

A QoS Aware Multi-Cloud Service Composition

Algorithm

Zahra Nazari*

School of Engineering Science, College of Engineering

University of Tehran

Tehran, Iran

zahra.nazari.ce@gmail.com

Ali Kamandi, Mahmood Shabankhah
School of Engineering Science, College of Engineering

University of Tehran

Tehran, Iran

{kamandi, shabankhah}@ut.ac.ir

Received:2019/04/09 Revised:2019/10/22 Accepted:2019/12/25

Abstract— Devices that are connected on the internet and

are exchanging data with internet brokers to receive

requested services are a significant part of internet users. In

order to manage and account well to IoT requests maximum

processing power, speed in data transfer, and proper

combining services in minimum time is needed. Since there is

a large number of IoT devices which have a large scale, we

have to use the abilities and services of cloud environment in

order to solve its problems. So, service composition in a cloud

environment is paid attention recently. We want to suggest an

algorithm with the approach in this research, of improving

factors propounded in the service composition problem like

the number of clouds involved in service, number of services

examined before responding to users’ requests SP and load

balance between clouds. In this paper, the factor, similarity

measure, is introduced and used to find the best cloud and

composition plan in each phase which in addition to

improving QoS metrics propounded in previous papers, it

caused improving QoS metric of load balancing between

clouds, prevention of formation of a bottleneck in clouds

entrance. These changes, besides the proper load balancing,

have avoided the clouds stop working suddenly and satisfied

the users by presenting the services faster.

Keywords— Service Composition, Multi-Cloud

Environment, Internet Of Things, Load Balancing, Quality Of

Service

1. INTRODUCTION

The Internet has influenced communication between

humans in the recent century and with attention to the easy

access and variety of services provided, is influencing

communication between human and things and in some

cases, things communicating with each other. Internet of

things (IoT) is a new subject that millions of smart things

are connected through it. IoT is spreading in our personal

and social life. Intelligent transportation network,

Intelligent phones and wearing gadgets, intelligent health

networks and homes, smart city and smart grid, are some

examples of IoT applications in our personal and social

life. By growing the number of these devices every day

even from the population of the Earth, the new main

problem is how to manage these things, keeping and

processing collected data by them and responding to their

requests on time [1]. Scientists and researchers of

corporations are being persuaded by spreading these

technologies in order to enhance performance and fix the

challenges in IoT.

In this century, data volume available in the human

hand is too much. This data made their owners

uncompetitive in a class of most valuable companies in the

world. IoT is made dependent to cloud environment

because of the delirious growth of data volume in modern

ages and IoT should use all of the advantages of the cloud,

including unlimited virtual resources and powers along

with prevalence against its limits and challenge. From

particular and distinct attributes of cloud computing can

express elasticity, scalability, and fast configuration of

services. Intelligent devices are somehow smart computers.

The development of these devices created the expectation

in users to access various and instantaneous services so

that it is required that a cloud environment can provide

these kinds of compound requests real-time.

It put an interesting comparison for contrast and the

possibility of cloud cooperation and internet objects in [2].

With a cursory look at table mentioned in this article, we

can quickly answer the question: Why merging these two

concepts occurred so fast, and why is that increasing every

single day ?

1-IoT, including the objects that spread all over the world

and moving permanently; cloud resources also reachable

all over the earth. 2-Objects of IoT space exist physically,

whereas cloud objects define virtual . 3-Reachable

computational sources for internet objects are limited and

specified whereas computational sources of cloud

environment are unlimited because any source would be

accommodated for the user in necessity and take back in

other times and with this procedure, the best utilization will

occur. 4-Memory space of IoT is so limited that it can be

overlooked whereas memory space of cloud unlimited. 5-

Internet in IoT has an essential role in communication and

collecting devices; clouds also do clouds. They use the

internet for delivering required services. 6-IoT devices are

making a large amount of information that should be saved

and processed all the time. Clouds are the best choice for

being with IoT devices because of their unlimited spaces

[2].

It is not an easy task for a broker to satisfy the user’s

request in a multi-cloud environment, and the problem

appears because of the structural attributes and nature of a

multi-cloud environment. The problem is because

sometimes, the user’s request is not responsible by only

one provider. Data and services available, in different

International Journal of Web Research, Vol. 2, No. 1, Spring-Summer, 2019

13

servers, are widespread, and it is possible that we are

forced to receive and combine various services from

different providers to respond to a user’s/thing’s request.
On the other hand, combining the least services, to

minimize data transfer and energy consumption, required

its particular mechanism and algorithm. Based on what we

said previously, it seems our ability in determining what

pair (service/set of services, cloud) we use to respond to

user’s requests, is determinant for our success in speeding
responses and successively acquiring user’s satisfaction

[1]. Therefore, receiving service from clouds settled in

different providers and combining them, enforces a load of

data transfer on network, in this paper we are trying to find

a useful algorithm, that it can find a combination of

services in an integrative environment of cloud and internet

of things in optimum time, which has the least addition

overhead for cloud environment in addition to fulfilling

user’s requests.

We know that the cloud environment has specific

characteristics and categories and isn’t specified as one
aspect or type, and also according to the evolution of

science and existing tools, improving devices and their

capabilities, and varied user requirements through times,

we’re notllimited to any particular form in the field of IoT

and thus numerous forms of communication type and

requested services are propounded. However, this variety

does not matter to our research case as we have supposed

solving the problem be in general condition. The

considerable point for us, is that, regarding extension of

IoT and its undeniable demand for cloud environment to

deliver requested services, it’s necessary to recognize
quality of service (QoS) metrics in service composition in

the cloud environment besides utilizing existing tools and

standard data to simulate the problem according to these

factors and try to introduce an algorithm outperforming the

previous similar ones in one or more quality factors. It is

desired in this analysis to decrease the required time for the

intermediate layer to combine different providers’ services
in order to meet user requested services, the number of

services examined before responding to users’ requests and

also the number of used clouds.

Several approaches in the literature focus on the IoT

devices energy consuming challenges at the hardware level

[3][4][5][6]. For example, sensor nodes can switch their

radios off when not in use, to save power and can wake up

only when they are needed to operate. These techniques are

not efficient when the IoT devices are exposed as software

components and are deployed in the cloud environment to

be accessible to their users [7].

A. Problem Statement

Our problem is defined in space, including numerous

devices with the ability to connect to the internet and

receive services from a cloud environment. In this

environment, each user's request is sent to the broker layer.

In many cases, fulfilling the user’s request requires

obtaining several clouds services. This scenario is the main

reason of services composition problem [8]. We know that

the services presented by each provider do not necessarily

include all existing services. Because of that, the middle

layer must manage and based on services provided by

every provider, find a collection of providers and clouds

that contains all of the user's requested services. In other

words, this problem is concentrating on establishing a new

value-added cloud service, which uses a previously

existing combination of cloud services [9].

In more formal word interpretation, a web service is a

self-contained, self-describing, and web-accessible

software unit in a more formal statement that is presentable

by the service provider and is recalled by service requests

all over the internet [10]. These days data transfer is

simplified around the world through internet and web-

based services [11]. Cloud computing provides dynamic,

scalable and virtual resources, as services as a web and

Internet-based computing model [12].

While using the virtual sources of the cloud

environment, we should pay attention to the cost that

should be paid for the usage of it. It means that if a user

needs a source for a particular time or continuously in

some time, he does not need to buy it, and he can use it

whenever it is needed and can return it when it is not

needed then it will be available for other users. This

algorithm makes it possible to use the sources not only

with amortized cost but also in a faster way, and we know

that the amortized costs of resources certainly enhance

efficiency. This kind of service giving that is called on-

demand, includes different hardware and software services

[13].

