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In this paper we study the identification problem of parameters of Dynamic Stochastic 
General Equilibrium Models with emphasis on structural constraints, in order to make the 
number of observable variables is equal to the number of exogenous variables. We derive 
a set of identifiability conditions and suggest a procedure for a thorough analysis of 
identification at each point in the parameters space. The procedure can be applied, before 
DSGE models are estimated, to determine where identification fails. We also use a Monte 
Carlo simulation and study the effect of restrictions on the estimate. The results show that 
the use of restrictions for estimation, when identification is reduced, leads us to inaccurate 
estimates and unreliable inference even when the number of observations is large.  
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1 Introduction 
Dynamic Stochastic General Equilibrium (DSGE) models use modern 
macroeconomic theory to explain and predict co-movements of aggregate 
time series over the business cycle. The term DSGE model encloses a broad 
class of macroeconomic models that spans the standard neoclassical growth 
model discussed in King et al, (1988) as well as New Keynesian monetary 
models with numerous real and nominal frictions argued in Christiano et al, 
(2005) and Smets and Wouters (2003). A common feature of these models is 
that decision rules of economic agents are derived from assumptions about 
preferences, technologies, information, and the prevailing fiscal and monetary 
policy regime by solving inter-temporal optimization problems. In a nutshell, 
the DSGE model paradigm delivers empirical models with a strong degree of 
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theoretical coherence that is attractive for policy experiments. Modern DSGE 
models are flexible enough to accurately track and forecast macroeconomic 
time series. They have become one of the most widely used tools for monetary 
policy analysis in central banks. 

Despite the development of DSGE models, a problem that is rarely 
addressed in the studies is parameter identifiability. Identification is a 
prerequisite for estimation of the parameters, and the ability to do it for full-
edged structural models is believed to be one of the main achievement of this 
line of research. Parameter identification is a potentially serious issue for 
DSGE models and is not a new concern. Among the authors who bring up this 
point are Sargent (1976) and Pesaran (1989). More recently Beyer and Farmer 
(2004) provide several examples of commonly used models that are 
unidentifiable. They argue that the problem is likely to be common in DSGE 
models. 

In most empirical DSGE papers the question of parameter identification is 
not confronted directly. Usually, if some of the parameters are considered to 
be of lesser interest, and/or with potentially problematic identifiability, their 
values are calibrated and assumed known, instead of being estimated. 
Furthermore, since DSGE models are frequently estimated using Bayesian 
methods, potential identification problems remain hidden due to the use of 
priors. As a result, it is often unclear to what extent the reported estimates 
reflect information in the data instead of subjective beliefs or other 
considerations reflected in the choice of prior distribution of the parameters. 
One reason why this is an important issue is that DSGE models are 
increasingly being used for analyzing policy-relevant questions, for instance, 
the design of optimal monetary policy. Such analysis often hinges crucially 
on the values assigned to the parameters of the model. It is, therefore, 
important to know how informative the data is for the parameters of interest, 
and whether there are any benefits from estimating instead of calibrating the 
models. 

In this paper, we present an efficient approach for determining 
identifiability of the parameters of linearized DSGE models, by using 
restrictions on the reduced form. In particular, we present necessary and 
sufficient conditions for local identification of deep parameters and discuss 
when its global identifiability can be ascertained. The conditions for partial 
identification are also examined. That is, when only a subset of all parameters 
is of interest, or some of the parameters are unidentifiable. Second, we utilize 
the maximum likelihood estimator of the parameters in DSGE models and 
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compare its performance to different degrees of identifiability by using Monte 
Carlo simulations. 

The early literature on identification of rational expectations (RE) models 
started with the works by Sargent (1976) and McCallum (1979) on 
observational equivalence and was extended to more general setups by Wallis 
(1980), Pesaran (1981), and Pudney (1982). Interest in the identification of 
RE models then waned as models tended to be calibrated rather than 
estimated. But recent interest in estimation of DSGE models has prompted a 
return to the problem of identification of RE models in general and that of 
DSGE models in particular. The issue on the identification of the new 
Keynesian Phillips curve is discussed by Mavroeidis (2005), Nason and Smith 
(2008), Kleibergen and Mavroeidis (2009), and Dees et al, (2009), and of the 
Taylor rule by Cochrane (2011). More generally, Canova and Sala (2009) 
conclud “it appears that large class of popular DSGE structures are only very 
weakly identified;” and Iskrev (2010) conclude, “The results indicate that the 
parameters of the Smets and Wouters (2007) model is quite poorly identified 
in most of the parameter space.” Other recent papers that consider determining 
the identification of DSGE models are those by Andrle (2010), Iskrev and 
Ratto (2010), Komunjer and Ng (2011). 

Unlike all of the above papers, where only identification of the structural 
parameters is considered, we present conditions for identifiability for both the 
structural coefficients and the underlying deep parameters, which is robust 
from observations and is typically what DSGE modelers are interested in 
estimating. Moreover, we present identification conditions for models with 
future expectations and covariance restrictions, which is also in line with the 
models in the current DSGE literature.  

This article is organized as follows. In section 2 we introduce the general 
model and notation. We also discuss parameter identification in general terms 
and introduce a result from Rothenberg (1971) which will serve as a basis for 
our approach for identification of DSGE models. In Section 3 we present 
conditions for identifiability of the parameters in DSGE models. We follow a 
two-step approach in which the identification of the deep parameters is 
conditioned first on the identifiability of the structural parameters, and then 
on the uniqueness of the mapping from structural parameters to it. We also 
make a distinction between identification only based on the cross-equation 
restrictions and identification when covariance restrictions are used too. 
Conditions for identification are given for the complete system of equations. 
Finally, we discuss how identification failures can be detected in practice, and 
describe an algorithm for a thorough identification analysis of DSGE models. 
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In section 4 we investigate the effect of different degree of identification on 
the maximum likelihood estimator (ML) of the parameters in DSGE models 
through the Monte Carlo simulation study. Section 5 concludes. 

