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Abstract  
The primary purpose of investors is maximizing the utility that is characterized by two 
essential criteria include risk and return. Regarding investors' uncertainty about the 
future, one of the main ways to reduce risk is to diversify the investment portfolio. In 
this research, we proposed an index conducted by Euclidean distance for assessing 
portfolio diversity. Besides, we designed a multi-objective model to select optimal 
stock portfolios with considering value at risk (VaR), which is one of the critical 
indicators of unacceptable risk, portfolio Beta as systematic risk, and portfolio 
variance as unsystematic risk simultaneously. The model presented in this paper aims 
to maximize diversification while minimizing value at risk and stock risks. 
Furthermore, maximizing returns are considered as a limitation of this model. Since 
the proposed model is nonlinear and concerning computational complexity, it is NP-
hard; therefore, we utilized the PSO and the GE metaheuristic algorithms that are 
improved for solving multi-objective problems to solve the model. The results of the 
model implementation in multiple iterations showed that the average yield of selected 
portfolios by the model is higher than the desirable condition. The evaluation of stock 
performance indicators also shows the satisfactory performance of the multi-objective 
model. 
Keywords: Systematic/Unsystematic risks, VaR, Diversity index, Portfolio 

optimization. 
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Introduction 

The current literature highlights the importance of choosing the optimal set of 

investments in the capital market to maximize the expected wealth of investors. 

In doing so, an investor needs proper methods or criteria to identify and 

measure the potential value of each investment opportunity. These criteria 

should be sufficiently reliable and accurate so that investors can decide with 

high confidence and low risk. Risk and returns are two main critical factors in 

capital market decisions. The selection of a set of stocks, called portfolio, is 

usually driven by the interaction between risk and return. The higher the risk of 

an investment, demands a higher return (Jones, 2010). 

Since the early 1950s of the inauguration of modem portfolio theory, the 

rate of return and the risk of a portfolio has been recognized as the most 

important factors for investors in every capital market. Markowitz theory 

(1952) proved that the risk and returns could be at an optimal point by 

investing in a diversified portfolio of financial assets . The degree of risk-taking 

among individuals is a tradeoff between risk and expected return, and asset 

returns are unpredictable or risky. Diversification means choosing different 

financial assets to reduce the risk of one specific asset. A diversity index is a 

mathematical measure that can show how much the initial wealth is distributed 

between different assets. In other words, the diversity index contributes 

investors to choose the appropriate number of assets for investing based on 

their initial wealth. Diversity has many advantages including aggregate 

competition in the capital market, maximizing investor wealth and mitigates 

portfolio risk (Chan, Peter, and William, 1989).  According to the stock 

portfolio theory, portfolio risk is not only affected by the average standard 

deviation, but also by the diversity of investment. In other words, the larger the 

variety in an investment portfolio, the lower would be the risk (Reilly and 

Keith, 2002).  This goal requires that the variability of the return on a particular 

asset be adjusted to the variability of the return on other assets in the portfolio, 

which would reduce the unsystematic risk (Platanakis, Athanasios, and 

Charles, 2018; Jackwerth, and Anna, 2016) 

This research seeks to provide an alternative model to select the optimal 

stock portfolio and a useful tool to estimate the degree of diversification by 

adjusting risk win returns. VaR,   which is one of the significant indicators of 

undesirable risk, is integrated with systematic and unsystematic risks when 

forming a portfolio. We also present the Euclidean distance measure for stock 

portfolio diversification and formulate a multi-objective model to choose 

optimal stock portfolios. The Euclidean distance is a novel measure to index 
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the level of diversity in the portfolio, this index calculates the distance between 

different assets and optimizes the diversification. The results of the model are 

compared with Sterling diversity index which is a well-known index that 

integrated variety and balance into a dual concept that can explicit the 

condition of different parts of society. The model attempts to maximize 

diversification by minimizing the VaR and stock risk. 

