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This study aims at getting a better performance for optimal stock portfolios by modeling 

stocks prices dynamics through a continuous paths Levy process. To this end, the share 

prices are simulated using a multi-dimensional geometric Brownian motion model. 

Then, we use the results to form the optimal portfolio by maximizing the Sharpe ratio 

and comparing the findings with the outputs of the conventional model. To examine the 

robustness of the results, we have evaluated its performance for different investment 

horizons and various volumes of price information over a long period (approximately 

twenty years) in the Tehran Stock Exchange (TSE). Findings indicate that within the 

trading dates spanning the interval 24-Mar-2001 to 19-Sep-2020, the return of the 

portfolios obtained from applying this simulation scheme for maximization of Sharpe 

ratio is (244% on average) higher and their risk (standard deviation) are lower (1227% 

on average) than those realized by the conventional methods. Additionally, a 

comparison of the simulation approach with a performance of the actual market 

portfolios indicates that the Sharpe ratios of the simulation method are higher (0.055% 

on average) than those resulting from the total market performances. The results of the 

stochastic dominance test show that our proposed strategy has a first-order stochastic 

dominance (FSD) over the conventional one and market portfolios, that means at each 

level of cumulative distribution, the Sharpe ratio of our method is higher, and as FSD 

test makes no assumptions about the curvature of investors' utility functions, these 

results do not depend on the degree of risk aversion of investors, and as long as investors 

prefer a higher Sharpe ratio, they would be better off if they follow our proposed 

strategy. 
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1 Introduction 
The optimal portfolio selection theory has always been one of the main 

concerns in financial economics. Two alternatives within this approach are 

AKA modern portfolio theory (Mean-Variance Method) (Markowitz, 1952 & 

1959), and the Sharpe ratio maximization (Sharpe, 1966 & 1994), which 

routinely use raw stock return data to obtain the optimal portfolio. The Sharpe 

ratio maximization fail to notice the stochastic behavior of stock prices that 

was first detected by Bachelor (1900) (Mwamba & Mwambi, 2010). To 

overcome this shortcoming, one can refer to the prominent study Black and 

Scholes (Black & Scholes, 1973), which used Geometric Brownian Motion 

(GBM). In this study, using a Multi-dimensional Geometric Brownian Motion 

(MGBM) process, we first simulate market share prices to include the random 

and non-random behavior of stock prices, then use the results in the mean-

variance and the Sharpe ratio maximization methods. Our method considers 

the covariance of each share price with the other market shares and allows us 

to study the stock prices as the ever-positive variables. 

The mean-variance method would offer numerous portfolios at any time, 

ranging from risk-free to maximum risk portfolios. As a result, a single 

portfolio is not necessarily determined as the optimal one. Thus, one needs a 

criterion to single out among many. The Sharpe ratio, defined as the excess 

return relative to a risk-free asset per unit of risk, is a conventional criterion 

for choosing the optimal stocks portfolio. Where this ratio is maximum, we 

will have only one portfolio. So, we consider the Sharpe ratio as the criterion 

for selecting the optimal portfolio. Though market researchers and analysts 

have tried many alternative models to investigate the performance of stock 

portfolios, the Sharpe ratio is still one of the most popular ratios in ranking 

portfolios (Kourtis, 2016). So, in this paper, we focus on the Sharpe ratio. 

To our best knowledge, this way of approaching the issue is new. One of 

the approaches similar to our work is Merton's portfolio model (Merton, 

1971), which selects the optimal intertemporal portfolio of stock(s) and bond 

(as a riskless asset) by maximizing the expected utility. This model usually 

uses a GBM or MGBM to simulate risky assets (stocks). (Weiner, 2004; 

Lakner & Ma Nygren, 2006; Chellathurai & Draviam, 2007; Back, 2010; 

Buckley, Brown & Marshall, 2012; Castellano & Cerqueti, 2012; Tourin & 

Yan, 2013; Pun & Wong, 2016; Biagini & Pınar, 2017; Mariani, Recchioni & 

Ciommi, 2019;). 

Another group of studies on the Markowitz mean-variance problem uses 

the GBM to simulate stock prices (Xie, 2009; Muteba Mwamba & Suteni, 
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2010; Spinu, 2015; Abensur, Moreira & De Faria, 2020). The other group uses 

MGBM to model stock prices. But in the numerical solution of the model, 

they use one stock that converts the model to GBM (Xie, Li & Wang, 2008; 

Zeng & Li 2011; Wei & Wang, 2017). Yunita et al. (2015) does the same thing 

but uses three stocks in the model simulation. Pedersen and Peskir (2017) 

study the dynamics of a nonlinear mean-variance optimal control problem that 

uses the MGBM model to model risky stock prices. Dmitrašinović and Ware 

(2006) and Gambrah and Pirvu (2014) tried to improve the performance of 

portfolios focusing only on different risk measures. In their models, share 

prices follow MGBM, too. Chen et al. (2021) focus on the shortcoming of the 

mean-variance model, predicts stocks prices by a hybrid model based on 

machine learning, then selects stocks with higher potential returns for mean-

variance portfolio optimization.  

The rest of the paper has been structured as follows: Section 2 provides a 

brief overview of the pursued methodology and its background. Section 3 

outlines the employed data and major characteristics of the TSE. Section 4 

presents the results and their distinct features. Section 5 concludes. 