2 Linearized Models of DSGE 
A conventional DSGE model is summarized by a system of non-linear 
equations. However, most analyses including either simulation or estimation 
of DSGE models use linear approximations of the original models. Especially, 
the model is first expressed in terms of stationary variables, and then 
linearized or log-linearized around the steady-state values of these variables. 
In general, a linearized model of DSGE can be expressed in the following 
form: 

𝛤଴ሺ𝛼ሻ𝑋௧ ൌ 𝛤ଵሺ𝛼ሻ𝐸௧𝑋௧ାଵ ൅ 𝛤ଶሺ𝛼ሻ𝑋௧ିଵ ൅ 𝛤ଷሺ𝛼ሻ𝑈௧ (1) 

where 𝑋௧ is the 𝑚 െdimensional vector of endogenous variables, and the 
structural errors, 𝑈௧, are independent and identically distributed n-dimensional 
random vectors with 𝐸ሾ𝑈௧ሿ ൌ 0, 𝐸ൣ𝑈௧𝑈௧ሖ ൧ ൌ 𝐼. The elements of the matrices  
𝛤଴, 𝛤ଵ, 𝛤ଶ and 𝛤ଷ are functions of the 𝑘 ൈ 1 vector of deep parameters 𝛼. 

Here, we define the structural parameters as unknown components of the 
coefficient matrices 𝛤଴, 𝛤ଵ, 𝛤ଶ and 𝛤ଷ. More precisely, we show the unknown 
elements of 𝛤଴, 𝛤ଵ, 𝛤ଶ with 𝛾ଵ and the unknown components of 𝛤ଷ with 𝛾ଶ. Also, 
let 𝛾 ൌ ሾ𝛾ଵ́, 𝛾ଶ́ሿ́ be a vector of all structural parameters, so that the mapping 
from 𝛼 to 𝛾 is given by the function 𝑔෤, i.e. 

𝛾 ൌ 𝑔෤ሺ𝛼ሻ  (2) 

To generalize the results, as with most models, the structural shocks are 
considered independent of each other. Therefore, 𝛤ଷ is a diagonal matrix with 
the standard deviations of the shocks in the diagonal. Therefor there is no 
distinction between the deep parameters that enter in 𝛤ଷ and the structural 
parameters in 𝛾ଶ. Hence we can write 𝛼 ൌ ሾ𝛼ଵ́, 𝛼ଶ́ሿ́, where 𝛼ଶ ൌ 𝛾ଶ. This 
implies that the function 𝑔෤ can be written as 𝑔෤ ൌ ሾ𝑔, 𝐼௡ሿ ́, where 𝑔 maps 𝛼ଵ 
into 𝛾ଵ and 𝐼௡ is the n-dimensional identity matrix. 

In the literature, various approaches are proposed for solving linear rational 
expectations models like (1) (see for instance Blanchard and Kahn (1980), 
Anderson and Moore (1985), Klein (2000) and Sims (2002)). Solving the 
equation (1) for 𝛼  there may exist zero, one, or many stable solutions. 

Assuming that a unique solution exists, it can be cast in the following form 
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𝑋௧ ൌ 𝐴𝑋௧ିଵ ൅ 𝐵𝑈௧  (3) 

Where the 𝑚 ൈ 𝑚 matrix A and the 𝑚 ൈ 𝑛 matrix B are functions of 𝛼, and 
are unique for each value of 𝛼. I let 𝛬 ൌ 𝐵𝐵 ́ and define 𝜏ଵ ൌ 𝑣𝑒𝑐ሺ𝐴ሻ and 𝜏ଶ ൌ
𝑣𝑒𝑐ℎሺ𝛬ሻ Lastly, let 𝜏 ൌ ሾ𝜏ଵ́, 𝜏ଶ́ሿ ́ be the vector of all reduced-form parameters. 
Throughout the paper we assume that the vector of reduced-form parameters 
τ is unique for each admissible value of 𝛼 and the structural shocks 
𝑈௧~𝛮ሺ0, 𝛴ሻ where 𝛴 ൌ 𝛤ଷ𝛤ଷ ́, for 𝑡 ൌ 1,2, … , 𝑇. 

2.1 Definition of Parametric Identification 
Let Z be a vector-valued random variable in 𝑅௠ representing the outcome of 
some random experiments. A structure S is a complete specification of the 
probability distribution function of Z. The set of all a priori possible structures, 
M, is called a model. In most applications, Z is assumed to be generated by a 
parametric probability distribution function 𝐹ሺ𝑧, 𝛼ሻ, where parametric 
probability distribution function F is assumed known, but the 𝑘 ൈ 1 parameter 
𝛼 is unknown. Hence, a structure is described by a parametric point 𝛼 and a 
model is a set of points 𝐴𝑅௞. In this framework we have the following 
definitions. 

Definition 1. Two parameter points (structures) 𝛼ଵand 𝛼ଶ are said to be 
observationally equivalent if 𝐹ሺ𝑧, 𝛼ଵሻ ൌ 𝐹ሺ𝑧, 𝛼ଶሻ, for (almost) all possible Z. 

Definition 2. A parameter point 𝛼଴ in 𝐴 is said to be globally identifiable 
if there is no other 𝛼 in 𝐴 which is observationally equivalent. 

Sometimes a weaker concept of identifiability is useful.  
Definition 3. A parameter point 𝛼଴ is said to be locally identifiable if there 

exists an open neighborhood of 𝛼଴ containing no other 𝛼 in 𝐴 which is 
observationally equivalent. 

