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ABSTRACT 

This study examines the criterion of value at risk from another perspec-

tive and presents a new type of mean-value at Risk model. To solve the 

portfolio optimization problem in Tehran Stock Exchange, we use 

NSGA II, MOACO, and MOABC algorithms and then compare the 

mean-pVaR model with the mean-SV model. Given that, finding the 

best answer is very important in meta-heuristic methods, we use the con-

cept of dominance in the discussion of multi-objective optimization to 

find the best answers and show that, at low iterations, the performance 

of the NSGA II algorithm is better than the MOABC and MOACO al-

gorithms in solving the portfolio optimization problem. As the iteration 

increases, the performance of the algorithms improves, but the rate of 

improvement is not the same, in a way, the performance of the MOABC 

algorithm is better than that of the NSGA II and MOACO algorithms. 

Then, to compare the performance of the “mean-percentage of Value at 

Risk” model and the “mean-semi variance” model, we examine both 
models in the standard mean-variance model and show that the mean-

pVaR model, compared to the mean-SV model, Has better performance 

in stock portfolio optimization. 

 

1 Introduction 

One of the most significant concerns of investors in the capital market is electing the optimal portfolio 

in terms of profitability. To this end, the variety of portfolio selection methods in investment has wid-

ened [14]. The most important model for optimizing the portfolio is introduced in 1952 by Markowitz. 

After that, in this regard, various models and methods are presented for solving these models. To this 

purpose, lots of researchers in the world and Iran have done various researches. The notion of portfolio 

optimization and diversification is instrumental in developing and understanding financial markets and 
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financial decision-making. In this regard, the publication of Harry Markowitz's portfolio theory gained 

many successes [15]. Since its launch, Markowitz has made many changes to people's attitudes to in-

vesting and portfolio and has been used as an efficient tool for portfolio optimization [21]. The first 

demonstration of portfolio selection by Markowitz in 1952 considering variance as a risk measure was 

presented. His method is known as the mean-variance method. Through this model, the risk was meas-

ured quantitatively for the first time. The Markowitz model considers the highest return and the lowest 

variance Simultaneously [26]. While variance captures only the risks associated with achieving the 

average return, PMPT recognizes that investment risk should be based on each of the investor’s specific 
goals and that any outcomes above this goal do not represent economic or financial risk. PMPT’s�down-
side risk’ measure makes a clear distinction between downside and upside volatility. In PMPT only 
volatility below the investor’s target return incurs risk; all returns above this target cause “uncertainty”, 
which is nothing more than a riskless opportunity for unexpectedly high return [36].  

Firstly, the Markowitz model illustrates the potentiality to offer a combination of return maximization 

and risk minimization. Hence, Markowitz's initial model does not have the potentiality to resolve the 

problem of portfolio optimization in dealing with some real-world constraints such as the number of 

assets in the portfolio or the minimum amount of investment in designated assets [25]. In addition, an 

efficient boundary search is possible at the right time with the help of precise mathematical methods 

with a small number of assets. However, by the increase in the number of portfolio assets and in terms 

of real-world constraints, model-solving using deterministic methods such as quadratic planning, in 

solving the limited portfolio optimization problem based on the constraints, are not very efficient. The 

weaknesses of the Markowitz model lead to the fact that this model does not have the necessary effi-

ciency and therefore Meta-heuristic algorithms have been considered to solve this problem. These ap-

proaches, unlike exact optimization methods, seek points that are as close as possible to the global 

optimization, so as to satisfy the decision-maker to an acceptable level [29]. Meta-heuristic methods are 

also called "inexact" methods cause of stochastic mechanisms that play an essential role in creating 

their structure. In general, these approaches are based on the order or rules of one natural organism. 

These methods in preparing solutions to complex computational problems are important and efficient, 

On the other hand, some meta-heuristic research is devoted to the study of finance. Therefore, in this 

study, we solve the portfolio optimization problem using The NSGA II algorithm, the MOACO algo-

rithm, and the MOABC algorithm, by the mean-variance model and mean- pVaR model, which is de-

rived from the mean-VaR model. 

 

2 Theoretical Basics 

In recent years, the problem of portfolio optimization is a standard problem in the financial world and 

has received a lot of attention. Selecting an optimal weighting of assets is a critical issue for which the 

decision-maker considers several aspects [28]. Some metaheuristic-based research has been devoted to 

the study of Finance [31]. One specific area of interest is portfolio selection, in which different types of 

metaheuristics have been employed in the optimization process [27], both under single objective and 

multi-objective perspectives. The latter perspective gathered popularity in this particular area since 

portfolios focus on two major objectives: return and risk. 
 

2.1 Return 
 

The return is the reward that the investor receives in the investment process, which is achieved from 

two options: change of asset price (difference in asset price at the end of the period compared to the 
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begging of the period) and earnings received during the phase [39]. 