2 The Methodology & Background  
The optimal stock portfolio detection regularly involves using equity data in 

its raw format (Kim, Kim & Fabozzi, 2015). Instead, this paper offers a 

simulation of share prices by the MGBM process and then uses the results to 

obtain the Sharpe-ratio maximizing portfolio. Next, the resulting portfolio will 

be compared with those from the conventional method.  

2.1 Multi-dimensional Geometric Brownian Motion 
To simulate the price of market shares, we use multi-dimensional geometric 

Brownian motion, in which case the correlation between the returns of all 

shares is considered in the simulation. For this purpose, we consider the 

following stochastic differential equations system 

𝑑𝑋𝑡 = 𝜇𝑡𝑋𝑡𝑑𝑡 + 𝐴(𝑋𝑡)Σ𝑡𝑑𝐵𝑡  (1) 

Where 𝑑𝑋𝑡, 𝜇𝑡, 𝑋𝑡, 𝐴(𝑋𝑡), Σ𝑡 and 𝐵𝑡 are respectively 𝑛 × 1 vector of the 

differential processes, 𝑛 × 𝑛 matrix of expected returns (the drift parameter), 

𝑛 × 1 state vector of the random process variables, a square matrix of order 𝑛 

whose primary diagonal values are the same as the elements of the 𝑋𝑡 and the 

other values are zero, a square matrix of order 𝑛 that the primary diagonal 

values are standard deviation of the random variables and other off-diagonal 
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elements represent the covariance between the variables, and 𝑛 × 1 vector of 

one-dimensional independent Brownian motion. To solve the system (1), we 

need Ito's formula. For simplicity, we show the solution of one process; other 

processes follow the same approach. 

2.2 Ito's Formula 
If 𝑋𝑖𝑡 is an Ito process such that 𝑑𝑋𝑖𝑡 = 𝜇𝑖𝑋𝑖𝑡𝑑𝑡 + 𝑋𝑖𝑡 ∑ 𝜎𝑖𝑗𝑑𝐵𝑗𝑡

𝑛
𝑗=1  and 

𝑓: 𝑅2 → 𝑅 is a twice continuously differentiable function, then 𝑌𝑖𝑡 = 𝑓(𝑋𝑖𝑡) 

is also an Ito process, and we have 

 

𝑑𝑌𝑖𝑡 = 𝑓𝑥(𝑋𝑖𝑡)𝑑𝑋𝑖𝑡 +
1

2
𝑓𝑥𝑥(𝑋𝑖𝑡)(𝑑𝑋𝑖𝑡)2      (2)  

 

If 𝑌𝑖𝑡 = 𝑙𝑛 𝑋𝑖𝑡, using the stochastic differential equations system (1) and Ito's 

formula for 𝑖 ∈ [1, 𝑛] we have 

 

𝑋𝑖𝑡 = 𝑋𝑖0𝑒𝑥𝑝 [(𝜇𝑖 −
1

2
∑ 𝜎𝑖𝑗

2𝑛
𝑗=1 ) 𝑡 + ∑ 𝜎𝑖𝑗𝐵𝑗𝑡

𝑛
𝑗=1 ]               (3) 

 

Equation (3) defines 𝑋𝑖𝑡  as a geometric Brownian motion process (Duffie, 

2001) (Glasserman, 2013). 

2.3 Portfolio Optimization 
This section explains how an investor builds the optimal stock portfolio by 

maximizing the Sharpe ratio. To form the Sharpe ratio problem, we use Back 

(2010) assumptions and settings: Our market is composed of n  stocks (risky 

assets)1 , 𝑟𝑖 is the return on stock 𝑖 at time 𝑡 and �̅� > 0  represents the return 

on riskless asset. 𝑅, 𝐸[𝑅], Σ and 𝐼 are respectively n-dimensional vector with 

𝑟𝑖  as its 𝑖th element, vector of the expected returns, 𝑛 × 𝑛 nonsingular 

covariance matrix, and n-dimensional column vector of ones. Since Σ is  

nonsingular, all possible portfolios are risky. 𝜔′𝑅 is the portfolio's return, 

where 𝜔 is the portfolio's vector of assets' weights. 𝜔′𝜇 and 𝜔′Σ𝜔 are 

respectively mean and variance of the portfolio's return. 

We further assume 𝐼′𝜔 = 1 which guarantees that the portfolio consists of 

only risky assets. In addition, we assume that we have a possible portfolio 𝜔∗ 

                                                                                                                             
1 These risky assets are in fact the stocks and risk-free asset is bank deposits. 
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such that 𝜇𝜔∗ > �̅� (Back, 2010).1 To obtain the maximum Sharpe ratio at time 

t, we solve the following problem: 

𝑚𝑎𝑥       
𝜔𝑇𝜇−�̅�

√𝜔′𝛴𝜔
 

   (4) 

𝑠. 𝑡.          𝐼′𝜔 =  1 
                𝜇′𝜔∗ > �̅� 
     The numerator and denominator of the function represent the average 

portfolio return (above the return on the risk-free asset) and the standard 

deviation of the portfolio’s returns, respectively. We consider the standard 

deviation of the portfolio’s return as a measure of risk. This ratio indicates the 

rate of return on the portfolio per unit of risk, so the higher the ratio, the better 

the portfolio performance (Kourtis, 2016). 