The above definitions imply that in principle a structure must include all 
parameters that completely characterize the distribution of the data. Unless we 
do so, we can never conclude that a model is not identified. In what follows 
we are going to use only parameters that specify the first two moments of the 
data. Thus the identification conditions that we find are in general only 
sufficient, and not necessary. However, if it is assumed that the data is 
generated from a normal distribution, then the conditions for identifiability 
become necessary and sufficient. The reason is that a normal distribution is 
completely described by its first two moments and it is very common in the 
literature on estimation of DSGE models, most of which follows the likelihood 
approach. 
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2.2 Criteria for Identification 
Rothenberg (1971) advances a general condition for identification of 
parametric models. The condition is that the information matrix must be non-
singular at the true value of the parameters. Such achievements can be applied 
for detecting identification problems for other extremum estimators as well 
and not only likelihood-based methods. The general criterion for 
identifiability is that the Hessian of the objective function is of full rank. Due 
to its generality, however, the information matrix approach has some 
important restitution. First, in many situations, and in particular in the case of 
DSGE models, the Hessian is very difficult, and often impossible to obtain in 
analytical form. As a result, researchers have to use numerical methods to 
compute second derivatives, which inevitably lead to inaccuracy in the results. 
Moreover, this approach is in most cases limited to local identification only 
and therefore does not allow researchers to determine whether their model is 
globally or only locally identified. And finally, due to the intricacies involved 
in obtaining the Hessian, it is usually hard to pinpoint the source of 
identification problems in the underlying model. 

Another, less general result in Rothenberg provides the basis for an 
alternative method for determining identification in parametric models, 
without involving the information matrix. The approach is based on the 
relationship between the parameters of interest, and characteristics of the 
probability distribution of the data. It boils down to a question of uniqueness 
of a solution to a system of equations. The well-known rank and order 
conditions for identification of systems of linear simultaneous equations are 
an example of this approach. A very useful feature of this approach, when 
applied to DSGE models, is that it allows for a more transparent and intuitive 
interpretation of the necessary identification condition, and makes it easier for 
researchers to locate sources of potential identification problems. Moreover, 
this identification framework extends, in a natural way, into an estimation 
procedure that could potentially be useful for empirical validation of DSGE 
models. We generalize this result to account for situations where the mapping 
between the parameters in 𝛼 and those in τ is given by an implicit function, 
such as 

𝑓ሺ𝛼, 𝜏ሻ ൌ 0 (4) 

Now, if we show the Jacobian of 𝑓 respect to 𝛼 with 𝑓ఈ, the above 
discussion can be generalized as follows: 
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Proposition. If the data density depends on the parameter vector 𝛼 through 
the reduced-form parameter 𝜏 while 𝜏 is globally identifiable. Assume also 
that the mapping from 𝛼 to 𝜏 be defined implicitly as in (4). Then, 

(P1) If the Jacobian 𝑓ఈ, appraised at 𝛼଴ has a full column rank, then 𝛼଴ is 
locally identifiable. 

(P2) If the density of Z depends on 𝛼 only through ,  and 𝛼଴ is a regular 

point of 𝑓ఈ, then full rank matrix 𝑓ఈ is a necessary condition for identification 
of 𝛼଴ 

(P3) If 𝑓ఈ has a full column rank for all values of 𝛼 then 𝛼଴ is globally 
identifiable. 

The first proposition (P1) tells us that the existence of a locally unique 
mapping from 𝛼 to 𝜏 is a sufficient condition for the identification of 𝛼 When 
the data density depends on 𝛼 only through 𝜏 the latter is also a necessary 
condition, as implied by the second result (P2). Otherwise it is not. We will 
make use of this distinction in the following way. A density function is 
completely determined by its moments. If 𝜏 contains the parameters necessary 
to characterize all moments of the data, then we are in a situation when (P2) 
is applicable, and the rank condition is both necessary and sufficient. 
However, we often cannot use all moments, either because some of the higher 
moments are difficult to estimate accurately, or because we do not want to 
assume a particular density function, and, therefore, do not know what those 
moments are. If that is the case, we can still use the fact that, if some of the 
moments we do use imply a unique value of 𝛼 then this is sufficient for 
identification. 

The proposition (P3) is useful when the mapping from the reduced form 
parameters to the parameters of interest 𝛼 is linear. So, if the rank condition 
holds, the solution for 𝛼 will be globally unique. This result is analogous to 
Theorem 5 in Rothenberg (1971). 

Presenting these results for an implicit instead of an explicit function 
makes them convenient for studying the identification of the parameters in 
DSGE models. 

3 Identification in DSGE Models 
Examining articles related to DSGE models, especially internal articles, 
clearly shows that the problem of parameter identification has been largely 
neglected in the current empirical DSGE literature. There are two main 
reasons for that. First, because the mapping from structural to reduced form 
parameters is extremely complicated, and, except for very special cases, not 
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available in an analytical form, using the information matrix criterion for 
identification is very difficult. Lubik and Schorfheide (2004) argue that "It is 
difficult to directly detect identification problems in large DSGE models, 
since the mapping from the vector of structural parameters - into the state-
space representation that determines the joint probability distribution of Z is 
highly nonlinear and typically can only be evaluated numerically". Computing 
the Information matrix requires the second derivative of the log-likelihood 
function which cannot be obtained directly if the structural function mapping 
into reduced-form parameters is not available. The second reason is that the 
large majority of papers in this literature apply the Bayesian approach to the 
estimation of DSGE models. Identification problems can be alleviated with 
the use of priors for the structural parameters. Intuitively, a skillfully selected 
prior can make a parameter identifiable by placing a low probability on values 
that would render it unidentifiable. 

In this section, we show that identification of DSGE models can be studied 
directly, as a problem of uniqueness of a solution to a system of equations, 
instead of trying to do that through the Information matrix. We start by 
deriving the cross-equation and covariance restrictions that relate the 
parameters of interest to those of the reduced form model. 

3.1 Conditions for Identification of 𝜸 
Initially, we provide requirements for identification of the structural 
parameters. It is important for two reasons: First, the identifiability conditions 
for 𝛾 we conclude here will be useful in the next section, where the 
identification of the deep parameters is studied. And second, the identification 
and estimation of the structural parameters may be special interest for 
researchers. If for instance, the goal is to study the economy's response to 
different shocks, the structural model is all we need. Furthermore, note that 
with 𝛤ଵ ൌ 0 the model in (1) reduces to the canonical structural vector 
autoregressive model (SVAR) (Revenna, 2007), which is widely used in the 
empirical macroeconomic literature. Thus, the results regarding the 
identification of 𝛾 are directly applicable to identification in SVAR models. 