Apart from the type of the provided service for the

user, a cloud computing architecture provided services can

be one of the three models containing: Infrastructure as

Service, Platform as a Service, Software as a Service [14].

IaaS: Cloud infrastructure-based services are self-service

access, monitoring, and remote data centers infrastructure

administration models like calculating, memory, and web

services. In the other term, the user could utilize the virtual

machines instead of purchasing the needed hardware and

only pay the costs of used service, similar to electricity and

other services which are provided widely and everyone

pays the cost according to the using amount.

PaaS: This servicing model provides the software

developing framework for users and helps them through

creating, developing, managing and executing their

applications without struggling with the system software

and hardware's complexities SaaS: In this servicing model,

the presented service is a software, and the user should

apply through the given user interface to connect to the

requested software. Most SaaS applications can be

executed without downloading or installing software and

only by a browser and at most with a plugin.

In many cases, the user's request can be fulfilled with

several resource combinations called service composition.

In (Figure 1) that is gotten from paper [7], places in a

multi-cloud environment are conceptually shown. As we

see, on the costumer layer that is also called the highest

level, the user stands. The smart things in our problem are

users that are in a two-way connection to cloud

environment and request a set of services and receive

A QoS Aware Multi-Cloud Service Composition Algorithm

14

services analogously to give different kinds of services to

the final user namely human. As we see, costumer and

provider are connected within a go-between that is mostly

called the broker layer. The connection part between

request responding space and the user is the given

algorithm. We see in this picture that the algorithm in the

broker layer is settled on top of the pyramid and other

components in the cloud environment we mentioned

before, include other parts.

In our problem, we consider that we have some

services called si. Our problem is difficult, and that is that

each of these services is not accessible by itself. It means

that whenever we need a service si, after finding a

composition plan, by the algorithm that contains our

service, we have to expend for all the services in that

composition plan f; because services are given in multiple

packages (not alone) in the form of composition plan.

Although in a cloud environment, optimality of serving

needs providers giving their composition plans based on

accurate computing and clustering requested services, for

most of these services that are given in a composition plan

be probably required for the user. However, some other

factors like resource proper distribution and hardware

regard sometimes make providers put services together that

besides being an acceptable correlation, be easier and less

expend.

In (Figure 2) that is gotten from paper [8] a view

similar to what has recently been a reference to papers, is

represented. In this picture, we see that each of MCPs

(Multiple Cloud service Providers), has some service

packages. In each package, there are some services, and if

you want to receive any of these services, you should

expend for all the services in the package. In this picture,

each of f’s is equivalent to a composition plan that has

been expressed in (Figure 1) and represented by π.

B. Necessity and Importance of the Research

In the statement of importance and necessity of

investigation of service composition in the cloud, at least

two reasons can be counted. First, the statement of the

relation between the cloud and internet of things is close

and should be investigated and second that the service

composition in the cloud has its difficulties [1].

Increasing growth of cloud application in the

persistence of IoT and boosted several Internet-connected

devices around the world are proved by a thorough look at

global statistics. Based on Gartner prediction, in 2020,

there will be about 20 billion Internet-connected devices

[15].

In [7], defining the best combination of services from

different providers that adjust to user requirements,

environmental expectations, and the broker layer has been

considered as the primary challenge of IoT provision in the

multi-cloud environment because of these reasons: 1. How

should be the function of the middle layer to combine the

various services in a condition that none of them lonely can

satisfy the user's request? 2. Reducing the energy

consumed is one of the most important quality factors of

this problem. Which one of the providers should the

middle layer get the services from, in a way that fewer

clouds and providers are involved and also less data is

transferred?

Service composition is an NP-hard optimization problem

[16]; i.e., It is more complicated than the most complex

problems of NP class, and if it can be solved in polynomial

time, then all of the NP-class problems will be soluble. The

solution to this problem is a challenge because it is not

only service composition but also a combinatorial

optimization [10]. This field still needs to be paid attention

and also needs time to be devoted to, since [17] has pointed

in his research which was conducted in 2017, that there has

not been any systematic and comprehensive analysis on the

service composition problem in the cloud environment

before.

The article attempted to resolve the gap in this field by

expressing anatomy and categorization of limited research

in this case and highlighted key points for improving

methods of service composition.

Fig. 1. A representation of a multi-cloud environment.

Fig. 2. Another representation of MCE.

International Journal of Web Research, Vol. 2, No. 1, Spring-Summer, 2019

15

The article attempted to resolve the gap in this field by

expressing anatomy and categorization of limited research

in this case and highlighted key points for improving

methods of service composition.

C. Article Structure

In this part, we studied the preliminary statement, the

importance, and necessity of research, and the research

goals. In the second part, we will explain the formal form

of the problem. We will list the previous studies, and we

will outline the goals and the positive and negative aspects

of each of them in the third part. In part 4, we will express

our proposed algorithm, and the steps taken in this study.

Also, the challenges and solutions to solve the problem

will be described. Moreover, in the fifth part, we will list

the results of the proposed algorithm. A comparison

between the present and previous methods and providing

solutions to enhance the results of future researches with

some suggestions that consist of the topics discussed in the

last section.

2. PROBLEM STATEMENT

In this section and the next, we are going to describe

the detail of the problem, explaining the definitions, and

presenting the previous studies .Talking about previous

studies will necessarily clarify the need for this study, and

we can find a bright idea for the question "How do you

solve this problem?" by examining the styles and patterns

used in. During the discussion of previous works,

algorithms will be proposed for this problem that they have

the appropriate solution and not necessarily optimal. We

will explain more about the meaning of the keyword

«quality factors» that is mentioned in the abstract part of

the article and will describe the comparison standards of

different methods .Finally, we will explain our approaches

in the next section after clarifying the problem space in

these two sections.

In multi-cloud, various QoS metrics are essential in the

field of service. Time, cost, scalability, optimality, and

efficiency are some of the most important of these. Time is

the length of the waiting period of the user, or we can say

that the distance between sending a user request to the

server until it receives an answer. Scalability represents the

ability to modify and adapt to other variables in the cloud

environment. Price is the total amount charged for

responding to a request. Optimization is to find the best or

most useful combination of service that comes with the

right methods. Efficiency is also a returns rate; how

satisfied is the response to a given amount of time and cost.

The issue that we are discussing, in a multi-cloud

environment has been presented, and several solutions

have been suggested for it. Multi-cloud solutions are

mechanisms that there exist multi-suppliers for providing

clouds [18].

A. Formal Description

In this part, we will explain the names and terms used

in the problem space and also in the algorithm

Definition 1. Web Service: A pair of <I, O> both of which

are service interfaces.

Definition 2. Web Service Composition (WSC): It is a

dual <I, S>, which I is the initial service interface that is

specified in the user request, and S is the set of web

services offered. Assuming that we have a web service

composition problem <I, S> the answer to this issue is f

composition plan. Specifically, f is a set of services: f ⊆ S.

Definition 3. Cloud: A set of f composition plans that are

distinct and formed at least from one service.

Definition 4. Multiple Cloud Provider (MCP): A set of

distinct clouds and each cloud contains at least one

composition plan.