To solve the problem (4), we use the constrained quadratic programming 

method, which is a subset of the nonlinear programming method. The 

quadratic programming method minimizes the objective function, so it is 

necessary to first turn the Sharpe ratio maximization problem into the 

following minimization problem.2 

𝑚𝑖𝑛      𝛾′𝛴𝛾 (5) 

s. t.     +Hγ   ,,0    

𝑠. 𝑡.        𝜏 > 0, (𝛾, 𝜏) ∈  𝐻+ 
              (𝜇 − �̅�𝐼)′𝛾 =  1 

Where,  𝜏 =  
1

(𝜇−�̅�𝐼)′𝜔
  and 𝛾 = 𝜏𝜔 (Cornuejols & Tütüncü, 2006). 

3 The Data 
All available data on the price of active symbols in the Tehran Stock Exchange 

within the trading dates spanning the interval 24-Mar-2001 to 19-Sep-2020 

were used to conduct the study. Some symbols, such as mutual funds and 

government securities, were removed from the analysis due to differences in 

risk and return from other symbols. Some other symbols that cannot be 

invested in, such as market indicators and test symbols, were removed from 

                                                                                                                             
1 To solve the Sharpe ratio maximization problem with a convex quadratic programming 

problem, we need these two assumptions. 
2 Proof of it and the quadratic programming method to solve this problem are available upon 

request from the authors. 
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the list. After this refinement, 808 symbols remained. In addition, some 

companies have old and new symbols, which increases the number of symbols 

compared to the actual number of active companies. The method used in this 

research, which is described in the missing data section, will lead to the use of 

the original data and the removal of additional symbols.1 

There are missing data in the time series of stock prices due to two main 

ins and outs. First, the period under study from 24-Mar-2001 onwards is 

considered the longest period available, and many companies have been listed 

in the capital market after this date. Thus there is no data before their arrival 

time. Second, sometimes corporate symbols are temporarily closed during 

their operation for various reasons, including holding extraordinary general 

meetings for taking key decisions. 

There are several ways to manage missing data, including removing or 

estimating data. In the removal method, at each time, if the prices of all shares 

are available, we preserve data. Using this method causes a large amount of 

lost information and extracts an unrealistic portfolio. Another common 

method is to estimate the mean and covariance of stock returns in terms of 

missing data. This method is based on two strong assumptions. According to 

the first assumption, each observation is generated based on a multivariate 

normal distribution, and according to the second assumption, the data are lost 

randomly. We should use this method when it is not possible to estimate the 

mean and covariance of stock returns, and it is necessary to test the above 

assumptions beforehand. We employ another method that allows the 

estimation of mean and covariance; thus, do not need to utilize the estimation 

method. 

Since we are looking to evaluate the model's predictive power, we assume 

that the investor stands at the beginning of period t and wants to use the 

information of the last L days to obtain an optimal portfolio, then buy these 

shares at period t. As a result, the investor's criterion is the availability of price 

data for the shares in a significant number of last L days as well as at the 

beginning of period (t). Shares that have lost more than 25 percent of their 

observations in the last L days or are not available at time t (have missing data) 

will be removed from the list. For each share, initially, we fill missing prices 

with the previous non-missing value, then with the next non-missing value. 

Using this method, we consider zero returns for trading suspensions that 

correspond to reality. In this way, we will not have two issues of other 

                                                                                                                             
1 More details about the data set, its characteristics and the list of symbols are available upon 

request from the authors. 
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methods, i.e., losing information and estimation of unrealistic mean and 

covariance. There are five price data per share (open, last, close, highest, and 

lowest). Because the closing price determines the return on a stock at the end 

of the trading day, and over a period, we use the closing price as the criterion 

for calculating the return. Given the number of available periods is 4240 

trading days for 19.5 years, on average, every 18 trading days is considered a 

month. The investor's strategy can be summarized as follows: the investor uses 

the price data of, say, the last 216 market days (one calendar year) to estimate 

and purchase an optimal stock portfolio and holds the purchased shares for 18 

market days (1 calendar month), then at the end of the month, again uses the 

price data of the previous year to estimate and purchase the portfolio and 

repeats this process until the last period.  

We assume that at the beginning of each period, investors sell the previous 

portfolio and purchase a new one, so to calculate the profit of each method, 

the stock trading commission will be deducted from it. Before the 

implementation of the new law on July 22, 2020, the transaction fee was equal 

to 1.43 percent, and after that, it was reduced to 1.25 percent. 

In general, considering the securities market investing strategies, there are 

two common approaches. The first one is the buy-and-hold approach, in which 

the portfolio is purchased at the beginning of the investment period and upheld 

until the end. In the second approach, the portfolio is purchased and invested 

for a certain period, and at the end of the period, a new portfolio is constructed 

for investment in the next period. In our method, which exploits the second 

approach, we use the information of L previous days at 𝑡 = 𝑠. 𝑠 + 𝑓. 𝑠 +
2𝑓. ⋯ . 𝑇 (witch 𝑡 = 𝑠 is the beginning of first investment horizon and f is the 

length of each investment period) while in the buy and hold approach, we only 

use the available information of L previous days at the time 𝑡 =  𝑠 (beginning 

of investment horizon). So, the great difference and importance of our 

assumption compared to the other one is that at the end of the previous 

investment period (and the beginning of the next period), new information (the 

previous day) is used to construct the optimal portfolio. 