To find conditions for identification, we use Equation (3). It implies that 
the expectation of 𝑋௧ାଵ is𝐸௧𝑋௧ାଵ ൌ 𝐴𝑋௧. Using this in Equation (1) yields 

ሺ𝛤଴ െ 𝛤ଵ𝐴ሻ𝑋௧ ൌ 𝛤ଶ𝑋௧ିଵ ൅ 𝛤ଷ𝑈௧ (5) 

Comparing it with the one in Equation (3), we find the following two sets 
of restrictions 



Identifiability of Dynamic Stochastic General Equilibrium Models… 233 

ሺ𝛤଴ െ 𝛤ଵ𝐴ሻ𝐴 െ 𝛤ଶ ൌ 0, (6) 
ሺ𝛤଴ െ 𝛤ଵ𝐴ሻ𝛬ሺ𝛤଴ െ 𝛤ଵ𝐴ሻᇱ െ 𝛴 ൌ 0. (7) 

Vectorising both sides of the Equation (6), we have 

ሺ𝐴ᇱ 𝐼௠ሻ𝑣𝑒𝑐ሺ𝛤଴ሻ െ ሺ𝐴ᇱଶ 𝛪௠ሻ𝑣𝑒𝑐ሺ𝛤ଵሻ െ 𝑣𝑒𝑐ሺ𝛤ଶሻ ൌ 0௠, (8) 

Where 𝐼௠ and 0௠ are 𝑚 ൈ 𝑚 identity matrix and a zero matrix, 
respectively. Each of the three 𝛤  matrices contains zeros, other known 
constants, and elements of 𝛾. Let 𝛾෤ ൌ ሾ1, 𝛾ଵ

ᇱሿᇱ. Then, for 𝑖 ൌ 0,1,2 we can write 
𝑣𝑒𝑐ሺ𝛤ఐሻ ൌ 𝐺௜𝛾,෥ where 𝐺௜ is a 𝑚ଶ ൈ ሺ𝑙 ൅ 1ሻ matrix containing only zeros and 
ones. 

Thus Equation (8) becomes 

ሺሺ𝐴ᇱ 𝐼௠ሻ𝐺଴ െ ሺ𝐴ᇱଶ 𝛪௠ሻ𝐺ଵ െ 𝐺ଶሻ𝛾෤ ൌ 0௠,  (9) 

Where 𝛾෤ ൌ 𝛾෤ሺ𝛼ሻ. Denoting the first column of ሺሺ𝐴ᇱ 𝐼௠ሻ𝐺଴ െ
ሺ𝐴ᇱଶ 𝛪௠ሻ𝐺ଵ െ 𝐺ଶሻ with െ𝛹ଵ and the remaining 𝑙 columns with 𝛹ଶ. Equation 
(9) becomes: 

𝛹ଶ𝛾ଵ ൌ 𝛹ଵ, (10) 

Where the matrices 𝛹ଵ and 𝛹ଶ contain known constants and reduced-form 
parameters 𝜏, which are identified by assumption. 

Hence, it is straightforward to see from restriction (7) that, if 𝛾ଵ. is 
identified, 𝛾ଶ will be as well. The following theorem follows immediately the 
identifiability of 𝛾ଵ from utilization P1- P3 in cross-equation restrictions (6). 

Theorem 1. The cross-equation restrictions concludes that the vector of 
structural parameters 𝛾 is globally identifiable if the rank of 𝛹ଶ is equal 𝑙, the 
dimension of 𝛾ଵ. 

According to the above Theorem 1, if the rank of 𝛹ଶ is not equal to 𝑙, then 
it is not possible to decide on the identification of structural parameters 𝛾. 
Also, we can see this result following directly from the well-known rank 
condition for uniqueness of a solution of a system of linear equations, which, 
in our notation, is 𝛹ଶ that has a full column rank. 

We can also use the covariance constraint as another implicit function 
mapping 𝛾 to 𝜏. To apply this function, we need to have some a priori 
restrictions on the structural covariance matrix 𝛴. For this purpose, we assume 
𝛴  is known to be diagonal, in this case restriction (7) could be useful for 
identifying 𝛾ଵ, and, in fact, could help identify structural parameters which are 
otherwise unidentifiable. The difficulty with using the covariance restrictions 
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is that in general, the system of equations (7) is nonlinear in 𝛾ଵ, and therefore 
there are no general conditions for global uniqueness of its solution. however, 
it is possible to find necessary and sufficient conditions for local uniqueness 
of the solution. To state a more general condition for identifiability of 𝛾ଵ, we 
need some additional notation. Let 𝑓ଵ. and 𝑓ଶ be the vectorized versions of (6) 
and (7) respectively. 

By rewriting the elements of 𝑓ଶ so that the ones corresponding to a priori 
constrained components of 𝛴, denoted with 𝑓ଶ௖, come before those 
corresponding to the unconstrained components, denoted with 𝑓ଶ௖. The 
identification of 1,  when all available restrictions are used, depends on the 

rank of the Jacobian of the following matrix: 

൤
𝑓ଵ
𝑓ଶ௖

൨ (11) 

We state this point in following result. 
Result 1. The cross-equation restrictions and the covariance restrictions 

conclude that the vector of structural parameters 𝛾 is locally identifiable, when 
both the cross-equation and the covariance restrictions are used, on condition 
that the Jacobian with respect to 𝛾ଵ of the matrix in (11) has full column rank. 
This condition is also necessary for local identification, if the density of the 
structural shocks is assumed to be Gaussian. 

Another expression to understand this result is the implicit function 
theorem. We can write the mean and covariance restrictions in a form as 

ℎሺ𝛾, 𝜏ሻ ൌ 0 (12) 

In other words, the implicit function theorem expresses that a solution 
ሺ𝛾଴, 𝜏଴ሻ of (12) is locally unique if the Jacobian ℎఊሺ𝛾, 𝜏ሻ ൌ 0 has full column 
rank when evaluated at ሺ𝛾଴, 𝜏଴ሻ. 

