware identification, suppose X is the matrix of
labeled samples, each one is presented with d features in the
rows. Consider n samples in the columns, n1 belong to class 1,
n2 belong to class 2, and so on, like in Figure 2.

The calculated vector w contains n elements pertain to all
available samples, n1 coefficients according to samples of class
1, n2 coefficients for samples of class 2, and so on. Only a few
coefficients are considerable, and the rest of them are

International Journal of Web Research, Vol. 2, No. 2, Autumn-Winter, 2019

48

negligible. Consequently, the test sample can be reconstructed
with the samples of each class separately. As it was a pre-
assumption that the samples of each class lie on a
subspace/submanifold, the new sample can be reconstructed by
a locally linear combination of the samples in the same class.
Figure 3 schematically depicts this motivation.

Since each class samples lie on a subspace/ submanifold,
the new sample can be reconstructed through a linear
combination of its neighbors. So, the class with the minimum
reconstruction error can classify the test sample [5].

 { }

‖
 ‖

j shows the label of each class through J classes, and j* is
the label of the class with the minimum reconstruction error.
Equations 2 and 3 show the seminal method of SRC [5].

Inspired by the idea behind MVL, we modified SRC to
combine the effect of several views. In the proposed
framework, the new file is reconstructed with a linear
combination of available samples. The objective is to minimize
the reconstruction error according to all feature views.
Considering K views, the best coefficient vector w* is the one
that minimizes the sum of errors according to all views. The
modified function can be rewritten as Equation (4):

∑‖ ‖

 ‖ ‖

As the number of features in all views are not the same, it is
necessary to exert a normalization on each reconstruction error
term and divide each one to the number of features in that
view:

∑
‖ ‖

 ‖ ‖

Fig. 2. The simple structure of a database for reconstructing an out-of-

sample.

Fig. 3. The spanned space of the samples of a class can be considered

locally linear, and each sample can be reconstructed with the linear

combination of its adjacent on this path.

where d
k
 is the dimension of the k

th
 view and w* is the best

weight vector, including the coefficients of training samples
according to all views. Finally, the class with the minimum
sum of reconstruction errors regarding all feature sets,
determine the label of the test sample:

 { }

∑
‖

 ‖

As the aim of this optimization function is to minimize the
sum of reconstruction errors, all views participate in finding w*
as a shared vector. So, the effect of all feature sets can lead to
finding the best samples for describing the out-of-sample.
Algorithm 1 shows the stages of the proposed model to label an
unknown file.

In the first step of Algorithm 1, we need to extract some
useful features from each file. As the platform of any file can
be different, regarding the ability of the host devices, we
extract some relevant features. For example, extracting
Opcodes and Bytecodes for Android files is more feasible than
controlling their behavior. So, we can extract 2-grams and TF-
IDF from Opcodes and Bytecodes to use in the algorithm. TF-
IDF considers the repetition of each Opcode in a file
individually vs. the presence of this Opcode in the other files,
while 2-grams considers the importance of Opcode sequences.
On the other hand, for Windows files, we can use a Sandbox to
extract system calls as a dynamic feature. This can be a useful
complementary feature set for Opcodes that has been discussed
in detail in the Experimental Results Section.

In the next steps, a unified SRC decides based on the
consensus of all views and finds the class with the minimum
overall reconstruction error regarding all features. In
conclusion, this algorithm aggregates the effects of several
views in a unified objective function that leads to detect a file’s
payload.

Another advantage of the proposed method besides the
accuracy is the insensitivity to imbalanced datasets. To
reconstruct a new sample, we use a linear combination of
available instances. So, it can be considered a locally linear
reconstruction, and the rest of the samples do not participate in
reconstruction, like in Figure 3. So, it is not dependent on all
samples of a class and only needs the samples that lie on the
subspace/submanifold near the test sample. To prove these
assertions, we used several real datasets in the experiments.