One of the key variables is the risk-free interest rate, for which we consider 

the annual interest rate on the one-year investment deposits in the banking 

system. We got the data from the Central Bank of Iran. Then we convert this 

rate to the daily rate using the following formula: 
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1
100

1

216/1








 AR
+=DR

  (6) 

AR  and DR  are the annual and daily interest rates on the investment 

deposits, respectively. Moreover, we have 216 trading days a year. 

4 Empirical Results 
As mentioned earlier, the conventional method of extracting the optimal stock 

portfolio uses raw price data to estimate the mean and covariance of returns, 

estimate the efficient boundary, and maximize the Sharpe ratio. This study 

proposes to simulate the stock price data using an MBGM model, then we 

utilize the simulated data to determine the optimal portfolio through the 

Sharpe ratio maximization. To evaluate the performance of this method 

compared to the conventional method, the predictive power of the two 

methods in terms of mean and variance has been compared with each other. 

the method of this paper (using the simulated data) and the ordinary method 

(using the raw data) hereafter referred to the simulation method and is called 

the conventional method respectively. 

4.1 Comparing the Efficient Frontier of the Two Methods 
To clarify the results of the two methods, Figure (1) plots the efficient frontier 

of the conventional method (with black mesh lines) and the simulation method 

(without black mesh lines) for about 18 years (from December 2002 to 

September 2020) at 18-days intervals.1 The outputs are based on the investors' 

beginning-period price information set for the last 378 days. Also, the results 

reflect one implementation of the method at each period. We have ended up 

with 20 optimal investment portfolios for each method at any run.  

                                                                                                                             
1 Note that for greater clarity these charts are provided for a random lot only. See Appendix for 

the efficient boundary of the two methods separately. 
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Figure 1. Mean-Variance Efficient Frontier of Conventional Method (with Black 

Mesh Lines) and Simulation Method (without Black Mesh Lines) for 18-Year Period 

(December 2002 to September 2020) at 1-Month Intervals (18 Trading Days). 

Source: Research findings 

Figure (2) shows a bivariate histogram of conventional (green) and 

simulation (blue) methods.1 This diagram illustrates the frequency of efficient 

frontier points. That is, we have looked into 18 years (from December 2002 

to September 2020) with one-month intervals (18 trading days), and at the 

beginning of each period, price information of the last 378 days has been used. 

Each period took account of 200 optimal portfolios. Overall, we kept in check 

43,000 optimal portfolios for each method. 

                                                                                                                             
1 See Appendix to view the histogram of the two methods separately. 
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Figure 2. Bivariate Histogram of Conventional (Green) and Simulation (Blue) 

Methods for 18-Year Period (December 2002 to September 2020) at 1-Month 

Intervals (18 Trading Days). 

Source: Research findings 

4.2 Comparing Performance of the Two Methods and the Actual 

Market Portfolio 
To evaluate the performance of the two methods, we assume that the investor 

stands at the beginning of time 𝑡 and, using price information of last 𝐿 days, 

extracts two optimal portfolios by conventional and simulation methods. 

Then, the investor buys these portfolios and keeps them for the next 𝑓 days. 

On the day 𝑡 + 𝑓, we survey the performance of these portfolios. In the next 

period, which is the beginning of the 𝑡 + 𝑓, again, it re-extracts the optimal 

portfolio using price information of last 𝐿 days and keeps it for next 𝑓 days, 

and at the end, we survey the performance of these portfolios. It is repeated 

until the last possible period. Here, to show the robustness of the results, we 

report the model outputs for different values of 𝐿 and 𝑓. For this purpose, we 

chose three values, 54 days (3 months), 108 days (6 months) and 216 days (1 

year) for 𝑓 and three values, 540 days (2.5 years), 1080 days (5 years) and 

2160 days (10 years) for 𝐿. 
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First, we consider 𝑓 equal to 216 market days (1 calendar year) and report 

the results of the two methods for different values of 𝐿. Since the simulation 

method is based on multi-dimensional geometric Brownian motion, a vector 

of random variables is generated to produce the Brownian motion vector in 

each simulation, so the simulation results depend on the generated random 

vector. For this reason, to evaluate the robustness of the results, for each 𝐿 and 

𝑓, we simulated 1000 times the stock prices by the multi-dimensional 

geometric Brownian motion method then extracted the optimal stock portfolio 

using Sharpe ratio maximization. 

In addition to these two methods, we examine the performance of the 

market. The weight of each symbol in the market portfolio is the market 

capitalization of each symbol to the total market capitalization of the whole 

market (808 symbols studied).1 We assume that the investor obtains the 

average weights of last 𝐿 and 𝑓 days as well as the weights of the investment 

day to constitute the market portfolio and buys these three portfolios at the 

time 𝑡 and maintains them for next 𝑓 days, and this process will be repeated 

until the last possible period. In this way, the performance of the market 

portfolios can be obtained, which is the outcome of the activity of the whole 

market. 