It should be noted that Theorem 1 can be concluded of Result 1. In this 
case, note that from the definition of 𝑓ଵand equation (10), we have 𝑓ଵ ൌ
𝛹ଶ𝛾ଵ െ 𝛹ଵ. Hence the Jacobian of 𝑓ଵ, with respect to 𝛾ଵ is equal to 𝛹ଶ. If 𝛹ଶ 
has full column rank, the matrix in (11) will also have full column rank. Also, 
since 𝛹ଶ does not depend on the structural parameters, identification in this 
case is global. 

Example 1. Consider the following simple rational expectations model. 
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𝑦௧ ൌ 𝜃𝐸௧𝑦௧ାଵ ൅ ሺ1 െ 𝜃ሻ𝑥௧ ൅ 𝑢௧ 
𝑧௧ ൌ 𝛽𝑧௧ିଵ ൅ 𝜀௧ 

where the endogenous variable y is determined by its expected value in the 
next period, and by the current values of the observed exogenous variable z, 
and by an i.i.d shock u. The exogenous variable z is governed by a stationary 
AR(1) process. Both 𝜃 and 𝛽 are assumed to be positive and smaller than 1. 

Initially, by rewriting the above model to the standard form of (1), we 
have 𝑋 ൌ ሾ𝑦, 𝑧ሿᇱ and 𝛤଴, 𝛤ଵ and 𝛤ଶ as follows: 

𝛤଴ ൌ ቀ1 െሺ1 െ 𝜃ሻ
0 1

ቁ,       𝛤ଵ ൌ ቀ𝜃 0
0 0

ቁ,      𝛤ଶ ൌ ൬
0 0
0 𝛽൰ 

Solving the model, we find that the reduced-form matrix A is given by 

𝐴 ൌ ቀ
𝑎ଵଵ 𝑎ଵଶ
𝑎ଶଵ 𝑎ଶଶ

ቁ ൌ ቌ0
ሺ1 െ 𝜃ሻ𝛽
1 െ 𝜃𝛽

0 𝛽
ቍ 

It is straightforward to express the cross-equation restrictions (6) in the 
form of (10) 

ቀ𝑎ଶଶሺ1 െ 𝑎ଵଶሻ 0
0 െ1

ቁᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ
అమ

൬
𝜃
𝛽൰

ต
ఊభ

ൌ െ ቀ
𝑎ଵଶ െ 𝑎ଶଶ

𝑎ଶଶ
ቁᇣᇧᇧᇧᇤᇧᇧᇧᇥ

అభ

 

For this example there is no difference between structural and reduced 
form parameters, that is, 𝛾 ൌ 𝛼 The rank condition for identification requires 
that the rank 𝛹ଶ. is equal to 2 at the true value of A. Therefore the mean 
restrictions will be sufficient for identification of 𝜃 and 𝛽 only if 𝑎ଶଶሺ1 െ

𝑎ଵଶሻ ് 0.  Using 𝑎ଵଶ ൌ
ሺଵିఏሻఉ

ଵିఏఉ
 and 𝑎ଶଶ ൌ 𝛽, we find that the last condition is 

equivalent to 𝛽ሺ1 െ 𝛽ሻ ് 0 or 𝛽 ് 0 and 𝛽 ് 1 These two conditions are also 
necessary if there are no a priori restrictions on Σ. 

To review the effect of having restrictions on Σ, suppose that ε and u are 
uncorrelated, which implies that Σ is diagonal. Then, from the covariance 
restrictions (7) we obtain an additional equation that could be useful for the 
identification of 𝜃 and 𝛽. The equation is: 

𝛬ଵଶሺ1 െ 𝜃𝑎ଵଵሻ െ 𝛬ଶଶሺ1 െ 𝜃ሺ1 െ 𝑎ଵଶሻሻ ൌ 0 

Thus, the Jacobian of matrix in (11) is: 
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ቌ
𝛹ଶ

𝜕𝑓ଶ௖

𝜕𝛾ଵ

ቍ ൌ ൭
𝑎ଶଶሺ1 െ 𝑎ଵଶሻ 0

0 െ1
𝛬ଶଶሺ1 െ 𝑎ଵଶሻ 0

൱ 

As a result, the model is identified if and only if the rank of this matrix is 
equal to 2. We have the following three cases: 

 𝛽 ് 0 and 𝛽 ് 1, then 𝜃 is identified by both the cross-equation and the 
covariance restrictions; 

 𝛽 ൌ 0, then 𝑎ଵଶ ൌ 𝑎ଶଶ ൌ 0and since 𝛬ଶଶ ൌ 𝜎ఌ
ଶ ് 0, 𝜃 is identified by the 

covariance restrictions only; 
 𝛽 ൌ 1, then 𝑎ଵଶ ൌ 𝑎ଶଶ ൌ 1 therefore 𝜃 is not identified 
An interesting feature of this example is that identification, even if it 

depends on the covariance restrictions, is always global. This is not generally 
true as we noted above. It is true here because of the recursive structure of the 
model, which makes 𝛤଴ െ 𝛤ଵ𝐴 a triangular matrix, and, therefore the equation 
inferred by the restriction on 𝛴 is linear in the structural parameters. 

3.2 Conditions for Identification of   
As we discussed in the previous section, the coefficient matrices 𝛤଴, 𝛤ଵ and 

𝛤ଶ of the model in (1) are typically functions of behavioral or deep parameters. 
In the current empirical DSGE literature, researchers are usually interested in 
estimating deep parameters, and not the structural parameters, which their 
identification was studied in the previous section. In this section, we study the 
identification of the deep parameters 𝛼 ൌ ሾ𝛼ଵ

ᇱ , 𝛼ଶ
ᇱ ሿᇱ. As in the previous section, 

we primarily concerned with the identification of 𝛼ଵ given that, if it is 
identified, 𝛼ଶ will be identified as well. 