Definition 5. Cloud Web Service Composition problem

(Cloud WSC): The pair is the <I, MCP>, As I indicated to

the service user requests and MCP multi-cloud provider or

simply as suppliers are concerned. The answer is a set of

pairs <service, cloud> similar to W = {<si, cp>, <si, sq>, ...}

to the extent that the conditions are met:

To show the subject and the problem space, we need to

give an example. All of the former algorithms that are

going be mentioned in the next part use this framework and

express and compare their possible results about this

example. Assume that we have a multi-cloud environment

that contains 5 MCPs called MCP1, MCP2, MCP3, MCP4,

and each MCP consists of 4 clouds that are called C1, C2,

C3, C4. Each of these <MCP, Cloud> pairs include some

subset services S = {S1, S2, ..., S19} in the form of

composition plans which are F = {f1, f2, f3, f4, f5}. Each of

these 'f's in the OWLS-XPlan [19] standard project dataset

which under the name Health-SCALLOPS [19][20]

automatically composite services, represents several

services in the Emergency Medical Assistance (EMA).

This explanation of the existential nature of 'f's is found in

the context of the problem of other environments and

become exciting. In (Table 1) [21], the characteristics of

these components can be seen. Each service is provided

only in one of the 'f's and the collection of 'f's results in the

S set as expected. Since the community of each of the four

clouds in each MCP contains all the 'f's and subsequently

includes all services, each MCP can respond to any

combination of 19 services independently.

TABLE 1. MCP SETTING FOR ASSESSMENT.

C4 C3 C2 C1 MCPNo/CNo

f1, f2, f3, f5 f3, f4 f4, f5 f1, f2, f3 MCP1

f1, f4, f5 f2, f5 f3 f1, f2 MCP2

f3, f4 f1, f2 f5 f1, f3, f5 MCP3

f4, f5 f1, f2, f3 f3, f4 f2, f3, f5 MCP4

f1, f4, f5 f3 f2, f3 f1, f2 MCP5

A QoS Aware Multi-Cloud Service Composition Algorithm

16

TABLE 2. THE CLOUD SERVICES IN EACH COMPOSITION PLAN F.

Services Composition Plan

s1, s6 f1

s9, s10, s11 f2

s3, s5, s8, s12, s14, s15, s16, s17 f3

s2, s4, s18 f4

s7, s13, s19 f5

3. PREVIOUS WORK

There have been several methods of combining

multiple services in the cloud computing environment [22]

since 2009, that often assumed that all of the requested

services were accessible from a cloud and that their

concentration was only on the satisfaction of the user's

request and the cost factor was ignored [7]. Studies have

been conducted to enhance the performance of these

methods according to different criteria such as cost,

usefulness, energy consumption, response accuracy, and

security [9] after finding a way to find the combination of

service responses.

One of the most important studies in this area has been

made by [23]. In this research, different quality of service

(QoS) metrics, including accuracy, delay, reliability, cost,

and availability, are analyzed. This review also contains a

detailed categorization based on the different parameters

which are related and dependent on existing techniques

analysis. Based on this, research done by 2013, based on

the techniques used in their studies, it has been divided into

four classical and graph-based classes, machine-based

approaches, combined methods, and framework-based

approaches.

The result of the idea of using the path with the best

QoS and lowest cost is a method to find composite service

in [24] The method is based on the Dijkstra's search path

which assumes that QoS attributes such as duration and

throughput are additive . Based on multi-agent

reinforcement learning [25] has explained a model for the

dynamic optimization of service composition. By using

reinforcement learning algorithms, the agent can interact

with the environment in real time. This article used

distribution to process tasks. Every task consists of some

smaller tasks, each of the agents concentrates on its

corresponding sub-task, and by using this distributed

Q-learning algorithm, the process would converge fast.

Also, in order to permit the composite service to be

dynamically fitted a variable environment, an experience

sharing strategy is suggested. As a result, the features of

the component services may change. The mechanism is

highly scalable and efficient, but its complexity is very

high. Most recent studies concentrate on applying

intelligent optimization algorithms to find the optimal

solution of the nonlinear integer programming problem,

but the low rate of convergence and the high probability of

falling into the local optima are bottlenecks of these

algorithms [26].

In [27], the author also referred to the different

mechanisms of service composition in a single-cloud

environment. Article [28] also assesses different challenges

for example language, tool support, knowledge reuse,

executive framework, and target users, and reviewed some

articles that examined service composition problem from

the perspective of these challenges, but there are still some

difficulties in modeling the problem of service

composition, the analysis of QoS metrics and also open

issues in this area. The review [17] considers all articles

from 2012 to 2016 and provides a complete overview of

the methods suggested for the composition of the service.

All related articles have been extracted from 9 valid and

highly referenced sources in this article by using three

available combination search terms, and only useful and

practical articles from these 942 articles remain. Filtering

articles based on the keywords of the main title of the

articles, deleting conference papers, reviewing and pre-

2012, deleting the articles without sufficient explanation

about the method of work, QoS metrics, and datasets, are

the steps taken in this review and 20 achieved articles is

the result. From the author of this article, the resulting

articles are divided into three, framework-based, agent-

based, and heuristic- based. In each of these categories, 7,

6, and 7 of the 20 selected papers selected for the final

review in [17] included.

In short, we can say that framework-based methods are

less burdened by a weakness such as high calculation time

than other methods and are suitable for usage in various

environments, whether it be single-cloud or multi-cloud.

Agent-based methods have better handling of scale and are

especially suitable for use in a multi-cloud environment. In

contrast, although heuristic-based methods do offer

optimized solutions at a lower cost, they are only suited to

single-cloud environmentsff

After studying over 50 articles on the methods that was

used for service composition in cloud environment, we

arrived at the idea of improving the load balance factor for

the first time and simultaneously, we try to optimize other

QoS metrics in the previous studies, the number of services

examined before responding to users’�requests and number

of clouds involved. Some of the other algorithms

overwhelm one of the clouds and their algorithms aim at

minimizing the number of services examined, send all of

the requests firstly to the provider and cloud that have

more composition plans than others wishing that higher

probability of responding to their demand, While in real-

world conditions and also in simulations which are close to

the fact that many environmental factors are considered

and enforced, this policy is not useful and is the reason of

bottlenecks and long queues, since the number of requests

received is not limited, and they are added daily while our

processing resources are limited. The result of this

prolongation of the queue is not run time merely when the

user receives the service, and also it is when the cloud has

high traffic, and as a result, the user’s request is waiting for
the supplier to respond.

It is entirely predictable that several services only

provide from one of the clouds. This is where the second

dilemma arises for these algorithms; providing a service

International Journal of Web Research, Vol. 2, No. 1, Spring-Summer, 2019

17

only in clouds that provide many services. As an example,

when the hypothetical service S1 in the MCP1 provider is

provided only by C1, in the general look we see that the

users that request to get S1 service, they will regret that

because of two reasons. The first is that the service is

provided by one cloud and doesn't have the capacity to

capture its intended service, and the second one is that the

service provider cloud is a crowded cloud, since the cloud

always enters a long queue of requests, and it makes

serving services like S1 well, much harder and unlikely. In

(Table 3) [29], it is concluded that the debate on the

workload of clouds on this issue has been ignored and few

articles have been published in this area.

[10] is a detailed article that uses three applied

algorithms with straightforward ideas, and each algorithm

concentrates on some of the QoS metrics. All three of the

algorithms of this article, known as the All Cloud, Base

Cloud, and Smart Cloud hybrid algorithms, are non-

distributed and centralized. All the clouds are considered

as an option in the first algorithm, "All Clouds", in a fixed

MCP that combines them to count all possible states and

reports the optimal state. This primitive algorithm that is

the first solution that comes to mind finds a near-optimal

list of 'f's, but the number of clouds in this method is not

optimal at all, and to reach an answer, a large number of

services examined. As a result, the algorithm does not have

enough QoS metrics.