Table 1 reports the investment results of two methods and portfolios 

offered by the market. For different values L , the sum of the portfolios' 

returns of the simulation method is significantly higher than the conventional 

method (results of the simulation methods are the average of 1000 times 

simulations). Also, the sum of the standard deviation of the portfolios' returns 

of the simulation method for different values L  is less than the conventional 

method, which means investing with the simulation method is less risky. The 

best result of the conventional method in terms of return is 30% for L=1080 

and the simulation method 185% for L=2160. In addition, the best result of 

the conventional method in terms of the sum of standard deviation is 3957% 

for L=1080 and the simulation method 2310% for L=2160.  

Also, the average Sharpe ratios2 of the simulation method for all L values 

are higher than the Sharpe ratios of other methods and the market portfolios, 

which shows that, on average, the simulation method is superior to the 

                                                                                                                             
1 We define the market capitalization of a company as the total company’s outstanding shares 

times the current close price of a single share. 
2 To derive this criterion, first, in each f-days investment period we have calculated the optimal 

portfolio’s Sharpe ratio, then, the average ratio of all periods has been obtained. Using this 

method, we have only one Sharpe ratio for the conventional method, but 1000 ratios for the 

simulation method. The tables show the latter’s average.  
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conventional method and the market portfolios in terms of return per unit of 

risk. According to Sharpe ratio, the best performance of the conventional 

method is 0.0108 for L=2160, the best performance of the simulation method 

is 0.0557 for L=2160 and the best performance of market portfolios is 0.0446. 

To evaluate the performance of conventional and simulation methods in all 

investment periods, the number of periods in which the Sharpe ratio of the 

simulation method has been higher than the conventional method is reported 

as a percentage of the total number of investment periods in Table I. This 

percentage is always more than 68% for different values L , which means the 

Sharpe ratio of the simulation method is better than the conventional method. 

Table 1 

Performance of the Two Methods for f=216 
Last 𝑳 days used to form the portfolio 540 

(2.5 years) 

1080 

(5 years) 

2160 

(10 years) 

Sum of the portfolios' returns (%) 

the Conventional method -209.98 30.31 3.4 

the Simulation method – average of 1000 times 

simulations 
30.39 165.81 185.95 

Sum of standard deviation of the portfolios' returns (%) 

the Conventional method 4757.4 3957.5 4238.4 

the Simulation method – average of 1000 times 

simulations 
3645.6 2949.1 2310.4 

Sharpe ratios 

the Conventional method -0.0371 -0.0123 0.0108 

the Simulation method – average of 1000 times 
simulations 

0.0105 0.0244 0.0557 

The Market portfolio – using last 𝐿 Days info. -0.0307 0.0072 0.0446 

The Market portfolio – using last 𝑓 Days info. -0.0354 -0.0004 0.0189 

The Market portfolio – using investment day info. -0.0324 0.011 0.0216 

Outperformed periods for the simulation method (%) 68.47 72.83 71.91 

Source: Research findings 

Figure (3) compares the simulation results of MGBM and the conventional 

methods for all 1000 simulation trials and F=216. In all 1000 times 

simulations, the sum of portfolios' returns, the sum of standard deviations, and 

the average of Sharpe ratios of the simulation method are more, less, and more 

than the conventional method, respectively, which indicates the superiority of 

the simulation method over the conventional method. In addition, in each 

simulation, the number of periods that the simulation method outperformed 

based on Sharpe ratios is shown as a percentage of the total investment 

periods, which is 998 out of 1000 simulation periods, this measure is above 

50%, which indicates The simulation method is more efficient than the 
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conventional method. The simulation method also outperforms the other Ls 

and fs.1 

 

Figure 3. The Performance of Simulation (MGBM) and Conventional Methods for 

All 1000 Simulation Trials, L=540 and f=216. 

Source: Research findings 

Table 2 reports the results for 108=f  and different values of L . 

According to these results, the sum of portfolios' returns and the sum of 

standard deviation of portfolios' returns of the simulation method are 

respectively more and less than those of the conventional method. The best 

result in terms of returns for the conventional method is 19.4% with L=2160 

and the simulation method (on average) is 298.5% with L=2160. Moreover, 

the best result in terms of standard deviation for the conventional method is 

4108% with L=2160 and the simulation method (on average) 2404% with 

L=2160. Based on the Sharpe ratio, the simulation method performed better 

in all cases, and the best Sharpe ratio for the conventional and simulation 

methods are 0.0308 and 0.0898 for L=2160, and for the market portfolio, it is 

0.076. Also, the percentage of periods for which the simulation method has 

                                                                                                                             
1 See Appendix for detailed simulations results for other Ls and fs. 
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performed better in terms of Sharpe ratio for all values is above 70%. This 

outperformance is best achieved for L=2160 in 75% of periods. 

Table 2 

Performance of the Two Methods for f=108 
Last 𝑳 days used to form the portfolio  540 

(2.5 years) 

1080 

(5 years) 

2160 

(10 years) 