Algorithm 1

Input: a raw file

output: the selected class

1. Extract features of several views from all files.

2. Find the best coefficient vector of that leads to a

minimum reconstruction error based on all features:

∑
‖ ‖

 ‖ ‖

3. Choose the class which best describes the out of sample

through all views:

 { }

∑
‖

 ‖

Malware Detection and Identification using Multi-View Learning based on Sparse Representation

49

4. EXPERIMENTAL RESULTS

In this Section, several benchmarks and collected datasets
on various platforms, e.g., Android and Windows, are
investigated. Then, the effectiveness of the feature combination
in the proposed method is illustrated and compared with the
based method using the individual feature sets and some other
rival methods.

The used datasets and their specifications are introduced
briefly in Table 1. The first column shows the name of
datasets, and the second one is according to the environments
of the files. The third and fourth columns are due to the number
of samples and classes, respectively. Also, other columns show
the extracted feature sets from each dataset.

Whereas the proposed method does not need many samples
from each class for reconstruction, first, some samples from
each category are selected, and then, the required features are
extracted. If we select 100 samples for each class, the
computational burden of running the algorithm is less than a
second. So, we exerted leave-one-out in each case to show the
superiority of the proposed model.

The results of the proposed method are compared with SRC
using each extracted feature set and the concatenation of all
feature sets. Employing a supervector of all features was the
seminal idea of MVL that was used in the previous work. We
implemented the algorithm in Matlab 2016b and used a
personal desktop equipped with a Core i7-3770 CPU and 32GB
of memory for its running.

4-1. Evaluation Metrics

For evaluation, some metrics are required. Accuracy is a
useful metric that has been used widely in the ML assessments
and considers the rate of correct predictions to all. True
Positive (TP) and True Negative (TN) are the malicious and
benign files that have been classified truly, respectively. Also,
False Negative (FN) and False Positive (FP) are the malicious
and benign files that have been classified wrongly,
respectively. So, accuracy will be the number of true classified
samples out of all test samples that have been shown in
Equation (7):

True Positive Rate (TPR) is the percentage of actual
positives that are correctly identified. So, it is the rate of
detected malicious files out of all malware.

Also, False Positive Rate (FPR) is the rate of incorrectly
rejected files, which is the benign files that are identified as
malware out of all malicious files.

4-2. Internet of Things (IoT) Dataset

Nowadays, IoT devices become more and more prevalent,
and consequently, many malware developers target IoT devices
[51]. Thus, one of the selected datasets to challenge our method
includes IoT files. In this dataset, 280 malware samples were
collected from 32-bit ARM-based malware in the Virus Total
Threat Intelligence platform. For compatibility of the malware
and benign files, 271 standard files of the Linux Debian
package repository were chosen [43]. The files were unpacked
by the Debian installer bundle, and the Object-Dump tool was
employed to decompile all samples.

The sequence of Opcodes in each sample was obtained
from all files, and consequently, two feature sets were extracted
from them: TF-IDF and 2-grams. Bytecode is another
applicable view of the files. Then, two sets of features,
according to Bytecode TF-IDF and 2-grams, were extracted as
well. Eventually, we had four feature sets to learn classifiers.

For the first evaluation, 100 samples were selected
randomly from each class, and then leave-one-out was exerted
to reconstruct each sample with the rest of 199. Table 2
compares the results of the proposed method to the original
SRC according to each set of features individually and using a
supervector of all features. The results are due to the average of
a 10-times random-selection of samples from the initial dataset.
The first row of the table is, according to Haddadpajouh et al.
[43], due to this dataset.

The accuracy and FPR of the proposed method outperform
all other methods in Table 2, while the TPR is somehow near
to Haddadpajouh et al. [43] and SRC using supervector of all
extracted features.