All cloud combination possibilities in increasing order

are enumerated by the Base Cloud algorithm recursively

until an optimal solution is identified. It begins by

analyzing all singleton sets of clouds and stop searching if

the required combination can be found utilizing a single

cloud. Otherwise, it extends its search to cloud sets of size

two, then three to find the required combination. It

produces an optimal composition solution with a few

clouds, even though this method has one of the QoS

metrics, it has a lot of time to run, and a lot of services are

checked in order to get the answer.

Smart cloud is the final algorithm of this article, which

is designed to find an approximate solution. This algorithm

imagines the problem space as a tree form, and by

searching, finds a near-optimal answer that consists of

fewer clouds, but still has a high execution time and is not

cost-effective.

The next article [8] was released in 2015 and presented

COM2 algorithm with better results. This article that gets

its name from the Combinatorial Composition shortcut

suggests a combinatorial optimization algorithm for the

problem which has fewer run time and cloud compositions,

and it is more efficient than the former algorithms. The

latest article in this area [7], published in 2017 that tries to

provide a better servicing with a simple exploratory

algorithm. In this algorithm which is called E2C2 in each

executive loop (as long as the intended user services are

adequately provided), the cloud which has a more

significant number of composition plans f and has not been

TABLE 3. AN OVERVIEW OF SOME SERVICE COMPOSITION

TECHNIQUES AND THEIR MAIN FEATURES.

Algorithm Method Multi-

Cloud?

QoS Load

Balancing

Ant Colony

Optimization

[30] ✓ ✘ ✘

[31] ✘ ✓ ✘

[32] ✘ ✓ ✘

[33][32] ✓ ✓ ✘

[34][33] ✓ ✘ ✓

Bee Colony

Optimization

[35] ✘ ✓ ✘

[36] ✘ ✘ ✘

[37][36] ✘ ✓ ✘

[38] ✘ ✓ ✘

Genetic

Algorithm

[39] ✘ ✓ ✘

[40] ✘ ✓ ✘

[41] ✘ ✓ ✘

[42] ✘ ✓ ✘

Particle Swarm

Optimization

[43] ✘ ✓ ✘

[44] ✘ ✓ ✘

[45] ✘ ✓ ✘

Cuckoo

Optimization

Algorithm

[46] ✓ ✓ ✘

Bat Algorithm [47] ✘ ✓ ✘

Greedy

Algorithm

[30] ✓ ✘ ✘

[48] ✓ ✓ ✘

Hybrid

Algorithm

[49][48] ✘ ✓ ✘

[50] ✘ ✓ ✘

[26] ✘ ✓ ✘

[51] ✘ ✓ ✘

used before is chosen. The algorithm also assumes that in

all MCPs, the clouds are adjusted in a single form in terms

of the number of 'f's and will not be paid for sorting out the

cost. As outlined below and in the comparison table of the

algorithms of this section, before the service is presented

and provides excellent results the algorithm succeeds in

reducing the number of tested services, but this algorithm

uses the assumption of regularity and also its load

balancing is not that good. In the next chapter, it will be

shown that for random inputs that are similar to the

problem's input, this algorithm will distribute bad loads

and cause bottlenecks and slower servicing.

The recent algorithm, which is called E2C2, takes a

simple approach and sends the input request first to a cloud

with a more significant number of composition plans, with

the hope that the cloud will occur with a higher probability

of successful servicing, of course, this algorithm assumes

that clouds have already been arranged based on the

number of their composition plans. This method has good

experimental results compared to previous algorithms

although it is simple and can be implemented quickly, but

it causes the traffic flow of one of the clouds to be

increased and is not careful to the load balancing factor.

4. CLOUD COMBINATION ALGORITHMS

A. TSM Algorithm

Earlier, we discussed the QoS metrics that have been

A QoS Aware Multi-Cloud Service Composition Algorithm

18

discussed in other articles, and in particular, the articles

that are going to be mentioned in the next part and are

directly comparable to our algorithm. Reducing the number

of clouds involved in the process of fulfilling user requests,

the execution time, as well as reducing the number of

services examined before responding to users’ requests in

previous studies. In this study, we intend to set the system's

workload, in addition to enhancing or sustaining the above

factors.

In a situation where the algorithm often leads us to use

a specific cloud and, in a sense, does not program a regular

usage of the clouds, we are faced with a considerable

number of requests at the input of that cloud that is waiting

to be analyzed. Since we assume that the algorithm

produces the most optimized result, then the forming of a

queue at the input and a bottleneck in the system which

will directly impact the request response time and cause

dissatisfaction for the user is not acceptable. We have

implemented a uniform usage of each specific MCP, or in

other words, we have added the factor of load balance to

the factors considered in our problem and have designed

the algorithm in a way that this factor remains in an

approximate uniform state. To measure this factor, we use

the standard deviation index between the number of times

each of the clouds used in a specific MCP. As the number

of clouds is closer, the standard deviation is smaller and

assuming that in the process of receiving and answering

100 requests, if the first cloud is used 70 times, then the

rest of the clouds are not only used 30 times.

The TSM stands for "tree-based similarity measure". In
this algorithm, the components of the problem, which are
MCPs and clouds, are assumed to be roots of a tree which,
at its root, our algorithm lies. For the beginning, we start
with the zero time of the simulation. At first, there is not
any information on the amount and services provided in
each of the clouds or suppliers, and we only assume that the
components of the problem in the tree structure are
applicable. Each MCP node has several children,
corresponds to clouds of the system, and each cloud can
provide several composition plan f. The Data1, ..., Data5
parameter was used to simulate whether each of the 'f's has
existed in the cloud. Each of these parameters is 19-bit
strings, which 19 can be any other number equal to the
number of unique services that were provided in the
problem. Each bi bit of this string for the Dataj parameter
means the presence or absence of the number i service in
the composition plan fj in the specified <cloud, supplier>
pair. The Data parameter which was defined for the
specified <cloud, supplier> pair is aggregation of these five
Datai parameters, and as said earlier, all the 19 parameters
should be all 1 in the MCPs, since each service is at least
included in one of the composition plans and each
composition plan f is shown at least in one of the clouds in
that particular MCP.

The algorithm's methodology is something that the set
of user-requested services are given in the form of a bit
string and is given to the algorithm, or we can say that,
being given to the root of the tree. Based on said MCP, the
request is sent to one of the child's of root, and after the

similarity factor of this input string with the child clouds of
the MCP gets calculated, the cloud and composition plan
with maximum similarity get selected and during a loop,
efficient resources to satisfy the requested services is found.
In the routine of TSM algorithm, the algorithm regularly
calculates the similarity factor of two bit strings and this
method is useful to reduce the cost of the algorithm because
bitwise operations can be run in parallel at the time o(1)
with accessible hardware requirements and Low cost.

1) Initial Launch Phase

The assumptions for the first phase of the simulation

were mentioned in the previous segment. In this section,

the goal is to achieve an understanding of the structure,

quality, and quantity of the services provided in their

environment. Therefore, we do not have optimization in

the presentation of our services; instead, we merely offer

the first random answer that is satisfying to the user. In this

part, user requests are received and routed to a randomly

ordered list of clouds, and each cloud uses all of its

existing 'f's to satisfy the request. The algorithm stops

whenever all requested services satisfied, and the response

returns. That means the system works, user requests are

answered, and we will identify the details of our multi-

cloud environment concurrently. After requesting each sk

request service from a couple of < MCPi, Cj, fp >, all the

services provided to the user in this package get

summarized, resulting in a 19-bit binary number called f,

that we use from some of its services, but the information

of all services provided in this service package in our data

tree can be used. This value initializes one of the Data

parameters of the jth child of an ith child of the root. This

way, during the servicing of the initial phase requests, our

multi-cloud information tree is set up and ready for the

next steps. Our experimental results demonstrate that after

processing about 50 requests, the tree is wholly initialized

and is ready to go to the next phase. In (Figure 3) [1], we

see the pseudocode of the initial phase.