Moreover, maximizing returns are considered to be a constraint of this 

model. A genetic algorithm is used to optimize the nonlinear multi-objective 

model and compare the results of different dimensions to validate the 

framework. The results display that the average yield of selected portfolios by 

the model is higher than the desirable condition and confirm the positive 

performance of the multi-objective model. 

According to investment theory, financial asset's risks can be classified 

into systematic risk and unsystematic risk. An unsystematic risk, referred to a 

controllable risk, is exclusive to an asset because the risk is related to a portion 

of the return on an asset. This amount of risk is specific to a company or an 

industry, and it is due to several factors such as worker strikes, management 

practices, advertising competition, and changes in consumer tastes. Systematic 

risk, an uncontrollable risk, is related to the general market conditions such as 

interest rates, the national currency rate fluctuations, inflation rates, monetary 

and financial policies, and political conditions (Gagliardini, and Christian, 

2013) Systematic risks cannot be eliminated at all ( Kim et al. 2018). 

Markowitz (1952) suggests that the risk and returns could be at an 
optimal point by investing in a diversified portfolio of financial assets.  He 
created two-directional reforms in the management of investment, with the idea 
that a financial decision to be taken from the swap between risk and the return 
of the stock market. First, he assumed that the investor performs a quantitative 
evaluation of the risk and return of the stock portfolio at the same time pays 
attention to integrate the portfolio return and the motion of the portfolio 
returns, which it is the main idea of diversification. Second, the financial 
decision-making process assumes to be an optimization problem; the investor 
chooses a portfolio among the various types of available combinations which 
has the least variance (Georgalos, Ivan, and David, 2018). Markowitz approach 
is a diversification method that is used in the analysis of the portfolio of 
investments. This kind of diversification involves the inclusion of covariance 
between the securities and the combination of less correlated capital assets to 
reduce the risk in the portfolio without jeopardizing returns. In other words, the 
less correlation in an investment portfolio will reduce the risk of the portfolio 
(Francis, and Dongcheol, 2013). 
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Other methods introduced include the use of the Hirschman-Herfindahl 

Index (HHI) and the Shannon entropy index (Chen, Yong, Xianhua, and 

Lingling, 2014). Oh, et al. (2005)  used a genetic algorithm to optimize the 

index-based portfolio. Their goal was to build a portfolio that had the same 

performance as the stock index. The proposed algorithm was applied to one of 

the Korean stock market indices from 1999 to 2001 and was compared with 

traditional methods of constructing the index-based basket. The results show 

that the genetic algorithm has many advantages over traditional methods when 

the fluctuations of the market are increasing. It is fully effective and shows the 

average performance when the market trend is constant. 

Research background 

This study contributes to the literature as follows:  First, we develop an 

innovative multi-objective mathematical model by combining VaR and 

portfolio diversification as a task to optimize portfolio, stock returns, and risks. 

Second, we consider both systematic and unsystematic risks in the model 

formulation using the Euclidean distance criterion as a tool for the quantitative 

assessment of the diversity index. Third, we apply a real-world case study to 

verify the proposed model and solve the proposed model using two robust 

meta-heuristic algorithms. Fourth, the model can be tested in any other capital 

market in the world.  

Applying the diversification strategy to portfolio optimization is 

considered by many scholars and organizations (Steinberg, 2018; Pola, 2016; 

Briere, Kim, and Ariane, 2015; Dang, 2019; Kara, Ayşe and Gerhard-Wilhelm, 

2019; Paut, Rodolphe, and Marc, 2019; Aluko, Oladapo, and Bolanle, 2018; 

Beaudreau, Maggie, and Philip, 2018). For instance, Liu (2018) used 

experimental data of several key cryptocurrencies to study the role of diversity 

and investment in the digital asset market. Similarly, Kajtazi et al. (2018) 

searched the effects of considering bitcoin to the ideal portfolio using the 

mean-CVaR method. They reported that this consideration could play a 

significant role in portfolio diversification. 