To investigate the imbalanced effect on the proposed
methods, we selected a subset of 100 benign and 30 of malware
samples. Table 3 shows the results according to 10-times
random-selection in the mentioned methods that show no
significant changes compared to the balanced condition. This
can prove the ability of the proposed method to handle

TABLE 1. THE INTRODUCED DATASETS AND THEIR SPECIFICATIONS. TO EVALUATE THE METHODS, TWO BINARY CLASS DATASETS INCLUDE MALWARE AND BENIGN

FILES AND TWO MULTI-CLASS DATABASES CONSIST OF SOME MALWARE TYPES ARE EMPLOYED.

dataset environment # samples # classes feature set 1 feature set 2 feature set 3 feature set 4

IoT dataset Linux 551 2 opcodes
TF-IDF

opcode
2-grams

bytecode
TF-IDF

bytecode
2-grams

VXHeaven Windows 330 2 opcodes TF-
IDF

opcode
2-grams

bytecode
TF-IDF

bytecode
2-grams

Ransomware
dataset Windows 1627 4 System

call
opcodes
TF-IDF

opcode
2-grams

Microsoft
malware Windows 10825 9

opcodes
TF-IDF

opcode
2-grams

opcode
3-grams

International Journal of Web Research, Vol. 2, No. 2, Autumn-Winter, 2019

50

imbalanced conditions. To show the merit of the proposed
method, our results are compared to the original SRC using
Opcode TF-IDF as the best single feature set in Table 2 and
also using supervector of all features, which is a type of MVL
in the literature.

4-3. VXHeaven Dataset

VXHeaven is a benchmark dataset contains windows
malware [52] and was used to evaluate several methods [41],
[42], [53]. 1000 samples were picked randomly from the
dataset and labeled as malware and benign. Then, TF-IDF and
2-grams, according to Opcodes and Bytecodes of the selected
files, were extracted as four feature sets.

The results are presented in Table 4. The mentioned
algorithms were applied on samples 10-times; each time, 100
samples were picked randomly from each class. Leave-one-out
was exerted, while the runtime for each sample was less than a
second. The first three rows of the table are due to some
available methods that have evaluated this dataset, recently.

As the available samples in this dataset are due to the
Windows environment, the files are more complicated, and the
overall accuracies are a bit lower than the IoT samples.
Nevertheless, the accuracy and TPR of the proposed method
outperform the rivals. Also, the FPR of Hashemi et al. [42] is
comparable to the proposed method.

As we faced to a binary class dataset, we examined
imbalanced conditions again. To do so, a subset of 100 benign
and 30 malware samples are selected randomly, 10-times.
Table 5 implies the ability of the proposed methods to
challenge the imbalanced conditions.

The results of the proposed method have not diminished
meaningfully compared to the balanced condition. This is due
to the ability of the proposed method to handle imbalanced
conditions. To show the superiority of the proposed method,
our results are compared to the original SRC using supervector

TABLE 2 .COMPARING THE RESULTS OF THE PROPOSED METHOD ON IOT

DATASET WITH SRC (BASED ON FOUR FEATURE SETS AND THE

CONCATENATION OF ALL) AND HADDADPAJOUH ET AL. [55].

IoT (100/100) TPR (%) FPR (%) Accuracy (%)

Haddadpajouh et al. [43] 98.6 2.1 98.1

SRC Opcode TF-IDF 96.1 3.2 95.3

SRC Opcode 2-grams 92.5 4.4 94.4

SRC Bytecode TF-IDF 91.3 5.2 92.6

SRC Bytecode 2-grams 93.1 3.8 90.3

SRC Supervector 97.9 2.8 96.7

Proposed Method 98.8 1.1 99.1

TABLE 3. THE AVERAGES RESULT FROM THE PROPOSED METHOD AND SRC

USING THE BEST FEATURE SET AND SUPERVECTOR OF ALL EXTRACTED

FEATURES ON THE IMBALANCED DATASET OF IOT FILES.

IoT (100/30) TPR (%) FPR (%) Accuracy (%)

SRC Opcode TF-IDF 93.3 4.2 94.0

SRC Supervector 95.6 3.6 95.1

Proposed Method 96.9 1.9 97.1

of all features and also Bytecode 2-grams as the best single
feature set in Table 4.