2) Main Phase
 In this phase, for each request, the cloud Ck is selected
by algorithm which its Data variable value is the most
similar factor with the input string, and in the next step, the
composition plan fp that be more similar to the requested
input string and, if necessary, then other composition plans
of Ck will be selected. After the task of the cloud Ck is
completed, the required services parameter is updated, and
the next cloud is selected if the parameter is still opposed to
zero. This approach means maximum similarity
measurement is the heuristic that we have suggested solving
this problem and to find a proper approximate answer.

Although the calculations in this part are just the

calculation of the similarity factor and binary operations,

that both of them have a fixed run time, but in order to

speed up responding to requests and in the case that the

multi-cloud environment has a relative stability and is not

continuously changing, as an example, clouds will not go

up, or the services provided will not change in each <C, f>

pair; in an optional phase during the second phase, the

answer for each input that has a maximum 2 ^ | s | distinct

International Journal of Web Research, Vol. 2, No. 1, Spring-Summer, 2019

19

case can be saved in cache after calculation, because both

the access is fast and it prevents additional calculations.

Whenever a new entry arrives, if the ordered list of optimal

clouds for that specific request was available, the list will

be used otherwise we will pass the similarity measure

phase, and after that, save it in the cache until the same

request arrives. As an example, with the assumptions of

this issue, approximately 512k was the number of storage

space rows per presence/absence of the desired service in

the user's request. In each row, there are five variables per

MCP, and in order to determine the order of the clouds,

each variable needs up to 8 bits. For example, in the

58963rd row of this array, we have four variables and the

value of the second one is "100010011000", it means that

in order to satisfy the request with the byte code of

"0001110011001010011"=58963 requesting the services

with numbers of 1, 2, 5, 7, 10, 11, 14, 15, 16 from the

MCP2, it is necessary to choose the cloud 4="100" first and

then the cloud 2="010" and finally the cloud 3="011".

There is no need to use the cloud of 1 at all. The maximum

memory that is needed in this mode is only 3.75KB. In

(Figure 5) [1], we see the pseudocode of the main phase.

This phase is after the construction of the full

information tree, which stores the properties of the services

provided in each one of the composition plans f,

corresponding to each <mcp, c> pair. In this phase, based

on the provider that is supposed to provide the service, the

request is given to a cloud that has the most similarity to

the requested service based on the data value. This

maximum similarity is a heuristic approach which we have

provided as a means to an approximate solution. Each

service, after being given to an optimized cloud, is

analyzed again and similarity factor of all of f's of the

clouds are calculated with the requested service,

and like the previous section, allocation priority is given to

maximum similarity. When the service is fully provided,

the algorithm will finish. As we have mentioned before, a

simple way to avoid unnecessary calculations in this

method is to use a hidden memory to store the optimized

results for each specific requested service and provider

pair. In the last sentence of the algorithm, this method has

been implemented. The implementation of the calculation

of the similarity factor for choosing the selection priority

of the clouds and the composition plans have been

provided in (Figure 4) [1].

3) Similarity Factor

In this part, multiple simple and propounded similarity

factors which are widely applied are examined. After all

these similarity factors were applied, the number of clouds

used in response to a request and also the number of tested

services before coming to a final result in average and for a

random input was the same, but since primacy of selected

clouds are directly affected by the factors and each of the

factors had a different impact on the third QoS metrics i.e.

load distribution.

All of the tested similarity factors were a combination of

likeness and contrast of input variables, which are byte

codes of requested services and composition plans. How to

combine either of these amounts in conclusion and name

the two byte strings similar or different, was the main

challenge. Our desirable outcome was making a balanced

load distribution than former methods, that was why we

chose similarity factors which brought us equal value to

several likenesses and differences in the two byte strings

measured by "bitwise and" and "bitwise or". With this

calculation formula, it forces a more balanced work-load

on each of the clouds. The similarity factor you see in

(Figure 4) is reducing the number of differences in the two

byte strings from the number of likenesses and for

avoiding negative variable, it is added with a constant

value. Other formulas that we used to calculate this factor

are 1. The inverse of the number of mismatches between

two bit string means "bitwise xor" operator, 2. The number

of similarities between two bit strings means "bitwise and"

operator, 3. Subtractive linear combination of similarities

and differences between two bit strings in which the

difference is multiplied by coefficients 1/4, 1/3, and 1/2;

e.g. (similarities - differences/3); i.e., in this formulas the

“similarities in having 1” is twice, three, or four times
more significanty than “lacking differences.” The final

formula is a subtractive linear combination of similarities

and differences in a two bit string with the difference

having the coefficient 1; i.e. (similarities - differences)

meaning thatbthe significance of “similarity in having 1”
and “lacking difference” is considered the same. In (Figure

4), the pseudocode of similarity measure procedures of

TSM is shown.

To clarify the concept, we have an example here.

Assume that we have these strings: a = "100110000100000

1000" and b = "0001100000000001000" and c =

"1001100001011101001". Both strings 'a' and 'b' have the

value of "1" in the three corresponding positions and have

different values in the two other corresponding positions.

In this case, the number of similarities between 'a' and 'b' is

3-2=1. If both the string 'a' and the assumed string 'c' have

the value of "1" in the five corresponding positions and

have counter-values of "1" and "0" in the four

corresponding positions, the number of the similarity will

be still 5-4=1, i.e., the strings 'b', 'c' have the same (number

of) similarity to the string 'a'. The reason why the worth of

having "1" in the corresponding position was equal with

the worth of not having different numbers is easily

explainable by analyzing the problem. In the previous

example of the given byte numbers 'a', 'b', 'c', it is assumed

that 'a' is a user request and 'b', 'c' are composition plans.

The composition plan 'c' is higher than 'b' in the number of

commons of 'a'; which means, it can provide more of the

services demanded by 'a'. Meanwhile, this composition

plan provides a large number of services that 'a' does not

need to receive. Moreover, these unfunctional services

increase the cost factor |SP| and reduce the efficiency of

the algorithm.

B. A simple huristic SIHU

As we mentioned earlier, there are various heuristics for

A QoS Aware Multi-Cloud Service Composition Algorithm

20

Fig. 3. Pseudocode of the initial phase of TSM.

Fig. 4. Similarity measurement in TSM

for solving service composition problem in multi-cloud

environment, which most of them use simple and common

ideas. If the service provider clouds and MCPs properties

are not variable, simpler ideas can be used. In this section,

we present a simple idea for a quick assignment and

mention simulation results of it.

In this method, the pre-processing phase is first

implemented, so, according to the cloud’s properties and

the provided services in each of them, it forms 4 classes for

input services. At first, requested services are checked and

classified into one of these 4 classes. In the first executive

loop, according to the fact that to which class a received

service belongs (based on the simple 'analyze' algorithm),

it is sent to the cloud corresponding to that class to satisfy

its request. Then, the algorithm continues according to the

E2C2 algorithm. This loop will run until all the requested

services are fulfilled and each time the new cloud with the

most composition plans is chosen.