We know from section 2 that the identifiability of 𝛼 depends on whether 
the equations in (6) and (7) have unique solutions for 𝛼. A sufficient condition 
for that is given in the following Theorem. 

Theorem 2. The cross-equation restrictions concludes that the vector of 
deep parameters 𝛼 is locally identifiable if the rank of the matrix 

𝛹ଶ
డ௚ሺఈభሻ

డఈభ
, (13) 

equals to k, the dimension of 𝛼ଵ. This condition is sufficient for global 
identifiability, only if the rank is equal to k for all admissible values of 𝛼ଵ. 

As defined in section 2, g is the function mapping 𝛼ଵ into 𝛾ଵ; To understand 
the Theorem, suppose first that 𝛾ଵ is identifiable by the mean restrictions only, 
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which, by virtue of Theorem 1 implies that 𝛹ଶ is of full rank. Then 𝛼ଵ will be 
identified if the equation 𝛾ଵ ൌ 𝑔ሺ𝛼ଵሻ has a unique solution. For a general 
function g we can only determine whether a solution 𝛼ଵ

∗ is locally unique, that 
is, for any other 𝛼ଵ

∗∗ in some neighborhood of 𝛼ଵ
∗, 𝑔ሺ𝛼ଵ

∗∗ሻ ് 𝛾ଵThe condition 
is that the Jacobian𝜕𝑔ሺ𝛼ଵሻ 𝜕𝛼ଵ⁄ , is of full column rank when evaluated at 𝛼ଵ

∗. 
It is important to note, however, that, unless 𝛾ଵ and 𝛼ଵ are of the same 

dimension, we do not need to know the whole vector 𝛾ଵ to identify 𝛼ଵ In other 
words, 𝛹ଶ does not have to be of full column rank, as long as the matrix in 
(13) is. Using the fact that the rank of a product of two matrices is no greater 
than the smaller of the two ranks, we obtain the following result:  

Result 2. A necessary condition for 𝛼ଵ to be locally identifiable by the 
cross-equation restrictions only, is that both 2 .  and 𝜕𝑔ሺ𝛼ଵሻ 𝜕𝛼ଵ⁄ have ranks 

greater or equal to k, the dimension of 𝛼ଵ. 
Theorem 2 tells us when the mean restrictions (6) are sufficient for the 

identification of 𝛼. As before, the covariance restrictions (7) are also 
potentially useful for identifying 𝛼ଵ, if there are a priori restrictions on the 
structural covariance Σ. As in the previous section, the identifiability of 𝛼, 
when both the mean and the covariance restrictions are used, depends on the 
rank of the Jacobian of the matrix in (11). 

Result 3. The vector of deep parameters 𝛼 is locally identifiable when both 
the cross-equation and the covariance restrictions are used, on condition that 
the Jacobian with respect to 𝛼ଵ of the matrix in (11) is equal to k, the 
dimension of 𝛼ଵ This condition is also necessary for local identifiability of 𝛼ଵ 
if the density of the structural shocks is assumed to be Gaussian.  

The difference between Result 3 and Result 1 is that here the derivatives 
are taken with respect to the deep parameters 𝛼ଵ, instead of 𝛾ଵ. As with 
Theorem 2 the following corollary follows immediately. 

Result 4. A necessary condition for 𝛼 to be locally identifiable by the 
cross-equation and covariance restrictions is that both the Jacobian with 
respect to 𝛾ଵ of the matrix in (11), and 𝜕𝑔ሺ𝛼ଵሻ 𝜕𝛼ଵ⁄  have ranks greater or 
equal to k, the dimension of 𝛼ଵ. 

Clearly, there is order conditions associated with the rank conditions given 
above and in Result 2. For a matrix to have a rank equal to k, its row and 
column dimensions must be greater or equal to k. This implies that the row 
dimension of the matrix in (11) must not be less than k, and also, that there 
must be at least k structural parameters, i.e. we must have 𝑙 ൒ 𝑘. 

Since 𝛾 depends on 𝛼ଵ only through 𝛾ଵ, it should be clear that the 
covariance restrictions are useful for the identification of 𝛼 only as far as they 
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help identify 𝛾ଵ. If the cross-equation restrictions are sufficient for the 
identification of 𝛾ଵ, that is, if 𝛹ଶ is of full column rank, all one needs to 
determine is whether there is a unique solution of the equation𝛾ଵ ൌ 𝑔ሺ𝛼ଵሻ. In 
this case, the rank condition on the Jacobian of 𝑔 is both necessary and 
sufficient for identification of 𝛼ଵ. 

Example 2. Consider the following simple rational expectations model. 
𝑦௧ ൌ 𝛾ଵଵ𝐸௧𝑦௧ାଵ ൅ 𝛾ଵଶ𝑦௧ିଵ െ 𝛾ଵଷሺ𝑟௧ െ 𝐸௧𝜋௧ାଵሻ ൅ 𝜐௧ 

𝜋௧ ൌ 𝛾ଶଵ𝐸௧𝜋௧ାଵ ൅ 𝛾ଶଶ𝑦௧ ൅ 𝛾ଶଷ𝜋௧ିଵ ൅ 𝑒௧ 
𝑟௧ ൌ 𝛾ଷଵ𝜋௧ିଵ ൅ 𝛾ଷଶ𝑦௧ିଵ ൅ 𝛾ଷଷ𝑟௧ିଵ ൅ 𝜉௧ 

𝜐௧ ൌ 𝛾ସଵ𝜐௧ିଵ ൅ 𝜈௧ 
𝑒௧ ൌ 𝛾ହଵ𝑒௧ିଵ ൅ 𝜀௧ 

where the vector of structural parameters 𝛾ଵ is related to the deep parameters 
𝛼ଵ as follows: 

𝛾ଵଵ ൌ
𝜒

1 ൅ 𝜒
,      𝛾ଵଶ ൌ

1
1 ൅ 𝜒

,      𝛾ଵଷ ൌ െ
1
𝜓

; 

 

𝛾ଶଵ ൌ
𝛽

1 െ 𝜛𝛽
,     𝛾ଶଶ ൌ

ሺ𝜓 ൅ 𝜈ሻሺ1 ൅ 𝜁𝛽ሻሺ1 െ 𝜁ሻ
ሺ1 ൅ 𝜛𝛽ሻ𝜁

,     𝛾ଶଷ ൌ
𝜛

1 ൅ 𝜛𝛽
; 

 
𝛾ଷଵ ൌ ሺ1 െ 𝜆௥ሻ𝜆గ,     𝛾ଷଶ ൌ ሺ1 െ 𝜆௥ሻ𝜆௬,     𝛾ଷଷ ൌ 𝜆௥; 

𝛾ସଵ ൌ 𝜌ଵ,     𝛾ହଵ ൌ 𝜌ଶ. 
 