 

2.2 Risk 

For the first time, Harry Markowitz [34] presented a numerical index for risk based on quantitative 

definitions. He specified risk as to the standard multi-period deviation of a variable. There is a further 

aspect of risk definition that addresses only the negative side of fluctuations [34]. In this study, we have 

utilized variance and value at risk, as risk measures, which are shortly described below. 

 

2.2.1 Semi Variance  

Traditionally, portfolio optimization problems use variance (or standard deviation) as a measure of risk. 

Although commonly accepted, this measure is not the most appropriate for assessing risk, since it con-

siders equally adverse deviations (below average) as well as favourable ones (above average). However, 

as Markowitz admitted, an investor is only concerned with adverse variations. In this context, Marko-

witz proposed an alternative measure of risk, the “Semi variance”, which considers only adverse devi-

ations. Semi variance is mathematically defined as (1). 

𝑆 = 𝐸 (min(0. 𝑅𝑝 − 𝐶)
2

) (1) 

where E is the expected value, 𝑅𝑝is the portfolio return and C is a benchmark [24]. 

 

2.2.2 Value at Risk (VaR) 

Value at Risk is defined as the maximum amount of investment that may be lost in a specified time 

interval. Calculation of VaR can be done through two methods: parametric method and nonparametric 

method [34]. In this paper, we apply the parametric method for calculating VaR as described in (2).   

VaRp=M(Zα*σ-rp) (2) 

Where VaRp is Value at Risk, M is the amount of asset, σ is Standard deviation, rp is the retune of the 

portfolio and α is the confidence level [19]. 

 

2.2.3 Percentage of Value at Risk (pVaR) 

If we analyze the Value at Risk, it is possible to say that the Value at Risk deals with two components: 

1) The amount of investment (M), 2) the maximum percentage of investment that may be lost in a 

specified time interval, as described in (3).    
pVaR=Zα*σ-rp       (3) 

Thus, the above concept shows the maximum percentage of the lost investment in a certain term and 

with a certain level of confidence that the investor will bear in the investment process. Hence, pVaR is 

the percentage of assets at risk. Choosing the value or price of an asset in the mean-VaR model is very 

thought-provoking, as M can be considered the last price of the study phase, the average of the last 

month, the average of the last year, or even the average of the period. Obviously, the choice of M can 

be effective in the analysis and selection of the portfolio. Notwithstanding, the mean-pVaR model does 

not consider the value of the asset and merely deals with the portion of value at risk. In this respect, it 

can be an advantage of the studied model. Considerably, this type of portfolio optimization model in 

Iran has been done no research, So far. 
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2.3 Portfolio Optimization Models 

After the introduction of the Markowitz mean-variance model in 1952, several types of research have 

been done by financial researchers in order to develop and complete portfolio optimization models and 

provide different solutions to solve such ones. For instance, models that include other criteria to measure 

portfolio risk, such as semi variance, VaR, and CVaR. 

 

 

 

 

 

 

Fig 1: Portfolio Optimization Models 
 

The algorithms that exist to solve the optimization problems can be divided into two categories: preci-

sion algorithms and approximate algorithms. Exact algorithms are able to find optimal solutions accu-

rately, but approximate algorithms are able to find near optimal solutions for difficult optimization 

problems and are divided into three categories of heuristic, meta-heuristic, and hyper-heuristic. The two 

main problems of the heuristic algorithms are their local optimality, and their inability to apply them to 

various problems. The meta-heuristic algorithms presented to solve the heuristic algorithms are a vari-

ety of approximate optimization algorithms that have local optimization solutions that are applicable to 

a wide range of problems [41].  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

 

 

Fig 2: Solutions of Portfolio Optimization Problem 

 

Given the fact that meta-heuristic algorithms are regarded as optimal algorithms for solving optimiza-
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different solutions. Therefore, the evaluation of algorithms and the selection of suitable algorithms with 

the help of various indices have attracted the attention of the researchers [16].  

 

2.4 Multi-Objective Evolutionary Algorithms 

Over the past decade, a number of multi-objective evolutionary algorithms (MOEAs) have been sug-

gested. The primary reason for this is their ability to find multiple Pareto-optimal solutions in one single 

run. Since the principal reason why a problem has a multi-objective formulation is because it is not 

possible to have a single solution which simultaneously optimizes all objectives, an algorithm that gives 

a large number of alternative solutions lying on or near the Pareto-optimal front is of great practical 

value [8]. In this study, we use the NSGA II algorithm, the MOACO algorithm, and the MOABC algo-

rithm, which all of them are multi-objective algorithms, to solve the portfolio optimization problem. 

 

2.5 Multi-Objective Ant Colony Optimization Algorithm (MOACO)  

Ant Algorithm Optimization (ACO) is a population-based meta-heuristic technique developed by 

Marco Dorigo in 1992. This algorithm combines a random search technique and learning mechanism 

[20]. This algorithm is based on ants' living systems and imitating their behavior for searching food [9]. 