Our purpose in this method is improving load balancing

in using the clouds, rather than E2C2 algorithm. To get to

International Journal of Web Research, Vol. 2, No. 1, Spring-Summer, 2019

21

Fig. 5. Pseudocode of the main phase of TSM

this goal, we considered a computational section called

pre-process. This section is designed independent to the

properties of provided services in clouds and the clouds of

every provider. For each MCPi provider, a mi1 table will be

created. Each mi1[n,p] entry is a fraction representing the

number of pth category provided services in Cn cloud of the

MCPi provider, divided by total numbers of provided

services in pth category. We will express this method in

details for MCP3 which mentioned its properties in Tables

1 and 2 (Table 4). We have considered s1 to s5 as the first

category, s6 to s10 as the second, s11 to s15 as the third, and

s16 to s19 as the last category.

Since our goal is to achieve a uniform load distribution,

we seek to classify input requests into four categories

(equal to the number of clouds). We give each request to

the cloud that can withstand it with higher probability in

order to improve other qualitative factors too. For this

purpose, according to the values of the mi1 table, we

determine the values of corresponding entries in the mi2

table too. Each entry in the first table is converted to a

number in the rage of 0 to 4 and inserted in the second

table. We have four numbers in each column of the first

table. Each number of 0 is considered 0 in the second table

too. The smallest non-zero number is considered 1, and so

the larger numbers are considered in the same manner.

Below in the (Table 5), we see the second corresponding

table to MCP3.

After doing all these steps for all MCPs, we will have 5

tables that by summing up the values of each

corresponding entry, we will have a summed up 4*4 table.

TABLE 4. PERCENT OF PROVIDED SERVICES IN CLOUDS OF

THE MCP3

s16 - s19 s11 - s15 s6 - s10 s1 - s5

3/4=0.75 4/5=0.8 3/5=0.6 3/5=0.6 C1

1/4=0.25 1/5=0.2 1/5=0.2 0/5=0 C2

0/4=0 1/5=0.2 3/5=0.6 1/5=0.2 C3

3/4=0.75 3/5=0.6 1/5=0.2 4/5=0.8 C4

TABLE 5. SIMPLIFICATION OF TABLE 4

2 3 2 2 C1

1 1 1 0 C2
0 1 2 1 C3
2 2 1 3 C4

A QoS Aware Multi-Cloud Service Composition Algorithm

22

This table indicates how possible it is to satisfy an

appointed service, which most of its requests are from

classes 1 to 4, to correspond class; for each of the clouds in

summation of all the providers. In the assumed example,

the final summed up table is mentioned in (Table 6).

The final processing is done in accordance with the

table above. We must decide what is the optimal

permutation for the clouds from first to fourth categories of

services. We want to find a permutation to satisfy

requested services faster while keeping the load

distribution balanced. to achieve this, first we consider a

random permutation and then we optimize it. Optimizing

the initial response is based on the standard deviation

between numbers of the entries of the table and the sum of

their values. It means that the optimized permutation is the

one that numbers of its entries of the table have larger

values and are closer to each other. For example, if we

choose the yellow highlight with 7, 7, 10, 10 values as the

initialfanswer,uit’susumeofrthekvaluesoisg34aandntheestandardf
deviation is 1.78. And so, for the green highlight with 12,

8, 8, 9 values have 37 as sum, and 1.64 as standard

deviation. The green highlight has a larger sum and less

standard deviation. So, it's a better permutation. According

to this calculation, the optimum permutation is [4, 1, 3, 2]

which means the request that most of its services fall into

the first, second, third and fourth categories are

respectively given to the fourth, first, third and second

clouds in the first running loop, independent of

corresponding MCP.

5. IMPLEMENTATION RESULTS

All algorithms which are defined precisely in

accordance to our problem and were considered in the

previous part applied the problem structure with mentioned

characteristics in chapter 4 in their simulations; for

example, we have 19 services that each exist precisely in

one of the composition plan f1, ..., f5; the problem space

includes five providers that all of them have four clouds

and the composition plans presented is the difference

between every “cloud, provider” pair and the other is in the

composition plans presented in them.

In order to test the way of responding to input requests,

all algorithms mentioned earlier, only used the input string

UR= {S1, S5, S9, S11, S14, S15, S18} and calculated and their

QoS metrics is merely stated based on this input string. But

in this part, the designed algorithm for 1000 random inputs

all having a size of 7 is tested, equal to that of above input,

to demonstrate algorithm's independence from the input

and that generally leads to optimum results. The

experimental results of other algorithms for assumed inputs

are shown in (Table 7) and (Figure 6). We can observe that

for the input request UR= {S1, S5, S9, S11, S14, S15, S18},

fewer clouds have been involved by our proposed

algorithm TSM, and the CC factor is equal or less than that

of other methods, and before coming to the response it has

fewer tested services called SP factor in both of algorithms.

Also, in (Figure 7) [1], a comparison between the

efficiency of algorithms in the first QoS metric, i.e., the

number of involved clouds have been made and clearly

shows the improvement in the TSM algorithms.

 In this paper, for a more reliable comparing and more

accurate analysis, we implemented the E2C2 algorithm

exactly as the corresponding paper. We compare the

produced results obtained in the same conditions with the

TSM and SIHU algorithms. The input of this step of the

simulation is 1000 service requests produced randomly and

the (Table 8) and the (Figure 8) show the independence of

the algorithm from inputs and also the fair load balancing

of our algorithms. In processing and service delivery to

1000 service requests, each been sent to 5 providers, i.e.,

totally 5000 distinct commands, clouds the TSM algorithm

has used one to 4 2692, 3047, 2952, 3621 times

respectively. If we divide them by the number of inputs,

we come to 0.538, 0.609, 0.590, 0.724.

 In this article to measure the optimality of the load

balancing factor in algorithms, we used the standard

deviation factor. The standard deviation of usage of clouds

in TSM is 0.0679. Also, for the E2C2 algorithm which

TABLE 6. SUMMED UP VALUES OF ALL MCP'S CORRESPOND

TABLES

6 12 13 7 C1

8 10 7 8 C2
7 10 10 8 C3

10 9 9 12 C4

TABLE 7. EXPERIMENTAL RESULTS FOR THE MCP
Smart Clouds COM2 QSC_MCD E2C2 TSM SIHU Algorithms

CC SP CC SP CC SP CC SP CC SP CC SP MCPs

C1 C3 70 C4 C2 35 C4 C2 C1 35 C4 C2 35 C1 C2 19 C3 C4 19 MCP1

C1 C2 C4 48 C4 C2 C3 45 C4 C1 C2 27 C4 C1 C2 26 C1 C2 C4 21 C3 C4 C1 27 MCP2

C3 C4 48 C1 C4 C3 50 C1 C4 C3 29 C1 C3 C4 29 C3 C4 16 C3 C1 C4 29 MCP3

C2 C3 140 C1 C3 C2 49 C1 C3 C4 38 C1 C3 C2 38 C3 C4 19 C3 C1 C2 35 MCP4

C1 C2 C4 56 C2 C4 30 C2 C4 19 C4 C2 24 C1 C3 C4 21 C3 C4 C1 21 MCP5

12 362 13 209 148 14 13 152 12 96 14 131 Sum

International Journal of Web Research, Vol. 2, No. 1, Spring-Summer, 2019

23

Fig. 6. Comparison between |SP| of algorithms

Fig. 7. Comparison between |C| of algorithms

Fig. 8. The usage of each of clouds for 1000 random inputs.

implemented accurately, we run the simulation. Clouds

has been used by this algorithm to 4 4773, 3530, 2875,

3773 times respectively. If we divide them by the

number of inputs, we come to 0.95, 0.706, 0.575, 0.755

and the standard deviation of them is 0.1364 that is twice

larger than our algorithm’s as shown in (Figure 9). The

load distribution helps to shorten the entrance queue of

the clouds and prevent the bottleneck. Also, with the

balanced distribution of the workload on the clouds, the

possibility of failure of the clouds becomes less.