4-4. Ransomware Dataset

As another evaluation, the ransomware dataset has been
employed [44]. The ransomware dataset contains sequences of
activities according to some Windows PE ransomware samples
reported as malicious, from Virustotal

1
. This dataset consists of

three famous families of ransomware, namely Locky, Cerber,
and TeslaCrypt. As ransomware samples are in the form of PE
files, portable applications available online

2
 are considered as

benign samples. Table 6 shows the summary report of the
samples in the dataset with three families of ransomware and a
group of benign samples.

All samples were launched in a testbed to collect runtime
behaviors of ransomware and normal files. The runtime
behaviors were considered as system calls performed by the
process of a monitored sample that leads to the first view of the
samples. Moreover, TF-IDF and 2-grams were extracted from
Opcodes.

TABLE 4. THE RESULTS OF THE PROPOSED METHOD ON VXHEAVEN SAMPLES

COMPARED TO SRC (BASED ON FOUR FEATURE SETS AND THE

CONCATENATION OF ALL) AND SOME RECENT OUTSTANDING METHODS.

VXHeaven (100/100) TPR (%) FPR (%) Accuracy (%)

Farrokhmanesh et al.
[53] 91.3 7.9 90.4

Hashemi et al. [41] 89.1 7.8 89.7

Hashemi et al. [42] 96.0 3.1 94.7

SRC Opcode TF-IDF 86.6 12.8 84.5

SRC Opcode 2-grams 85.5 14.4 87.4

SRC Bytecode TF-IDF 88.3 7.6 89.6

SRC Bytecode 2-grams 90.3 5.2 90.1

SRC Supervector 92.9 5.5 93.6

Proposed Method 96.6 3.1 96.3

TABLE 5. THE AVERAGES OF RESULTS ON THE IMBALANCED DATASET

COMPARING THE PROPOSED METHOD AND SRC USING SUPERVECTOR OF ALL

FEATURES AND THE FEATURE SET IN TABLE 4.

VXHeaven (100/30) TPR (%) FPR (%)
Accuracy

(%)

SRC Bytecode 2-grams 89.4 6.5 89.6

SRC Supervector 92.1 5.9 93.0

Proposed Method 97.2 2.6 97.5

TABLE 6. THE NUMBER OF SAMPLES IN EACH FAMILY OF RANSOMWARE AND

BENIGN.

Class number of samples

Locky 450

Cerber 470

TeslaCrypt 507

Benign 200

1
 https://www.virustotal.com/

2
 https://portableapps.com/app

Malware Detection and Identification using Multi-View Learning based on Sparse Representation

51

As few samples were required for the learning, and a multi-
class classification problem was ahead, we selected 50 samples
of each class randomly and exerted leave-one-out for
assessment. These steps were repeated 10-times, and the results
were summed up in Table 7. The first row of the table is the
results of Homayoun et al. [44] that were reported in their
paper according to the prepared database.

According to Table 7, the results of the proposed model,
works better than all single classifiers, while the TPR of
Homayoun et al. [44] is near to the proposed method.

Similar to the previous datasets, to show the eligibility of
the proposed method in imbalanced conditions, we aggregated
the samples of 3 malware families as a malicious class,
including 150 samples vs. 50 benign instances on the other
hand. Table 8 indicates the summary of the average results
achieved on the imbalanced data based on 10-times random
subsampling and leave-one-out. In this table, only the results of
the best base classifier (Opcode 2-grams) are reported and
compared to the results of the SRC supervector and the
proposed approach.

It is evident from Table 8 that the results of the proposed
method in imbalanced conditions are comparable to the results
of Table 7.

4-5. Microsoft Malware Dataset

Another Windows-based malicious dataset that has been
used in our evaluation is Microsoft malware collection that was
presented in the Microsoft malware classification challenge
from the Kaggle website [54]. This dataset contains more than
10000 samples from 9 families of malware variants that have
been analyzed statically to obtain their Opcodes. Consequently,
TF-IDF, 2-grams, and 3-grams of the Opcodes from 900 files
of all classes were extracted.