The initial algorithm aimed to find an optimal path in a graph based on the ant colony behavior of 

searching for a path between the nest and the food source [33]. Ants exchange food information with 

pheromones that they sour along the way. An ant returns to the nest by finding a food source. When the 

ants return to the nest on a shorter path, more pheromones and a shorter path will remain. [9]. 

Dorigo et al., Dorigo and Stützle [10, 11, 12], Ant colony optimization (ACO) is a swarm intelligence 

technique that was initially conceived for tackling single-objective combinatorial optimization prob-

lems. Given its success on these problems, ACO algorithms were soon extended to tackle multi-objec-

tive combinatorial optimization problems (MOCOPs), resulting in the introduction of multi-objective 

ant colony optimization (MOACO) algorithms. In other words, these MOACO algorithms tackle multi-

objective problems in terms of Pareto optimality [22]. The ant colony optimization algorithm MOACO 

is derived from the ACO algorithm, which is presented to solve multi-objective optimization problems, 

which uses the optimal Pareto principle and its output becomes a set of Pareto optimal instead of one 

solution [23]. 

 

2.6 Non-dominated Sorting Genetic Algorithm II  (NSCA II)  

The genetic algorithm first proposed by John Holland is a kind of search algorithm based on the 

mechanism of natural selection and genetic science. Genetic algorithm is a comprehensive prob-

abilistic search method that follows the process of natural biological evolution [18]. The work of 

the genetic algorithm is deceptively simple, very easy to understand and, in simple terms, the 

simplest way that humans believe that animals have evolved accordingly [17]. This algorithm 

combines the robustness of survival of the best string structure with the random information 

exchange operation and forms a very powerful search algorithm. To solve the problem with this 

algorithm, at first, the response must be encoded so that the algorithm can be evaluated and 

implemented by various operators [29]. The non-dominated Sorting Genetic Algorithm (NSGA) pro-

posed in Srinivas and Deb, was one of the first such evolutionary algorithms [8]. NSGA II Algorithm 

is one of the fastest and most powerful optimization algorithms that have less operational complexity 

than other methods that with using A fast non-dominated sorting approach, Density estimation and 
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Crowded comparison operator, makes the optimal points of Pareto and gives the designer the freedom 

to choose the design he wants from among the optimized designs [8]. 

 

2.7 Multi-Objective Artificial Bee Colony Algorithm (MOABC)  

Bee Colony, or ABC, is a meta-heuristic algorithm based on bee social life introduced by 

Karaboga in 2005 to optimize numerical problems [32]. This algorithm performs better than other 

mass intelligence algorithms [20]. The artificial bee colony (ABC) algorithm was designed for 

numerical optimization problems, based on the foraging behavior of honey bees. Since the per-

formance of metaheuristic algorithms depends on the number and the choice of parameters, the 

main advantages of the ABC algorithm are derived from the fact that the algorithm uses only 3 

control parameters: colony size, maximum cycle number, and limit [2].  

ABC algorithm employs three classes of artificial bees: employed bees, onlookers, and scouts. 

Employed bee stays on a food source (candidate solution) and examines the neighborhood. On-

lookers are allocated to a food source based on the information which they gain from employed 

bees. If a food source does not improve for a certain number of cycles, scouts replace that food 

source with a new, random one [2]. The MOABC algorithm uses the concept of Pareto dominance 

to determine the flight direction of a bee, and it maintains non-dominated solution vectors that 

have been found in an external archive. This algorithm is validated using the standard test prob-

lems, and simulation results show that the proposed approach is highly competitive and can be 

considered a viable alternative to solve multi-objective optimization problems [42].  

 

3 Review of some Related Research 

Chen [4], in his survey, states that The experimental outcomes demonstrate that real-world constraints 

have a great impact on the optimal investment schemes, and the MABC algorithm has a better perfor-

mance than the standard ABC algorithm and other heuristic algorithms, such as GA, SA, PSO, DE. 

Chen et al [5] have applied a modified ABC algorithm to solve the optimization problem; their results 

show that the portfolio proportions changes with different types of transaction costs. Finally, they com-

pared the results of the modified ABC algorithm with the ABC algorithm and GA, which showed that 

the modified ABC algorithm is better than the ABC algorithm and GA in solving the fuzzy portfolio 

selection problem.  

Milan Tuba et al [40], used ABC for portfolio optimization problems and showed, according to exper-

imental tests, it can be concluded that the ABC algorithm has the potential in solving portfolio optimi-

zation problems. With minor adaptations, the ABC algorithm can be adjusted for solving constrained 

portfolio optimization. Chang et al [3], established a heuristic approach to portfolio optimization prob-

lems in different risk measures by employing a genetic algorithm (GA) and they compared its perfor-

mance to the mean-variance model in cardinality constrained efficiency frontier. To attain this object, 

they collected three different risk measures based upon mean-variance by Markowitz; semi-variance, 

mean absolute deviation, and variance with skewness. It is also shown that the portfolio optimization 

problems are solvable by a genetic algorithm if mean-variance; semi-variance, mean absolute deviation, 

and variance with skewness are applied as the measures of risk. 