There are 14 deep parameters in this model, 11 of them are 𝛼ଵ ൌ

ሾ𝛽, 𝜒, 𝜛, 𝜓, 𝜈, 𝜁, 𝜆௥, 𝜆గ, 𝜆௬, 𝜌ଵ, 𝜌ଶሿᇱ and the other 3 are 𝜎 ൌ ሾ𝜎ఔ, 𝜎ఌ, 𝜎కሿᇱ. 
First, we will review the necessary condition for the rank of 

1 1( ) .g     

According to Result 4, if the rank is less than 11, then 𝛼 is not identified. 
Because there are 11 structural parameters 𝛾ଵ, the dimension of 𝜕𝑔ሺ𝛼ଵሻ 𝜕𝛼ଵ⁄  
is 11 ൈ 11 so it passes the order condition. The necessary rank condition fails 
due to the fact that two of the structural parameters 𝛾ଵଵ and 𝛾ଵଶ depend on 
single deep parameter 𝜒. Because of this, the first two rows of 
𝜕𝑔ሺ𝛼ଵሻ 𝜕𝛼ଵ⁄  are not linearly independent, and, therefore, the rank is less than 
11. Another way to see this is by noting that two of the deep parameters 𝜁 and 
𝜈 appear in only one of the structural parameters 𝛾ଶଶ. Therefore, unless 
additional information is available, 𝜁 and 𝜈 are not identifiable. Proceeding in 
the same manner, we find that all other parameters can be solved for if 𝛾ଵ is 
known. All except 𝛽 and 𝜛 are globally uniquely determined, and, 𝛽 and 𝜛 
are only locally uniquely determined.  
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This implies that 𝜒, 𝜓, 𝜆௥, 𝜆గ, 𝜆௬, 𝜌ଵ, 𝜌ଶ, 𝜎ఔ, 𝜎ఌ, 𝜎క  will be globally 
identifiable,   and 𝜛 locally identifiable, and, 𝜁 and 𝜈 - unidentifiable, if 𝛾ଵ 
can be identified. From Theorem 2 a sufficient condition for identification of 
𝛾ଵ is that matrix 𝛹ଶ from (10) has a full column rank. As we show in the 
Appendix, 𝛹ଶ is of full column rank for the parameter values used in Canova 
and Sala (2009). Therefore, for those parameter values, 𝛾ଵ is globally 
identified by the mean restrictions only. 

4 Simulation 
In this section, we report the results from several Monte Carlo experiments. 
The goal of the experiments is to obtain evidence on the relative performance 
of the ML estimator for models with the weakly identified structure to evaluate 
the practical importance of using covariance restrictions in estimation. 

4.1 The Model 
The simulated data for all experiments comes from the log-linearized version 
of a small monetary New Keynesian model for Iranian economy, as an Islamic 
country; it consists of the following three equations: 

𝑥௧ ൌ 𝜃௙𝐸௧𝑥௧ାଵ െ 𝜃௕ሺ𝑖௧ െ 𝐸௧𝑥௧ାଵሻ ൅ 𝜀௧, (14) 
𝜋௧ ൌ 𝜓𝐸௧𝑥௧ାଵ ൅ 𝛽௙𝑥௧ ൅ 𝜈௧, (15) 

𝑚௧ ൌ
ఉ್

ఏ್
𝑐௧ െ

ఉ್

ఒ
𝑖௧, (16) 

𝑀௧ ൌ 𝑚௧ െ 𝑚௧ିଵ ൅ 𝜋௧, (17) 
𝑀௧ ൌ 𝜌௬𝑀௧ିଵ ൅ 𝜌గ𝜋௧ ൅ 𝜌௥𝑥௧ ൅ 𝜁௧. (18) 

Equation (14) is a log-linearized Euler equation at time t, equation (15) is 
a Phillips curve and equation (16) is the monetary policy rule. All structural 
shocks - 𝜀, 𝜈 and 𝜁 are assumed to be mutually and serially uncorrelated white 
noise processes. 

Table 1 
Details on the Monte Carlo Design 

Parm
. 

Con
d 𝜃௙

 
𝜃௕ 𝜓 𝛽௙

 
𝛽௕  𝜆 𝜌గ 𝜌௬ 𝜌௥ 𝜎ఌ  𝜎ఔ  𝜎఍  

P1 8.8 .60 .40 .15 .50 .30 .50 .200 .010 .900 1 1 1 

P2 220 .63 .00 .01 .48 .52 .01 .254 .095 .845 1 1 1 

P3 552 .10 .00 .17 .50 .30 .50 .254 .095 .845 1 1 1 

note. Cond refers to the condition number of matrix 𝛹ଶ and is a measure for parameter 
identifiability; high values indicate weak identification. Source: Authors’ Findings. 
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The vector of structural parameters that will be estimated is 𝛾 ൌ
ሾ𝜃௙, 𝜃௕, 𝜓, 𝛽௙, 𝛽௕, 𝜆, 𝜌గ, 𝜌௬, 𝜌௥, 𝜎ఌ, 𝜎ఔ, 𝜎఍ሿ ᇱ. The Monte Carlo experiments 
differ in the values of used to generate data for 𝑋 ൌ ሾ𝑥, 𝜋, 𝑚ሿᇱ. We present 
results for the three different parameterizations P1, P2, and P3, shown in Table 
1. They were chosen as examples of environments with different degrees of 
parameter identifiability. The second column in the table shows the condition 
number of matrix 𝛹ଶ; We use this as an indicator of how well 𝛾 is identified. 
The condition number of 𝛹ଶ tells us how far will the estimate 𝛾ොଵ be when 𝛹෡ଵ 
and 𝛹෡ଶ are different from the true values 𝛹ଵ and 𝛹ଶ. We use the @rcommand 
cond instruction in MATLAB software to calculate the condition number; 
larger values of condition number mean that the identification of the models 
is weaker. Each experiment consists of generating 1000 samples of size 
T=150. The samples are obtained by solving the model (14) - (18) and using 
the reduced-form matrices to generate 1200 observations of Z; only the last 
200 observations are used in estimation to eliminate the influence of the initial 
conditions. 