Sum of the portfolios' returns (%) 

the Conventional method -22.32 6.25 19.48 

the Simulation method – average of 1000 times 

simulations 
238.69 271.5 298.58 

Sum of standard deviation of the portfolios' returns (%) 

the Conventional method 4880.8 3359 4108.5 

the Simulation method – average of 1000 times 

simulations 
3709.9 3015.2 2404.6 

Sharpe ratios 

the Conventional method -0.0102 -0.0123 0.0308 

the Simulation method – average of 1000 times 

simulations 
0.0476 0.0557 0.0898 

The Market portfolio – using last 𝐿 Days info. 0.0019 0.0347 0.076 

The Market portfolio – using last 𝑓 Days info. 0.0033 0.0331 0.0511 

The Market portfolio – using investment day info. 0.0063 0.0368 0.051 

Outperformed periods for the simulation method (%) 70.49 75.12 71.02 

Source: Research findings 

Table 3 reports the performance of the two methods for f=54 and different 

values of L. Sum of portfolios' returns, the sum of standard deviation of 

portfolios' returns, and the Sharpe ratios of the simulation method are 

respectively more, less, and more than those of the conventional method. In 

addition, with increasing the last days' data to estimate the portfolio, the sum 

of returns and the sum of standard deviation in both methods increased and 

decreased, respectively. The best efficiency for the conventional method is the 

total return of 45% with L=2160 and for the simulation method 290% with 

L=2160. Furthermore, the best result in terms of standard deviation for the 

conventional method is 3688% with and for the simulation method, 2297% 

with L=2160. The best Sharpe ratio for the conventional method is 0.0458 

with L=216, for the simulation method 0.0921 with L=2160, and for the 

market portfolio, it is 0.0595. Sharpe ratio of the simulation method is superior 

in all cases. 
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Table 3 

The Performance of the Two Methods for f=54 

Last 𝑳 days used to form the portfolio  540 

(2.5 years) 

1080 

(5 years) 

2160 

(10 years) 

Sum of the portfolios' returns (%) 

the Conventional method -82.87 -16.2 45.15 

the Simulation method – average of 1000 times 

simulations 
237.28 254.91 290.48 

Sum of standard deviation of the portfolios' returns (%) 

the Conventional method 4439.44 4222.57 3688.17 

the Simulation method – average of 1000 times 

simulations 
3420.96 2852.91 2297.1 

Sharpe ratios 

the Conventional method -0.005 0.0065 0.0458 

the Simulation method – average of 1000 times 
simulations 

0.0688 0.0669 0.0921 

The Market portfolio – using last 𝐿 Days info. -0.0079 0.0178 0.0595 

The Market portfolio – using last 𝑓 Days info. -0.0016 0.0288 0.0422 

The Market portfolio – using investment day info. -0.0013 0.0278 0.0387 

Outperformed periods for the simulation method 
(%) 

63.64 63.8 59.29 

Source: Research findings 

To study the difference between the two methods over time in terms of 

returns' mean, risk, and Sharpe ratio, we obtained optimization results for 

L=540 andf=18. The selection of these two numbers makes it possible to 

evaluate the performance of the two methods with monthly accuracy in a long-

term period. For this purpose, we first calculate the difference in returns of the 

two methods in each one month (returns of the simulation method minus 

returns of the conventional method), then accumulate these differences.1 Thus, 

the more this measure increases over time that indicates the greater the 

advantage of the simulation method over the conventional method. As 

presented in Figure (4), in 205 months (from October 2003 to September 

2020), this measure has always been positive, which indicates the advantage 

of the simulation method over the conventional method. In addition, this 

criterion has had an upward trend despite various fluctuations throughout the 

period, which indicates an increase in the advantage of the simulation method. 

                                                                                                                             
1 In other words, the accumulated return per month is equal to the sum of the returns of all 

months up to the month under review, which includes the month under review. Considering 

that 1000 times simulation has been done for the simulation method in each 18-days period, for 

each period the average return of this 1000 times has been calculated as the return of the 

simulation method. 
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Figure 4. Accumulation of the Difference between the Returns of Simulation Method 

and Conventional Method (October 2003 - September 2020). 

Source: Research findings 

We have taken the same approach to compare the two methods in terms of 

standard deviation L=540 and f=18. We have accumulated differences in the 

standard deviations of the two methods.1 The more this measure decreases 

over time, the greater the advantage of the simulation method over the 

conventional one in terms of standard deviation (risk). As presented in Figure 

(5), from October 2003 to September 2020, the criterion is always negative, 

which shows the advantage of the simulation method over the conventional 

one. Moreover, from October 2003 to April 2013, this criterion has always 

had a downward trend, which shows an increase in the advantage of the 

simulation method. Although, from April 2013 to September 2020, this 

criterion has had an upward trend but remained negative, which indicates the 

persistence of the simulation method outperformance during the entire study 

period. 

                                                                                                                             
1 Considering that 1000 runs have been made for the simulation method in each 18-days period, 

for each period the average standard deviation of these 1000 times has been calculated as the 

standard deviation of the simulation method. 

 [
 D

O
I:

 1
0.

52
54

7/
jm

e.
16

.2
.2

53
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 jm
e.

m
br

i.a
c.

ir
 o

n 
20

22
-0

3-
13

 ]
 

                            16 / 30

http://dx.doi.org/10.52547/jme.16.2.253
http://jme.mbri.ac.ir/article-1-555-en.html


Kashani and Mohebimajd / Outperformance Testing of a Dynamic Assets Portfolio … 269 

 

Figure 5. Accumulation of the Difference between the Standard Deviation of 

Simulation Method and Conventional Method (October 2003 - September 2020). 