In Iran, Davoodi and Sadri [6] presented a model in which the constraints of the Short-selling prohibi-

tion and despite the transaction costs were used. They applied VaR as a risk measure and for portfolio 

optimization used GA-continuous and PSO algorithms and concluded that in equal conditions in terms 

of the number of iterations and population numbers, the efficiency of the PSO algorithm is more than 
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the GA-continuous algorithm in solving the portfolio optimization problem. Eslami Bidgoli and Tayebi 

Sani [13], presented a model in which minimizing VaR as a goal and its limitation as the minimum 

expected return and Short-selling prohibition. They worked out the problem of portfolio optimization 

by the GA algorithm, ACO algorithm, and the hybrid algorithm of GA and ACO. They concluded that 

the hybrid algorithm performed better than the GA algorithm, And VaR performance is superior to 

variance. Sinai and Zamani [38], solved the portfolio optimization problem by using GA and ABC 

algorithms and concluded that the portfolios formed by the bee algorithm are closer to the optimal 

portfolios resulting from the Markowitz model solution.  

Fallah Shams et al. [14] optimized the portfolio using the ant colony algorithm and compared four 

models with distinct risk criteria (variance, semivariance, VaR, and CVaR). they concluded that the 

mean-variance model provides the worst efficient boundary and the mean- CVaR of the best efficient 

boundary and the mean-variance model takes the least run time and the mean-CVaR about the most run 

time. Although CVaR has a better efficient boundary, it is not a good measure in the run time, especially 

in large portfolio sizes. Rahmani et al [35] used genetic algorithm, ant colony algorithm, and artificial 

bee colony algorithm to optimally select the portfolio. They used the Markowitz model for this purpose 

and came to the conclusion that; in case the investors intend to apply a low-risk strategy for investment, 

the findings suggest that using the artificial bee colony algorithm can help them to achieve the optimum 

results as this algorithm detects the portfolio with lower risk compared to other algorithms. 

 

4 Research Models 

This study utilizes the Markowitz basic model to optimize the portfolio, and compares two models of 

the mean - SV and mean- pVaR to each other. The objective function in both models is a two-objective 

function for minimizing risk and maximizing return. In these models, Capital budget constraint, number 

of stocks constraint (Portfolio consisting of 30 stocks), the lower band (In this study, the least acceptable 

shares in the portfolio are equal to 1%), minimum liquidity (in this study, 25% is considered) And Short-

selling prohibition is taken into account. 
 

4.1 The mean – SV Model 

This model seeks to minimize semi variance and maximize return on the portfolio. The mean-SV 

model presents in the following description: 
 

Min δp
2= ∑ ∑ xixjδiδj

M
j=1 ρij

N
i=1 = ∑ ∑ xixjδij

M
j=1

N
i=1  (4) 

Max 𝑟𝑝 = ∑ 𝑥𝑗𝑟𝑗                                              (5) 

  st:    ∑ xi=1 (6) 

           ∑ zi=30          (7) 

         1%≤xi≤99 (8) 

        Li≥25%   (9) 

     xi≥0     i=1.2….n (10) 
 

4.2 The mean – pVaR Model 

This study uses pVaR as a risk measure. The mean-pVaR model seeks to minimize pVaR and 

maximize portfolio returns. This model presents below: 

pVaR=Zα*σ-rp       (11) 
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pVaRp=Zα√∑ xi
2σi

2n
i=1 +2* ∑ ∑ xixjρij

m
j<i σi

n
i=1 σj   − ∑ xjrj (12) 

pVaRp  =√∑ (xiσiZα)2+2* ∑ ∑ xixjρij
m
j<i σi

n
i=1 σj(Zα)2n

i=1 − ∑ xjrj (13) 

therefore, the mean-pVaR model is presented in The following description: 

MinpVaRp=√∑ xi
2(pVaRi+ri)

2+2* ∑ ∑ xixj(pVari+ri)*(pVarj+rj)ρij
n
j<i  n

i=1
n
i=1 - ∑ xiri

n
i=1  (14) 

Max 𝑟𝑝 = ∑ 𝑥𝑗𝑟𝑗                                              (15) 

  st:    ∑ xi=1 (16) 

           ∑ zi=30          (17) 

         1%≤xi≤99 (18) 

        Li≥25%   (19) 

     xi≥0     i=1.2….n (20) 
 

Where δp
2 is the variance of portfolio, rp is the return of portfolio, r𝑗 is the return of asset j,  pVaRp 

is the percentage of assets at risk of portfolio, xi is asset share i, x𝑗 is asset share j, pVaR
𝑖
 is percentage 

of assets at risk of asset i, pVaR
𝑗
 is percentage of assets at risk of asset j, δij  is semi covariance asset 

i and asset j, ρij is correlation coefficient  asset i and asset j, Li is Liquidity ratio and α is  confidence 

level (In this study α=95%). 
 