4.2 Estimation 
We estimate the parameters of the model in (14) - (18) using maximum 
likelihood estimator (ML). Each estimator is applied with and without making 
use of the covariance restrictions, resulting in two different estimates for 𝛾 
When the covariance restrictions are not used in estimation, we first estimate 
the parameters in 𝛾 without the three 𝜎,̓s, and then use the covariance 
restrictions to solve for the 𝜎,̓s. The ML estimator is obtained by directly 
maximizing the likelihood of reduced form VAR, subject to the restriction 
implied in the model. The likelihood is computed assuming that the structural 
shocks follow a multivariate Gaussian distribution. 

4.3 Monte Carlo Results 
The Monte Carlo results are presented in Table 2. For each of the three 
experiments, we report the Mean Bias and the Root Mean Squared Error 
(RMSE). In this Table, the first column depicts the results when the covariance 
restrictions are not used in the estimation, and the second column shows 
results when all restrictions are used. 

Wherever the covariance restrictions are used in estimation, affects not 
only the ranking of the estimator but also improves their performance 
substantially in terms of Bias and RMSE. For most parameters, Bias and 
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RMSE decreases when the covariance restrictions are used. Notable 
exceptions are the parameters 𝜃௙ and 𝜓 when data generated by P3; for this 
case, RMSE increases from 5.9 and .67 to 6.66 and .93 respectively. This 
observation is interesting because the weak identification in parameterizations 
P3 is mostly due to weak identifiability of the parameters in equation (14). 
This can be seen by comparing the RMSE's for the parameters in that equation 
for the three parameterizations. It suggests that using only the cross-equation 
restrictions may be better for the ML estimator when some of the parameters 
are weakly identifiable.  

Table 2 
Monte Carlo Results 

Par.  P1  P2  P3 
  Bias 

𝜽𝒇  ‐0.116  ‐0.081  ‐0.831  ‐0.457  ‐0.269  ‐0.377 

𝜽𝒃  0.124  0.107  0.024  0.018  0.122  0.106 
𝝍  ‐0.053  ‐0.048  ‐0.178  ‐0.199  ‐0.104  ‐0.200 
𝜷𝒇  0.027  0.092  0.023  0.023  0.103  0.022 

𝜷𝒃  0.012  ‐0.003  ‐0.045  ‐0.031  ‐0.022  ‐0.015 
𝝀  0.023  ‐0.051  ‐0.016  ‐0.017  ‐0.077  ‐0.045 

𝝆𝝅  ‐0.022  ‐0.099  ‐1.581  ‐0.001  ‐1.335  0.113 
𝝆𝒚  0.064  0.106  0.048  0.003  0.247  ‐0.018 

𝝆𝒓  0.007  0.000  ‐0.012  0.004  0.035  0.050 
𝝈𝜺  0.691  0.020  0.805  0.008  0.625  0.036 
𝝈𝝂  0.683  0.089  0.149  ‐0.047  ‐0.084  ‐0.302 
𝝈𝜻  0.537  ‐0.026  3.535  ‐1.170  4.413  ‐0.116 

  RMSE 
𝜽𝒇  0.779  0.665  3.635  2.447  5.897  6.532 

𝜽𝒃  0.534  0.445  0.094  0.070  0.776  0.641 
𝝍  0.493  0.465  0.877  0.859  0.675  0.932 
𝜷𝒇  0.985  0.677  0.303  0.296  1.084  0.415 

𝜷𝒃  0.275  0.255  0.417  0.411  0.422  0.037 
𝝀  0.754  0.555  0.230  0.243  0.560  0.414 

𝝆𝝅  1.355  1.349  6.156  0.828  6.838  0.887 
𝝆𝒚  1.133  0.890  0.180  0.049  1.314  0.266 

𝝆𝒓  0.868  0.810  0.866  0.862  0.970  0.948 
𝝈𝜺  2.945  1.180  5.734  1.019  5.077  2.025 
𝝈𝝂  3.480  1.314  3.461  1.290  3.542  1.337 
𝝈𝜻  4.850  1.235  5.778  0.967  6.655  2.153 

Source: Authors’ Findings. 
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5 Conclusion 
In this paper, we take a starting point with the cross-equation and covariance 
restrictions that characterize linearized DSGE models and show how they can 
be used to study the identification of the parameters of such models. We derive 
a set of identifiability conditions and suggested a procedure for a thorough 
analysis of identification at each point in the parameters space. The procedure 
can be applied before DSGE models are estimated, to determine where 
identification fails, where it likely to be weak, and where the identification 
problems originate. We also use a Monte Carlo simulation and study the effect 
of restrictions on the estimate. The results show that the use of restrictions for 
estimation, when identification is reduced, leads us to inaccurate estimates and 
unreliable inference even when the number of observations is large.  

A useful extension of the identification results presented here would be to 
find a systematic way of attributing detected identification issues to specific 
model parameters. We can generalize the results of this paper only to specific 
equations. For instance, if a rank deficiency, indicating identification failure, 
or near rank deficiency, suggesting a weak identification, is found, we are able 
to find the particular equations, but not the causative parameters in those 
equations.  
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