6. CONCLUSION AND FUTURE WORK

In this chapter, the results of TSM algorithms and other

algorithms were compared. In case of each of the factors

concerning the number of involved clouds in service

production, the number of inspected services before

responding to request and the workload between the clouds

Fig. 9. Improvement of load balancing for 1000 random inputs.

TABLE 8. QOS METRICS FOR 1000 RANDOM INPUTS

Clouds C1 C2 C3 C4 SUM |SP|

E2C2 3.773 2.875 3.530 4.773 14.971 142.271

TSM 2.692 3.047 2.952 3.621 12.321 100.838

SIHU 3.376 3.021 3.006 3.716 13.119 120.194

of the system, TSM was remarkably enhanced and have

improved 17%, 29%, and 50% respectively, compared to

the best results before. The significance of load balance

in every problem is clear to everyone but in this special

case, the abundance of inputs and the user's expectations

of the system to respond in real time makes it necessary

that the algorithms be defined in a way to avoid

bottlenecks and long ques at the entrance of the cloud.

By this change applied, besides avoidance of early

depreciation of the system and thus one of the clouds

being out of reach, the user's satisfaction will be more.

REFRENCES

[1] Z. Nazari, A. Kamandi, andd M. Shabankhah, “An Optimal
Service Composition Algorithm in Multi-Cloud Environment,”
2019, pp. 141–151.

[2] A. Botta, W. De Donato, V. Persico, and A. Pescapé, “On the
Integration of Cloud Computing and Internet of Things,” in
International Conference on Future Internet of Things and Cloud
(FiCloud), 2014, pp. 23–30.

[3] J. Huang, Y. Meng, X. Gong, Y. Liu, and Q. Duan, “A Novel
Deployment Scheme for�Green Internet of Things,” IEEE
Internet Things J., vol. 1, no. 2, pp. 196–205, Apr. 2014.

A QoS Aware Multi-Cloud Service Composition Algorithm

24

[4] M. Taneja, “A framework for power saving in IoT networks,” in
2014 International Conference on Advances in Computing,
Communications and Informatics (ICACCI), 2014, pp. 369–375.

[5] Z. Abbas, W. Yoon, Z. Abbas, and W. Yoon, “A Survey on
Energy Conserving Mechanisms for the Internet of Things:
Wireless Networking Aspects,” Sensors, vol. 15, no. 10, pp.
24818–24847, Sep. 2015.

[6] J.-M. Liang, J.-J. Chen, H.-H. Cheng, and Y.-C. Tseng, “An
Energy-Efficient Sleep Scheduling With QoS Consideration in
3GPP LTE-Advanced Networks for Internet of Things,” IEEE J.
Emerg. Sel. Top. Circuits Syst., vol. 3, no. 1, pp. 13–22, Mar.
2013.

[7] T. Baker, M. Asim, H. Tawfik, B. Aldawsari, and R.bBuyya, “An
energy-aware service composition algorithm for multiple cloud-
based IoT applications,” J. Netw. Comput. Appl., vol. 89, pp. 96–
108, Jul. 2017.

[8] A. A. F. Heba Kurdi, Abeer Al-Anazi, Carlene Campbell, “A
combinatorial optimization algorithm for multiple cloud service
composition,” Comput. Electr. Eng., vol. 42, pp. 107–113, Feb.
2015.

[9] A. L. Tang M, “A hybrid genetic algorithm for the optimal
constrained web service selection problem in web service
composition,” in Evolutionary Computation (CEC), 2010 IEEE
Congress on, 2010, pp. 1–8.

[10] Y. Zou, G., Chen, Y., Xiang, Y., Huang, R., Xu, “AI Planning
and Combinatorial Optimization for Web Service Composition in
Cloud Computing,” in Annual International Conference on Cloud
Computing and Virtualization, 2010.

[11] A. A. Zahra Pooranian, Mohammad Shojafar, Bahnam Javadi,
“Using imperialist competition algorithm for independent task
scheduling in grid computing,” J. Intell. Fuzzy Syst. vol. 27, no. 1,
pp. 187-199.

[12] A. Bastia, M. Parhi, B. K. Pattanayak, and M. R. Patra, “Service
Composition Using Efficient Multi-agents in Cloud Computing
Environment,” in Intelligent Computing, Communication and
Devices, Springer, 2015, pp. 357–370.

[13] N. J. N. Mehran Ashouraie, “Priority-based task scheduling on
heterogeneous resources in the Expert Cloud,” Kybernetes, Vol.
44 Issue 10, pp.1455-1471, 2015.

[14] S. K. Garg, S. Versteeg, and R. Buyya, “A framework for ranking
of cloud computing services,” Futur. Gener. Comput. Syst., vol.
29, no. 4, pp. 1012–1023, Jun. 2013.

[15] Egham, “N,” Gartner. [Online]. Available:
https://www.gartner.com/newsroom/id/3598917.

[16] M. L. V. Gerardo Canfora, Massimiliano Di Penta, Raffaele
Esposito, “An approach for QoS-aware service composition
based on genetic algorithms,” in Genetic and Evolutionary
Computation Conference, 2005.

[17] A. Vakili and N. J. Navimipour, “Comprehensive and systematic
review of the service composition mechanisms in the cloud
environments,” Journal of Network and Computer Applications,
vol. 81. Academic Press, pp. 24–36, 01-Mar-2017.

[18] D. Ardagna et al., “MODAClouds: A model-driven approach for
the design and execution of applications on multiple Clouds,” in
2012 4th International Workshop on Modeling in Software
Engineering (MISE), 2012, pp. 50–56.

[19] M. Klusch and A. Gerber, “Fast Composition Planning of OWL-
S Services and Application,” in 2006 European Conference on
Web Services (ECOWS’06), 2006, pp. 181–190.

[20] A. Urbieta, A. González-Beltrán, S. Ben Mokhtar, M. Anwar
Hossain, and L. Capra, “Adaptive and Context-Aware Service
Composition for IoT-based Smart Cities.”

[21] S. Bharath Bhushan and C. H. Pradeep Reddy, “A Qos aware
cloud service composition algorithm for geo-distributed multi
cloud domain,” Int. J. Intell. Eng. Syst., vol. 9, no. 4, pp. 147–
156, 2016.

[22] H. Mezni and M. Sellami, “Multi-cloud service composition
using Formal Concept Analysis,” J. Syst. Softw., vol. 134, pp.
138–152, Dec. 2017.

[23] A. Jula, E. Sundararajan, and Z. Othman, “Cloud computing
service composition: A systematic literature review,” Expert Syst.
Appl., vol. 41, no. 8, pp. 3809–3824, 2014.

[24] J.-Z. Luo, J.-Y. Zhou, and Z.-A. Wu, “An adaptive algorithm for
QoS-aware service composition in grid environments,” Serv.
Oriented Comput. Appl., vol. 3, no. 3, pp. 217–226, Sep. 2009.

[25] H. Wang, X. Wang, X. Hu, X. Zhang, and M. Gu, “A multi-agent
reinforcement learning approach to dynamic service
composition,” Inf. Sci. (Ny)., vol. 363, pp. 96–119, Oct. 2016.

[26] J. Zhou and X. Yao, “Multi-objective hybrid artificial bee colony
algorithm enhanced with Lévy flight and self-adaption for cloud
manufacturing service composition,” Appl. Intell., vol. 47, no. 3,
pp. 721–742, Oct. 2017.