Source: Research findings 

Figure (6) plots the performance of two methods in terms of accumulated 

differences in Sharpe ratios during the same period and the previous 

assessments. Enhancement of this criterion over time indicates an increase in 

the advantage of the simulation method based on both returns and standard 

deviation (Risk) criteria. As Fig. 6 reports, from October 2003 to September 

2020, this criterion has always been positive, showing the simulation method's 

advantage during the entire study period. In addition, despite the various 

fluctuations, this criterion has always had an upward trend, which indicates an 

increase in the advantage of the simulation method over the conventional 

method in terms of the Sharpe ratio during the period under review. 
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Figure 6. Accumulation of the Difference between the Sharpe Ratios of Simulation 

Method and Conventional Method (October 2003 - September 2020). 

Source: Research findings 

To evaluate our results statistically, we use the stochastic dominance test. 

Accordingly, we work out the empirical cumulative distribution functions 

(CDFs) for Sharpe ratios derived from the simulation method and 

conventional one. First, we test the first-order stochastic dominance (FSD), 

and if the test statistic rejects the FSD, we examine the second-order stochastic 

dominance (SSD). To this end, we apply the nonparametric McFadden (1989) 

test (McFadden, 1989). This test assumes that two independent random 

variables of size N are distributed between zero and one. The null hypothesis 

for the first-order stochastic dominance test is: 

XxFFH  210 :  (7) 

Where 𝐹𝑖 is the cumulative distribution function of variable 𝑖. The H0 

hypothesis means that series 1 first-order stochastically dominates series 2 

when the CDF of the first series is completely on the right side of the second 

series CDF. The first-order stochastic dominance test assumes that the 

investor's utility function is a monotone increasing function and does not make 

further assumptions. So, no assumptions are made about the curvature of the 

investors' utility functions in this case. Because the curvature of the utility 
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function determines the degree of risk-aversion, FSD results do not depend on 

the degree of risk aversion of investors. 

The variable 𝑥1 second-order stochastically dominates the variable 𝑥2, if 

the following condition holds for all 𝑥 ∈ ℝ 

∫ 𝐹1(𝑡)𝑑𝑡 ≤
𝑥

−∞ ∫ 𝐹2(𝑡)𝑑𝑡
𝑥

−∞
 (8)  

where only part of the cumulative distribution of the variable 𝑥1 is the right 

side of the cumulative distribution 𝑥2 in a way that the above condition holds. 

In this case, the investor utility function becomes concave, and as a result, 

investors are risk-averse. Therefore, in the portfolio choice problem, if one 

portfolio second-order stochastically dominates the other, the risk aversion 

investors would prefer it. The test statistic defines as 

  xDNMF
Xx

N 2,1sup



 (9) 

Where  xD 2,1  denotes differences between empirical CDFs of two series. 

Using the above statistic, one can obtain the P-value of the test as follows 

(Whang, 2019) 

 𝑃 = 𝑒𝑥𝑝(−2(𝑀𝐹𝑁)2) (10) 

Table 4 reports the test P-values for the null hypothesis that the simulation 

method Sharpe ratio first-order stochastically dominates (FSD) Sharpe ratios 

of the conventional method and FSD Sharpe ratios of the market portfolios. 
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Table 4 

P-value of first-order stochastic dominance test (McFadden test) – 

simulation over conventional and Market Portfolios 
Last L Days Used to Form the Portfolio  540 

(2.5 years) 

1080 

(5 years) 

2160 

(10 years) 

f = 216 Days Investment Horizon 

Simulation FSD the conventional method 0.9429 0.9355 1 

Simulation FSD the market portfolio – using 

last 𝐿 days info. 
0.7903 0.5488 0.4066 

Simulation FSD the market portfolio – using 

last 𝑓 days info. 
0.9429 0.5488 0.6703 

Simulation FSD the market portfolio – using 
investment day info. 

0.9429 0.3442 0.6703 

f = 108 Days Investment Horizon 

Simulation FSD the conventional method 0.892 0.9672 0.9512 

Simulation FSD the market portfolio – using 

last 𝐿 days info. 
0.7733 0.7408 0.8187 

Simulation FSD the market portfolio – using 

last 𝑓 days info. 
0.892 0.7408 0.8187 

Simulation FSD the market portfolio – using 
investment day info. 

0.7733 0.7408 0.6376 

f = 54 Days Investment Horizon 

Simulation FSD the conventional method 1 0.9832 0.9025 

Simulation FSD the market portfolio – using 

last 𝐿 days info. 
0.8777 0.7625 0.6635 

Simulation FSD the market portfolio – using 

last 𝑓 days info. 
0.9437 0.5433 0.7939 

Simulation FSD the market portfolio – using 

investment day info. 
0.9856 0.7625 0.7939 

The Null Hypothesis: the simulation method Sharpe ratio first stochastically dominates Sharpe 

ratio of the other method (conventional method or the market Portfolios). If the P-value is not 

less than 0.05, the 
0H  hypothesis will not be rejected at the 5% significance level. 

Source: Research findings 

Since all P-values are above 0.34%, the hypothesis will not be rejected at 

10, 5, and 1% significance levels. These results indicate the FSD superiority 

of the simulation trading strategy over the other ones (conventional method 

and the market Portfolios), which means the cumulative distribution function 

of the Sharpe ratio of our method is entirely on the right of the other. In other 

words, at each level of cumulative distribution, the first investment method's 

Sharpe ratio is higher. As explained earlier, in the case of FSD, results do not 

depend on the degree of risk aversion of investors, and as long as investors 

prefer a higher Sharpe ratio, they would be better off if they followed our 

proposed strategy. 