5 Methodology and Hypotheses 

This survey extracts the monthly data of all firms in the first market of the Tehran Stock Exchange 

between 2012 and 2017 from the Novin Rah-e-Avard software of the Tehran Stock Exchange. 

Then, amongst the firms that are listed on the Tehran Stock Exchange are conside ring active 

between 2012 and 2017, 50 firms are selected in the following description:  

- First, according to the number of active firms in each industry, we settle the weight of that 

industry. The weight of each industry is equal to the number of active firms in that industry 

divided by the whole number of active firms in the Tehran Stock Exchange.  

- Then, according to the weight of each industry, we determine the number of firms surveyed. 

The number of firms surveyed in each industry is equal to the number 50 (the number of 

samples considered) multiplied by the settled weight of that industry.  

Due to the fact that the risk and return information of all firms operating in the Tehran Stock Exchange 

is not complete (so that the lack of information is not more than three consecutive months), in order to 

generate more diversity, we select 50 active firms in Different industries that contain complete infor-

mation, as the number of samples. In such a situation, it will be practicable to opt for at least one firm 

from any significant industry in the stock portfolio. Therefore, according to the diversity that is gained, 

the selected sample represents the whole market. This study utilizes the NSGA II, MOACO, and 

MOABC algorithms to solve the portfolio optimization problem in the mean - SV model and mean - 

pVaR model. These algorithms have been developed using MATLAB codes. It also uses the Excel soft-

ware for data analysis and the SPSS software for statistical analysis. Because the answers obtained from 

the run of meta-heuristic algorithms are not the exact ones, therefore several solutions are achieved in 

different runs. That is why it is important to determine the best run to find the best answer. In this regard, 

to find the optimal results in each model, we run each algorithm 10 times by the iteration of 1000 and 
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once by the iteration of 5000. In the next step, to get the best Pareto in the iteration of 1000, we must 

notice the concept of dominance in the discussion of multi-objective optimization. This means that 

x1dominates to x2, if and only if x2would not be worse than x1in any of  the targets [7]. To this purpose, 

among all of the solutions obtained from 10 performances of each algorithm in each model, we tend to 

find out the solutions that dominate the other solutions and draw the efficient Pareto that includes the 

best solutions in each model and each algorithm. It should be noted that no research has been done by 

this type of method to have the best Pareto in Iran, So far. Based on the above, in this study, we select 

the best Pareto from all of the solutions, which are resulted from 10 runs in each algorithm in each 

model. Then, using the concept of the Sharp ratio that indicates the return of each portfolio, the follow-

ing hypotheses are also proposed. 

• There is a significant difference between the investment Sharp ratio of portfolios resulting 

from the performance of the MOABC algorithm and portfolios resulting from the perfor-

mance of the NSGA II algorithm. 

• There is a significant difference between the investment Sharp ratio of portfolios resulting 

from the performance of the MOABC algorithm and portfolios resulting from the perfor-

mance of the MOACO algorithm. 

To obtain the Sharp ratio for each of the proposing portfolios on the Pareto- front, we employ (21), in 

which the risk-free return is considered to be 18% per year. 

𝑆ℎ𝑎𝑟𝑝 𝑅𝑎𝑡𝑖𝑜 =
𝑟𝑝 − 𝑟𝑓

𝜎𝑝
 (21) 

Where, 𝑟𝑝is the return of portfolio, 𝑟𝑓 is risk-free return and 𝜎𝑝is standard deviation[37]. 

We should notice that the variance of each portfolio is not calculated in the software output, Therefore 

the calculation of the Sharp ratio for the proposed portfolios in the mean-SV and mean-pVaR models 

is not easily Calculable. To reach the purpose, according to the specified percentage of investment per 

stock in each portfolio "xi" that is obtained from the run of each algorithm and (22), we calculate the 

variance of the portfolio and then proceed to calculate The portfolio sharp ratio. 

σp
2= ∑ ∑ xixjσij   

M

j=1

N

i=1

 (22) 

Due to the lots calculations of the portfolio variance with 30 stocks and its computational complexity, 

we utilize MATLAB software to calculate the variance and after calculating the variance of each port-

folio, the Sharp ratio of that portfolio is calculated, too. 