[27] S. Asghari and N. J. Navimipour, “Service Composition
Mechanisms in the Multi-Cloud Environments: A Survey,” Int. J.
New Comput. Archit. their Appl., vol. 6, no. 2, pp. 40–48.

[28] A. L. Lemos and F. Daniel, “Web Service Composition: A
Survey of Techniques and Tools,” ACM Comput. Surv. 48, 3,
Artic. 33, 2015.

[29] S. Asghari and N. J. Navimipour, “Nature inspired meta-heuristic
algorithms for solving the service composition problem in the
cloud environments,” Int. J. Commun. Syst., vol. 31, no. 12, p.
e3708, Aug. 2018.

[30] Q. Yu, L. Chen, and B. Li, “Ant colony optimization applied to
web service compositions in cloud computing,” Comput. Electr.
Eng., vol. 41, pp. 18–27, Jan. 2015.

[31] Z. G. Chen, “Research of Cloud Manufacturing Execution Path
Optimization Based on Adaptive Ant Colony Algorithm on
Hadoop Platform,” Appl. Mech. Mater., vol. 628, pp. 417–420,
Sep. 2014.

[32] L. Wang, J. Shen, and J. Luo, “Facilitating an ant colony
algorithm for multi-objective data-intensive service provision,” J.
Comput. Syst. Sci., vol. 81, no. 4, pp. 734–746, Jun. 2015.

[33] L. Wang and J. Shen, “Multi-Phase Ant Colony System for
Multi-Party Data-Intensive Service Provision,” IEEE Trans. Serv.
Comput., vol. 9, no. 2, pp. 264–278, Mar. 2016.

[34] N. J. Navimipour and S. Asghari, “Cloud service composition
using an inverted ant colony optimisation algorithm,” Int. J. Bio-
Inspired Comput., vol. 13, no. 4, p. 257, 2019.

[35] A. Alamri, “Nature-inspired multimedia service composition in a
media cloud-based healthcare environment,” Cluster Comput.,
vol. 19, no. 4, pp. 2251–2260, Dec. 2016.

[36] X. Xu, Z. Liu, Z. Wang, Q. Z. Sheng, J. Yu, and X. Wang, “S-
ABC: A paradigm of service domain-oriented artificial bee
colony algorithms for service selection and composition,” Futur.
Gener. Comput. Syst., vol. 68, pp. 304–319, Mar. 2017.

[37] J. Zhou and X. Yao, “DE-caABC: differential evolution enhanced
context-aware artificial bee colony algorithm for service
composition and optimal selection in cloud manufacturing,” Int.
J. Adv. Manuf. Technol., vol. 90, no. 1–4, pp. 1085–1103, Apr.
2017.

[38] J. Zhouoand X. Yao, “Multi-population parallel self-adaptive
differential artificial bee colony algorithm with application in
large-scale service composition for cloud manufacturing,” Appl.
Soft Comput., vol. 56, pp. 379–397, Jul. 2017.

[39] D. Wang, Y. Yang, and Z� Mi, “A genetic-based approach to web
service composition in geo-distributed cloud environment,”
Comput. Electr. Eng., vol. 43, pp. 129–141, Apr. 2015.

[40] H. Jin, X. Yao, and Y. Chen, “Correlation-aware QoS modeling
and manufacturing cloud service composition,” J. Intell. Manuf.,
vol. 28, no. 8, pp. 1947–1960, Dec. 2017.

[41] Z.-Z. Liu, D.-H. Chu, Z.-P. Jia, J.-Q. Shen, and L. Wang, “Two-
stage approach for reliable dynamic Web service composition,”
Knowledge-Based Syst., vol. 97, pp. 123–143, Apr. 2016.

[42] N. Sasikaladevi and N. Sasikaladevi, “SLA based cloud service
composition using genetic algorithm,” Int. J. Adv. Intell.
Informatics, vol. 2, no. 2, p. 77, Jul. 2016.

[43] S. Wang, Q. Sun, H. Zou, and F. Yang, “Particle Swarm
Optimization with Skyline Operator for Fast Cloud-based Web

International Journal of Web Research, Vol. 2, No. 1, Spring-Summer, 2019

25

Service Composition,” Mob. Networks Appl., vol. 18, no. 1, pp.
116–121, Feb. 2013.

[44] A. Zhang, H. Sun, Z. Tang, and Y. Yuan, “Service composition
based on discrete particle swarm optimization in military
organization cloud cooperation,” J. Syst. Eng. Electron., vol. 27,
no. 3, pp. 590–601, Jun. 2016.

[45] X. Hongzhen, L. Limin, X. Dehua, and L. Yanqin, “Evolution of
service composition based on QoS under the cloud computing
environment,” in 2016 IEEE International Conference of Online
Analysis and Computing Science (ICOACS), 2016, pp. 66–69.

[46] M. Ghobaei-Arani, A. A. Rahmanian, M. S. Aslanpour, and S. E.
Dashti, “CSA-WSC: cuckoo search algorithm for web service
composition in cloud environments,” Soft Comput., vol. 22, no.
24, pp. 8353–8378, Dec. 2018.

[47] B. Xu and Z. Sun, “A fuzzy operator based bat algorithm for
cloud service composition,” Int. J. Wirel. Mob. Comput., vol. 11,
no. 1, p. 42, 2016.

[48] M. Torkashvan and H. Haghighi, “A greedy approach for service
composition,” in 6th International Symposium on
Telecommunications (IST), 2012.

[49] V. Gaur, P. Dhyani, and O. P. Rishi, “A Multi-Objective
Optimization of Cloud Based SLA-Violation Prediction and
Adaptation,” Int. J. Inf. Technol. Comput. Sci., vol. 8, no. 6, pp.
60–65, Jun. 2016.

[50] F. Seghir and A. Khababa, “A hybrid approach using genetic and
fruit fly optimization algorithms for QoS-aware cloud service
composition,” J. Intell. Manuf., vol. 29, no. 8, pp. 1773–1792,
Dec. 2018.

[51] M. S. Azari, A. Bouyer, and N. F. Zadeh, “Service composition
with knowledge of quality in the cloud environment using the
cuckoo optimization and artificial bee colony algorithms,” in
2015 2nd International Conference on Knowledge-Based
Engineering and Innovation (KBEI), 2015, pp. 539–545.

Zahra Nazari received her B.S.

degree in Computer Software

Engineering from Sharif

University of Technology, Tehran,

Iran in 2016 and her M.Sc. degree

in Computer Engineering

(Algorithms and Computation)

from University of Tehran,

Tehran, Iran in 2019. Her research

interests include IoT, Cloud Computing, Graph

Algorithms.

Ali Kamandi received his B.S. and

M.Sc. in Computer Software

Engineering from Sharif University

of Technology, Tehran, Iran; the

Ph.D. in Software Engineering, from

Sharif University of Technology,

Tehran, Iran in 2010. He is an

assistance professor in the

Department of Engineering Science

at University of Tehran. He has published more than 25

papers in various journals and conference proceeding.

His research interests include Data Science, Software

Engineering, eCommerce and Distributed Systems.

Mahmood Shabankhah received

his B.S. in Electrical Engineering

from Amirkabir University of

Technology in 2002, an M.Sc.

(2004) and a Ph.D. (2008) in Pure

Mathematics both from Universit´e

Laval, Canada. Although his main

research interests lie in the field of

Complex Function Theory and operators acting on such

spaces, he is also interested in the fields of Optimization

and Machine Learning and he has published more than

25 papers in various journals and conference proceeding.

In 2012, he joined the Engineering Science Department

at the University of Tehran where he is currently an

Assistant Professor of Mathematics.