We selected 40 samples of each class randomly 10-times
and repeat our experiments for each subset. Table IX shows the
average accuracies according to 10 runs. Whereas all three

TABLE 7. COMPARING THE RESULTS OF THE PROPOSED METHOD ON

RANSOMWARE WITH SRC (BASED ON THREE FEATURE SETS AND THE

CONCATENATION OF ALL) AND HOMAYOUN ET AL. [44].

Ransomware

(4 × 50)
TPR (%) FPR (%) Accuracy (%)

Homayoun et al. [44] 98.0 2.6 97.2

SRC System calls 86.3 12.1 85.2

SRC Opcode TF-IDF 89.5 9.7 92.9

SRC Opcode TF-IDF 91.5 7.0 90.3

SRC Supervector 96.2 4.9 94.9

Proposed Method 98.6 1.3 98.7

TABLE 8 .THE AVERAGES RESULT FROM THE PROPOSED METHOD AND SRC

USING THE BEST FEATURE SET AND SUPERVECTOR OF ALL EXTRACTED

FEATURES ON THE IMBALANCED DATASET.

Ransomware

 (150/50)
TPR (%) FPR (%) Accuracy (%)

SRC Opcode 2-grams 91.0 6.8 90.1

SRC Supervector 93.8 4.3 94.4

Proposed Method 95.9 2.2 97.0

feature sets are extracted from Opcodes, in this case, the results
of the ensemble methods are not significantly superior.

The available results in Table 9 can confirm the assumption
of diversity according to the employed feature sets to build an
MVL method. Also, one of the state-of-the-art in this field [38]
had shown that the dependent feature sets could not boost each
other in the ensemble and MVL methods.

We can reach better results by adding some complement
feature sets to the available data to raise the results of the
MVL-based methods. Diversity has a significant role in this
area. So, it shows the importance of using partly independent
views in the completion of each other and reveals the hidden
virtue of the samples.

The runtime of the proposed method is proportional to the
size of the selected samples for reconstruction. So, in this
dataset with growing the number of samples, the runtime grows
highly. For this reason, we used a random selection method in
previous datasets to reach reasonable running time and used the
method for online applications.

5. CONCLUSION AND FUTURE WORK

In this study, inspired by Multi-View Learning (MVL) and
Sparse Representation based Classifier (SRC), we proposed a
model for malware identification and classification. Whereas
using various views of the files, e.g., Opcodes, Bytecodes, and
System calls, help the classifiers to reveal the hidden
dimensions of a file, we combined the reconstruction errors in a
unified SRC. As the proposed method uses the sparse
representation to reconstruct an out-of-sample, it can handle
imbalanced conditions. Another merit of the proposed model is
the ability to overcome multi-class problems without any extra
computation.

The proposed methods outperform any individual based
classifiers trained on a single feature set and show elegant
results on several datasets that have been investigated in the
experimental results. Also, we tested the imbalanced conditions
for the available datasets and considered about three times
more samples from a class.

As future work, we suggest learning the combination phase
of the algorithms intelligently. To do so, we can learn each
classifier individually and then learn a model for the best
combination of them. Another suggestion is to extend these
methods to the other ML tasks. Various approaches in the real
world suffer from the nature of imbalanced data and can take
advantage of the proposed method.

TABLE 9. COMPARING THE RESULTS OF THE PROPOSED METHOD ON

MICROSOFT MALWARE DATASET WITH SRC (BASED ON THREE FEATURE SETS

AND THE CONCATENATION OF ALL).