As no relevant papers were found in the Persian research literature, we 

refer to the most relevant researches in this field. Considering portfolio 
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optimization with the Sharpe ratio maximization method in Iran, Rudposhti et 

al. (2017) compared the performance of extracted portfolios with Sharpe ratio 

maximization and Markowitz methods. According to their research, real 

returns of these two methods are similar, but the risks of the two methods are 

significantly different. 

In the related Persian literature, several papers used the Sharpe ratio to 

compare the performance of investment portfolios. The approach of these 

papers is fundamentally different from the Sharpe ratio maximization method 

because, in the Sharp ratio maximization method, the optimal portfolio is 

determined in such a way that the Sharpe ratio of that portfolio is maximized, 

but in the mentioned papers, portfolios are extracted by methods other than 

Sharpe ratio maximization and to compare their performance, their Sharpe 

ratio, conditional Sharpe ratio, and other measurements are usually compared. 

In this regard, we can refer to the studies of Rudpashti & Mousavi Anzahi 

(2013), Shaygan Mehr, Zamanian & Shahiki Tash (2015), and Sabahi, Rafiei 

& Rastegar (2015) using Sharpe and other ratios to compare portfolios' 

performances. 

5 Conclusion 
In this paper, we proposed a new method to perk up the performance of the 

conventional method in determining the optimal investment portfolio. Unlike 

the conventional method, our proposed simulation method utilizes a system of 

simulated MGBM equations in optimal portfolio speculation. To assess the 

robustness of our findings, the actual market portfolios have been thoroughly 

investigated for the corresponding periods too. To examine the robustness of 

the results, we have evaluated its performance for different investment 

horizons (e.g., seasonally or annually, which is denoted by f) and various 

volumes of price information (the number of preceding days used to obtain 

the optimal portfolio which is denoted by L) over a long period (approximately 

twenty years) in the Tehran Stock Exchange (TSE). In doing so, we identified 

the market portfolios based on the market capitalization of each symbol 

relative to the total market capitalization using the information of last L and f 

days, along with information of the investment day (time t ). As far as Sharpe 

ratio maximization is concerned, the results show that the proposed simulation 

method performs better than the conventional method and actual market 

portfolios in all cases. The findings also show that our proposed strategy has 

a first-order stochastic dominance over the conventional method and market 

portfolios. Therefore, our results do not depend on the degree of risk aversion 

of investors. 
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Doing further researches needs to be undertaken to see if our findings are 

related to the fundamental characteristics of the market? And if they can be 

extended to several other selected stock exchange markets in, for instance, 

emerging and developed economies. The latter concern is the subject of our 

next endeavor. 
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Appendix 
Some more detailed outputs: 

 

Figure 7. Mean-Variance Efficient Frontier of Conventional Method for 18-Year 

Period (December 2002 to September 2020) at 1-Month Intervals (18 Trading Days). 

Source: Research findings 

 

Figure 8. Mean-Variance Efficient Frontier of Simulation Method for 18-Year Period 

(December 2002 to September 2020) at 1-Month Intervals (18 Trading Days). 

Source: Research findings 
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Figure 9. Bivariate Histogram of Conventional Method for 18-Year Period 

(December 2002 to September 2020) at 1-Month Intervals (18 Trading Days). 

Source: Research findings 

 

Figure 10. Bivariate Histogram of Simulation Method for 18-Year Period (December 

2002 to September 2020) at 1-Month Intervals (18 Trading Days). 

Source: Research findings 
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Figure 11. Mean of Portfolio Returns of Conventional (Red) and Simulation (Blue) 

Methods (October 2003 - September 2020) at 1-Month Intervals (18 Trading Days). 

Source: Research findings 

 

Figure 12. Standard Deviation of Portfolio Returns (Risk) of Conventional (Red) and 

Simulation (Blue) Methods (October 2003 - September 2020) at 1-Month Intervals 

(18 Trading Days). 

Source: Research findings 
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Figure 13. The Performance of Simulation (MGBM) and Conventional Methods for 

All 1000 Simulation Trials, L=1080 and f=216. 

Source: Research findings 

 
Figure 14. The Performance of Simulation (MGBM) and Conventional Methods for 

All 1000 Simulation Trials, L=2160 and f=216. 

Source: Research findings 

 

Figure 15. The Performance of Simulation (MGBM) and Conventional Methods for 

All 1000 Simulation Trials, L=540 and f=108. 

Source: Research findings 
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Figure 16. The Performance of Simulation (MGBM) and Conventional Methods for 

All 1000 Simulation Trials, L=1080 and f=108. 

Source: Research findings 

 
Figure 17. The Performance of Simulation (MGBM) and Conventional Methods for 

All 1000 Simulation Trials, L=2160 and f=108. 

Source: Research findings 

 
Figure 18. The Performance of Simulation (MGBM) and Conventional Methods for 

All 1000 Simulation Trials, L=540 and f=54. 

Source: Research findings 
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Figure 19. The Performance of Simulation (MGBM) and Conventional Methods for 

All 1000 Simulation Trials, L=1080 and f=54. 

Source: Research findings 

 
Figure 20. The Performance of Simulation (MGBM) and Conventional Methods for 

All 1000 Simulation Trials, L=2160 and f=54. 

Source: Research findings 
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