 

 

  
Fig 4: Selecting the Best Pareto among all Solution 

Resulted from 10 Runs of MOACO in mean-pVaR 

Model 

Fig 3: Selecting the Best Pareto among all Solution 

Resulted from 10 Runs of MOACO in mean-SV 

Model 

0.017

0.019

0.021

0.023

0.025

0.027

0.075 0.08 0.085 0.09 0.095 0.1 0.105

R
E

T
U

R
N

pVaR

MOACO ALGORITHM

ALL SOLUTIONS BEST SOLUTION

0.016

0.018

0.02

0.022

0.024

0.026

0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 0.004

R
E

T
U

R
N

 

SV

MOACO ALGORITHM

ALL SOLURIONS BEST SOLUTION



Portfolio Optimization Based on Semi Variance and Another Per-spective of Value at Risk

 

   
 

[124] 

 

Vol. 7, Issue 1, (2022) 

 

Advances in Mathematical Finance and Applications 

 

 

6 Findings and Data Analysis 

6.1 Finding the Best Pareto of Each Algorithm in Each Model 

As mentioned, at first we run 10 times, each of the NSGA II, MOACO, and MOABC algorithms in two 

mean-pVaR and mean-SV models, in 1000 iterations. Then, by the concept of dominance, we determine 

the best solutions among all of the ones that result in the runs of each algorithm. These solutions, dom-

inant to other solutions, and are the same best Pareto- front resulting from the run of each algorithm in 

each model as is shown in Figures 3-8. 

 

  
Fig 6: Selecting the Best Pareto among all Solution 

Resulted from 10 Runs of  NSGA II in mean-pVaR 

Model 
Fig 5: Selecting the Best Pareto among all Solution 

Resulted from 10 Runs of  NSGA II in mean-SV 

Model 
 

 

  
Fig 8: Selecting the Best Pareto among all Solution 

Resulted from 10 Runs of  MOABC in mean-pVaR 

Model 

Fig 7: Selecting the Best Pareto among all Solution 

Resulted from 10 Runs of  MOABC in mean-SV 

Model 

 

According to the above, we select the best Pareto obtained from the run of each of the NSGA II, 

MOACO, and MOABC algorithms in the two models mean-pVaR and mean-SV, and in the iteration 

of 1000. This study considers this Pareto the basis to compare the performance of studied algorithms 

and models. 

 

6.2 Comparison of Performance of NAGA II, MOACO and MOABC Algorithms 

To this end, we analyze the portfolios formed by the run of the NSGA II, MOACO, and MOABC 

algorithms in the mean – SV model and mean - pVaR model in the iteration of 1000 and also in the 

iteration of 5000. then using the T-test in the SPSS software, we test the study hypotheses. the results 

are shown in Figures 9, 10, and Table 1. 
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Fig 9: Compare of Best Pareto of MOACO, NSCA 

II, and MOABC Algorithms in the mean- SV Model 

and Iteration of 1000 

Fig 10: Compare of Best Pareto of MOACO, NSCA 

II, and MOABC Algorithms in the mean- SV Model 

and Iteration of 5000 
 

According to the demonstration in Figure 9, in the iteration of 1000, in the mean-SV model, the Pareto- 

front resulting from the NSGA II algorithm dominates the Pareto- fronts resulting from the MOABC 

and the MOACO algorithms. In other words, for an identified amount of risk, the portfolio return re-

sulting from the MOABC algorithm is slightly lower than the portfolio returns resulting from the NSGA 

II algorithm and is relatively higher than the return resulting from the MOACO algorithm. However, 

by looking at Fig. 10, it is clear that in the iteration of 5000, the Pareto- front resulting from the MOABC 

algorithm dominates the Pareto- fronts resulting from NSGA II and MOACO algorithms. In other 

words, in the iteration of 5000 for an identified amount of risk, in most points, the portfolio return 

resulting from the MOABC algorithm is higher than the portfolio returns resulting from the NSGA II 

algorithm and MOACO algorithm. 

 

Table 1: Results of T-Test in the mean- SV Model 

 

MOACO NSGA II MOABC Sig of 

Levene’s 
Test for 

Equality 

Sig of      

T-test for 

Equality 
No. 

Mean 

sharp 

ratio 
No. 

Mean 

sharp 

ratio 
No. 

Mean 

sharp 

ratio 
portfolio resulting from MOABC and 

NSGA II algorithms (iteration of 1000) 
- - 221 0.153 71 0.156 0.000 0.322 

portfolio resulting from MOABC and 

MOACO algorithms (iteration of 1000) 
32 0.12 - - 71 0.156 0.000� 0.000 

portfolio resulting from MOABC and 

NSGA II algorithms (iteration of 5000) 
- - 197. 0.166 36 0.167 0.000 0.912 

portfolio resulting from MOABC and 

MOACO algorithms (iteration of 5000) 
40 0.125  -  - 36 0.167 0.000 0.000 

 

In this regard, by examining the results of the T-test of SPSS software output, which is shown in Table 