Microsoft malware

(9 × 100)
TPR (%) FPR (%) Accuracy (%)

SRC Opcode TF-IDF 91.7 8.8 92.9

SRC Opcode 2-grams 92.8 4.6 92.3

SRC Opcode 3-grams 94.7 5.6 93.4

SRC Supervector 93.2 6.1 94.5

Proposed Method 94.8 5.7 94.3

International Journal of Web Research, Vol. 2, No. 2, Autumn-Winter, 2019

52

REFERENCES

[1] Z. Bazrafshan, H. Hashemi, S. M. H. Fard, and A. Hamzeh, “A survey
on heuristic malware detection techniques,” in IKT - 5th Conference on
Information and Knowledge Technology, 2013, pp. 113–120.

[2] A. Shalaginov, S. Banin, A. Dehghantanha, and K. Franke, “Machine
learning aided static malware analysis: A survey and tutorial,” Cyber
Threat Intell., pp. 7–45, 2018.

[3] J. Zhao, X. Xie, X. Xu, and S. Sun, “Multi-view learning overview:
Recent progress and new challenges,” Inf. Fusion, vol. 38, pp. 43–54,
2017.

[4] J. Bai and J. Wang, “Improving malware detection using multiview
ensemble learning,” Secur. Commun. Networks, vol. 9, no. 17, pp. 4227–
4241, 2016.

[5] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust
Face Recognition via Sparse Representation,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 31, no. 2, pp. 210–227, Feb. 2009.

[6] A. Wagner, J. Wright, A. Ganesh, Z. Zhou, H. Mobahi, and Y. Ma,
“Toward a practical face recognition system: Robust alignment and
illumination by sparse representation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 34, no. 2, pp. 372–386, 2012.

[7] A. Y. Yang, S. S. Sastry, A. Ganesh, and Y. Ma, “Fast ℓ 1-minimization
algorithms and an application in robust face recognition: A review,” in
Image Processing (ICIP), 2010 17th IEEE International Conference on,
2010, pp. 1849–1852.

[8] J. Ma, J. Zhao, Y. Ma, and J. Tian, “Non-rigid visible and infrared face
registration via regularized Gaussian fields criterion,” Pattern Recognit.,
vol. 48, no. 3, pp. 772–784, 2015.

[9] Y. Gao, J. Ma, and A. L. Yuille, “Semi-supervised sparse representation
based classification for face recognition with insufficient labeled
samples,” IEEE Trans. Image Process., vol. 26, no. 5, pp. 2545–2560,
2017.

[10] S. Sun, “A survey of multiview machine learning,” Neural Comput.
Appl., vol. 23, no. 7–8, pp. 2031–2038, 2013.

[11] K. Nigam and R. Ghani, “Analyzing the effectiveness and applicability
of co-training,” in Proceedings of the ninth international conference on
Information and knowledge management, 2000, pp. 86–93.

[12] I. Muslea, S. Minton, and C. A. Knoblock, “Active learning with
multiple views,” J. Artif. Intell. Res., vol. 27, pp. 203–233, 2006.

[13] S. Sun and F. Jin, “Robust co-training,” Int. J. Pattern Recognit. Artif.
Intell., vol. 25, no. 07, pp. 1113–1126, 2011.

[14] S. Sun and J. Shawe-Taylor, “Sparse semi-supervised learning using
conjugate functions,” J. Mach. Learn. Res., vol. 11, no. Sep, pp. 2423–
2455, 2010.

[15] X. Xie and S. Sun, “Multi-view twin support vector machines,” Intell.
Data Anal., vol. 19, no. 4, pp. 701–712, 2015.

[16] S. Sun, “Multi-view Laplacian support vector machines,” in
International Conference on Advanced Data Mining and Applications,
2011, pp. 209–222.

[17] X. Xie and S. Sun, “Multi-view Laplacian twin support vector
machines,” Appl. Intell., vol. 41, no. 4, pp. 1059–1068, 2014.

[18] M. Taheri, H. Azad, K. Ziarati, and R. Sanaye, “A QUADRATIC
MARGIN-BASED MODEL FOR WEIGHTING FUZZY
CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR
MACHINES,” Iran. J. Fuzzy Syst., vol. 10, no. 4, pp. 41–55, 2013.