1, It is clear that the Sig of Levene’s Test for Equality of variances is less than 5%, therefore, the as-
sumption of the equality of variances between the two communities is rejected. On the other hand, 

because the Sig of T-test for Equality of means is less than 5%, therefore there is a significant difference 

between the mean of the two communities, otherwise, there is no significant difference between the 

mean of the two communities [1,30]. Therefore, it can be stated that in the mean-SV model, in the 

iterations of 1000 and 5000 and at a 5% error level; there is a significant difference between the invest-

ment Sharp ratio of portfolios based on the MOABC algorithm and portfolios based on the MOACO 
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algorithm. However, there is no significant difference between the investment Sharp ratio of portfolios 

based on the MOABC algorithm and portfolios based on the NSGA II algorithm. On the other hand, 

since the average Sharp ratio of portfolios based on the MOABC algorithm, is higher than the average 

Sharp ratio of portfolios based on the MOACO algorithm and NSGA II algorithm then, we can get the 

result, in this sense the MOABC algorithm has a Preference over the two other algorithms.  

To conduct a more comprehensive review, we perform the above operations for the mean-pVaR model. 

The results are similar to the results of the performance of the studied algorithm in the mean-SV model 

in the iterations of 1000 and 5000. According to Fig. 11 and Fig. 12, in the iteration of 1000, for an 

identified amount of risk, the portfolio return resulting from the MOABC algorithm is slightly lower 

than the portfolio returns resulting from the NSGA II algorithm, and also relatively is higher than the 

portfolio returns resulting from the MOACO algorithm. In addition, with increasing iteration and reach-

ing the iteration of 5,000, the portfolio return resulting from the MOABC algorithm is higher than the 

portfolio returns resulting from the MOACO algorithm and the NSGA II algorithm. 

 

  

Fig 11: Compare of Best Pareto of MOACO, NSCA 

II, and MOABC Algorithms in the mean- pVaR 

Model and Iteration of 1000 

Fig 12: Compare of Best Pareto of MOACO, NSCA 

II, and MOABC Algorithms in the mean- pVaR 

Model and Iteration of 5000 
 

Table 2: Results of T-Test in the mean- pVaR Model 

 

MOACO NSGA II MOABC Sig of 

Levene’s 
Test for 

Equality 

Sig of      

T-test 

for 

Equality 

No. 
Mean 

sharp 

ratio 
No.•

Mean 

sharp 

ratio 
No. 

Mean 

sharp 

ratio 
portfolio resulting from MOABC and 

NSGA II algorithms (iteration of 1000) 
- - 254 0.166 48 0.162 0.000 0.084 

portfolio resulting from MOABC and 

MOACO algorithms (iteration of 1000) 
35 0.135 - - 48 0.162 0.000 0.000 

portfolio resulting from MOABC and 

NSGA II algorithms (iteration of 5000) 
- - 197 0.173 63 0.177 0.000 0.174 

portfolio resulting from MOABC and 

MOACO algorithms (iteration of 5000) 
52 0.14  -�  - 63 0.177 0.000 0.000 

 

According to Table 2, in the mean-pVaR model, in the iterations of 1000 and 5000 and at a 5% error 

level; there is a significant difference between the investment Sharp ratio of portfolios based on the 

MOABC algorithm and portfolios based on the MOACO algorithm. However, there is no significant 

difference between the investment Sharp ratio of portfolios based on the MOABC algorithm and port-

folios based on the NSGA II algorithm. Therefore, according to the above-mentioned cases, with in-

creasing the number of iteration of each algorithm, the average portfolio return resulting from the 

MOABC algorithm is higher than the average portfolio returns resulting from the NSGA II algorithm 
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and MOACO algorithm. On the other hand, according to the structure of each algorithm, the Pareto- 

front of the MOABC algorithm covers a more limited range of risk than the MOACO algorithm and the 

NSGA II algorithm. In other words, the conclusions show that selecting and optimizing the stock port-

folio using the MOABC algorithm has acceptable performance and by increasing the iteration in this 

algorithm, its performance will increase. Moreover, in a similar range of risk, it will have better results 

than NSGA II and MOACO algorithms. However, in low iteration, the performance of the NSGA II 

algorithm is more desirable and more acceptable. On the other hand, according to the structure of each 

algorithm, the Pareto- front of the MOABC algorithm covers a more limited range of risk than the 

MOACO algorithm and the NSGA II algorithm.  In other words, it can be concluded that selecting and 

optimizing the stock portfolio using the MOABC algorithm has acceptable performance and by increas-

ing the iteration in this algorithm, its performance will increase. By the way, in a similar range of risk, 

it will have better results than NSGA II and MOACO algorithms. However, in low iteration, the per-

formance of the NSGA II algorithm is more desirable and acceptable. 
 