[19] G. Chao and S. Sun, “Alternative multiview maximum entropy
discrimination,” IEEE Trans. neural networks Learn. Syst., vol. 27, no.
7, pp. 1445–1456, 2016.

[20] G. Chao and S. Sun, “Consensus and complementarity based maximum
entropy discrimination for multiview classification,” Inf. Sci. (Ny)., vol.
367, pp. 296–310, 2016.

[21] L. Mao and S. Sun, “Soft Margin Consistency Based Scalable Multi-
View Maximum Entropy Discrimination.,” in IJCAI, 2016, pp. 1839–
1845.

[22] S. Sun and G. Chao, “Multi-View Maximum Entropy Discrimination.,”
in IJCAI, 2013, pp. 1706–1712.

[23] R. Polikar, “{E}nsemble learning,” Scholarpedia, vol. 4, no. 1, p. 2776,
2009.

[24] R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes, “Ensemble
selection from libraries of models,” in Proceedings of the twenty-first
international conference on Machine learning, 2004, p. 18.

[25] E. Menahem, A. Shabtai, L. Rokach, and Y. Elovici, “Improving
malware detection by applying multi-inducer ensemble,” Comput. Stat.
Data Anal., vol. 53, no. 4, pp. 1483–1494, 2009.

[26] S. Sheen, R. Anitha, and P. Sirisha, “Malware detection by pruning of
parallel ensembles using harmony search,” Pattern Recognit. Lett., vol.
34, no. 14, pp. 1679–1686, 2013.

[27] D. Bilar, “Opcodes as predictor for malware,” Int. J. Electron. Secur.
Digit. Forensics, vol. 1, no. 2, pp. 156–168, 2007.

[28] R. Moskovitch et al., “Unknown malcode detection using opcode
representation,” in Intelligence and Security Informatics, Springer, 2008,
pp. 204–215.

[29] I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G. Bringas, “Opcode
sequences as representation of executables for data-mining-based
unknown malware detection,” Inf. Sci. (Ny)., vol. 231, pp. 64–82, 2013.

[30] A. Shabtai, R. Moskovitch, C. Feher, S. Dolev, and Y. Elovici,
“Detecting unknown malicious code by applying classification
techniques on opcode patterns,” Secur. Inform., vol. 1, no. 1, p. 1, 2012.

[31] J. Z. Kolter and M. A. Maloof, “Learning to detect and classify
malicious executables in the wild,” J. Mach. Learn. Res., vol. 7, no. Dec,
pp. 2721–2744, 2006.

[32] D. K. S. Reddy and A. K. Pujari, “N-gram analysis for computer virus
detection,” J. Comput. Virol., vol. 2, no. 3, pp. 231–239, 2006.

[33] I. Santos, Y. K. Penya, J. Devesa, and P. G. Bringas, “N-grams-based
File Signatures for Malware Detection.,” ICEIS (2), vol. 9, pp. 317–320,
2009.

[34] J. Bai, J. Wang, and G. Zou, “A malware detection scheme based on
mining format information,” Sci. World J., vol. 2014, 2014.

[35] M. Z. Shafiq, S. Tabish, and M. Farooq, “PE-probe: leveraging packer
detection and structural information to detect malicious portable
executables,” in Proceedings of the Virus Bulletin Conference (VB),
2009, vol. 8.

[36] M. Z. Shafiq, S. M. Tabish, F. Mirza, and M. Farooq, “Pe-miner: Mining
structural information to detect malicious executables in realtime,” in
International Workshop on Recent Advances in Intrusion Detection,
2009, pp. 121–141.

[37] M. Zakeri, F. Faraji Daneshgar, and M. Abbaspour, “A static heuristic
approach to detecting malware targets,” Secur. Commun. Networks, vol.
8, no. 17, pp. 3015–3027, 2015.

[38] J. Landage and M. P. Wankhade, “Malware detection with different
voting schemes,” Compusoft, vol. 3, no. 1, p. 450, 2014.