  
Fig 13: Compare of Performance of the mean- SV & 

the mean- pVaR Models in MOABC Algorithm in 

the Iteration of 1000    
Fig 14: Compare of Performance of the mean- SV & 

the mean- pVaR Models in MOABC Algorithm in 

the Iteration of 5000    
 

  
Fig 16: Compare of Performance of the mean- SV & 

the mean- pVaR Models in MOAOC Algorithm in 

the Iteration of 5000    
 

Fig 15: Compare of Performance of the mean- SV & 

the mean- pVaR Models in MOAOC Algorithm in 

the Iteration of 1000    
 

  
Fig 18: Compare of Performance of the mean- SV & 

the mean- pVaR Models in NSGA II Algorithm in 

the Iteration of 5000    
Fig 17: Compare of Performance of the mean- SV & 

the mean- pVaR Models in NSGA II Algorithm in 

the Iteration of 1000    
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6.3 Comparison of Performance of SV and pVaR 

To reach the purpose, this study compares the average of Sharp ratio of portfolios resulting from the 

MOACO, NSGA II, and MOABC algorithms in the mean-pVaR and mean -SV models in the iteration 

of 1000 and 5000. The risk criterion in the models of the mean-SV and the mean- pVaR is not the same. 

therefore, we compute the variance of each of the portfolios that are proposed by applying the percent-

age of assets in the portfolios resulting from the run of the under investigating algorithms.  then we 

compare two of the models studied in the standard mean-variance model, in such a way that the perfor-

mance of both models in the mean-variance model is measured. Then, according to the calculated var-

iance of each SV and pVaR obtaining from the performance of each algorithm in the iteration of 1000 

and 5000, we draw the Pareto- front in the NSGA II, MOACO, and MOABC algorithms. According to 

Figures 13 to 18. By examining Figures 13 to 18, the conclusion is that, in all three algorithms and both 

iterations, the Pareto- front of the mean-pVaR model dominates the Pareto- front of the mean-SV model. 

In other words, in the portfolio optimization problem, using of pVaR comparing to SV as a risk measure, 

due to having a higher return for an identified amount of risk and the higher average of Sharp ratio, it 

has more performance that is desirable. 

 

7 Discussion and Conclusion 

This study surveys the Value at Risk criterion from another perspective and presents the model of the 

“mean- percentage of Value at Risk”, and applies the NSGA II, MOACO, and MOABC algorithms for 

solving the portfolio optimization problem. We apply the concept of dominance in multi-objective op-

timization discussion to reach the best Pareto-front resulting from all runs of studied algorithms. Then, 

the comparison of performances of the NSGA II and MOACO algorithms to the MOABC algorithm in 

solving the portfolio optimization problem is drawn. In the following, we compare the performance of 

SV and pVaR as risk measures to each other in the mean-variance standard pattern. The results are as 

follows: 

According to our illustrations, in the iteration of 1000, the performance of the NSGA II algorithm is 

better than the MOABC algorithm for solving the portfolio optimization problem in both mean- SV and 

mean-pVaR models, and in this regard, the performance of the MOABC algorithm is better than the 

MOACO algorithm. We show, by increasing the number of iteration of each algorithm and reaching 

the iteration of 5000, the performance of all algorithms improves, but the rate of increase of their im-

provement is not equal. In other words, by increasing iteration and reaching the iteration of 5000, the 

performance of the MOABC algorithm is better than the NSGA II and MOACO algorithms, in portfolio 

optimization in both mean-SV and mean-pVaR models. It is worth mentioning that most studies have 

shown that the artificial bee colony algorithm is more efficient than the genetic algorithm and ant colony 

optimization algorithm in solving the portfolio optimization problem. However, in this study, we show 

that, in low replications, the performance of the NSGA II algorithm is better than the MOABC algorithm 

and MOACO algorithm in solving the portfolio optimization problem. And by increasing the repetition, 

the performance of the MOABC algorithm has been significantly improved, so that its performance is 

better than the performance of the NSGA II algorithm and MOACO algorithm in solving the portfolio 

optimization problem. We show the comparison of the two models: in the portfolio optimization prob-

lem, the mean-pVaR model is more efficient than the mean-SV model, due to having a higher average 

return for an identified amount of risk and a higher average of Sharp ratio. In other words, using the 

pVaR comparing to the SV as a risk measure has a higher desirable for solving the portfolio optimiza-

tion problem. As we said, the pVaR is derived from the VaR, Hence, it can be expressed; our results 
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are in accordance with the results of other studies and indicate the higher desirability of the VaR than 

the SV as a risk criterion. According to the above, we suggest researchers utilize the following in future 

studies: 

• Due to the structure of meta-heuristic algorithms and the existence of some limitations in 

each of them in solving the stock portfolio optimization problem, future studies can be 

done to increase the efficiency and eliminate the limitations of these algorithms. For ex-

ample, hybridize efficient matching heuristic algorithms to solve the portfolio optimization 

problem. 

• using other evaluation criteria such as Sortino, Treynor, etc. for comparing and evaluating 

the performance of the meta-heuristic algorithm in portfolio optimization. 

• applying some special models, in which, the Predicted return resulting from time-series is 

replaced average return. For instance, using the "Predicted return- variance" model instead 

of the "mean-variance" model and comparing them to one another. 
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