[39] M. Ozdemir and I. Sogukpinar, “An android malware detection
architecture based on ensemble learning,” Trans. Mach. Learn. Artif.
Intell., vol. 2, no. 3, pp. 90–106, 2014.

[40] S. Sheen, R. Anitha, and V. Natarajan, “Android based malware
detection using a multifeature collaborative decision fusion approach,”
Neurocomputing, vol. 151, pp. 905–912, 2015.

[41] H. Hashemi and A. Hamzeh, “Visual malware detection using local
malicious pattern,” J. Comput. Virol. Hacking Tech., pp. 1–14, 2018.

[42] H. Hashemi, A. Azmoodeh, A. Hamzeh, and S. Hashemi, “Graph
embedding as a new approach for unknown malware detection,” J.
Comput. Virol. Hacking Tech., vol. 13, no. 3, pp. 153–166, 2017.

[43] H. HaddadPajouh, A. Dehghantanha, R. Khayami, and K.-K. R. Choo,
“A deep Recurrent Neural Network based approach for Internet of
Things malware threat hunting,” Futur. Gener. Comput. Syst., vol. 85,
pp. 88–96, 2018.

[44] S. Homayoun, A. Dehghantanha, M. Ahmadzadeh, S. Hashemi, and R.
Khayami, “Know abnormal, find evil: Frequent pattern mining for
ransomware threat hunting and intelligence,” IEEE Trans. Emerg. Top.
Comput., 2017.

[45] L. Rokach, “Ensemble-based classifiers,” Artif. Intell. Rev., vol. 33, no.
1–2, pp. 1–39, 2010.

[46] C. Ramirez, V. Kreinovich, and M. Argaez, “Why l1 is a good
approximation to l0: A geometric explanation,” J. Uncertain Syst., vol.
7, no. 3, pp. 203–207, 2013.

[47] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical
learning, vol. 1, no. 10. Springer series in statistics New York, NY,
USA:, 2001.

Malware Detection and Identification using Multi-View Learning based on Sparse Representation

53

[48] S. Becker, J. Bobin, and E. J. Candès, “NESTA: a fast and accurate first-
order method for sparse recovery,” SIAM J. Imaging Sci., vol. 4, no. 1,
pp. 1–39, 2011.

[49] J. Mairal, “SPAMS: a SPArse Modeling Software, v2. 5.” 2014.
[50] S. J. Wright, “Coordinate descent algorithms,” Math. Program., vol.

151, no. 1, pp. 3–34, 2015.

[51] H. Naeem, B. Guo, and M. R. Naeem, “A light-weight malware static
visual analysis for IoT infrastructure,” in 2018 International Conference
on Artificial Intelligence and Big Data (ICAIBD), 2018.

[52] V. X. Heaven, “Computer virus collection,” 2007-09-14)[2010-05-28].
http:∥ vx. netlux. org/vl. php. 2014.

[53] M. Farrokhmanesh and A. Hamzeh, “A novel method for malware
detection using audio signal processing techniques,” in Artificial
Intelligence and Robotics (IRANOPEN), 2016, 2016, pp. 85–91.

[54] Microsoft, “Microsoft malware classification challenge,” [Online],
Available: https://www.kaggle.com/c/malware-classification., 2015.

 Elham Velayati has received her M.Sc. in

Information Technology engineering from

Sharif University of Technology, Iran in

2012. Her research area is about Internet of

things, Internet Security, Wireless Sensor

Networks and its application.

Seyed Mehdi Hazrati Fard has received

the Ph.D. degree in computer science from

the Computer department at Electrical and

Computer Engineering School, Shiraz

University, Shiraz, Iran, in 2019. Since

2012, he has been an active member of

Machine Learning Lab (MLL) and has

done several projects on deep networks and

sparse representation. Furthermore, he has been at the

University of Waterloo as an international visitor in 2017.

Currently, he is the assistant professor at Pishtazan Higher

Educational Institute.