Diyarbakırlıoğlu and Satman (2013) offered a new approach to evaluate 
the diversification risk of an investment portfolio by the covariance matrix of 

returns. They solved their problem using Maximum Diversification Index 

(MDI) through the genetic algorithm. Their problem is verified by existed 

stock returns data, and results show the MDI can be powerfully applied to 

define a large set of investable assets. Oyenubi (2016) reported an acceptable 

description for the elusiveness of the optimum amount of stocks in a portfolio. 

He used the Portfolio Diversification Index (PDI) to quantify diversification. 
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Having used a novel quantification approach, Oyenubi attempted to quantify 

the level of the interdependency of stocks in a set, and the problem is solved by 

using Pareto based algorithm to find optimal portfolios. Jadhao and Chandra 

(2017) utilized sample entropy and approximate entropy indicators for 

diversifying portfolio in the rotation strategy based on size and style. Oloko 

(2018) investigated the benefits of diversification in Nigeria’s stock market. 
Kalashnikov et al. (2017) suggested a new integrated approach to address the 

Lean Six Sigma project portfolio and solved the problem using a binary mixed-

integer bi-objective quadratic model. Their model is solved via branch-and-

bound solver of CPLEX software, and it is verified using numerical examples. 

Chang et al. (2009) examined the optimization of the portfolio 

considering different scales for risk measurement using a genetic algorithm. In 

their research, the genetic algorithm was used because of its ability to solve 

complex problems in various risk assessments. The results showed that most of 

the optimization problems, including cardinal limitations, can be solved 

through a genetic algorithm within a reasonable time; if the mean-variance, 

semi-variance, and variance associated with skewness are used as a risk 

measurement criterion. He also found that the smaller portfolio has better 

performance than a larger one. The stock returns derived from the genetic 

algorithm are less than other models, but risk reduction and adjusted risk-based 

criteria offset the reduction in returns implying the superiority  of the response 

from the genetic algorithm.  

Investors should consider the following rules when launching their 

diversification strategy.  First, the whole investment portfolio in one stock does 

not have a significant impact on the overall strategy.  Second, targeting a 

maximum of 20 stocks in the portfolio would result in better control of the 

managerial costs.  Third, investing more than 10% in one stock is not 

recommended because it can be against diversification. Forth, to achieve 

optimal diversity, the focus on investing in companies that significantly are 

affected by others should be avoided; because they are affiliated companies or 

large suppliers or customers. Investing in a large company that is affected by 

others, may prevent diversification. 

Mathematical Model 

Assumptions 

First, investors are generally risk-averse and more interested in higher expected 

returns per less risk, yet they seek to balance between risk and returns.  As a 

result, the stock portfolio is selected based on minimizing the amount of fitness 
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function. Second, investors do not tend to invest in a small stock that has low 

liquidity, and there are no restrictions on transaction costs and taxes.  Third, 

there are no restrictions on the market and the short sale.  A mathematical 

model to consider portfolio diversity, stock returns, and risks simultaneously 

are developed from a portfolio analysis viewpoint. To this end, at first, we 

provide the assumptions, indices, parameters, and decision variables of the 

proposed model and then using these relevant components, we formulate the 

mathematical model.  

Indices 

j=1,2,…,n Index of stocks of active investor companies 

t=1,2,…,T Time period index 

Parameters 

rjt  The returns of stock j in the period t 

ȓj The average return on stock j 

σj
2  The variance of stock j 

σij Covariance between stock i and j 

dij Euclidean distance between two selected stocks i and j 

n Total number of stocks in the portfolio 

T Number of time periods past 
k Number of related characteristics of each stock  

βj Systematic risk of stock j 

Sjk The value of characteristic k from the stock j 

M A big positive number 
EΩ

max 
Maximum possible expected returns of the stock portfolio 

α Desired confidence level 

U The maximum investment in stocks 

λ Percentage of the minimum expected return of the portfolio 

MaxNp The maximum number of stocks to be selected for the investment 

portfolio 

Decision variables 

xj Percentage of stock j in the  investment portfolio 

qj Equal to 1, if the stock j is in the investment portfolio; otherwise 0 

yt Equal to 1, if the portfolio returns in time t are negative, otherwise 0 

VaR VaR 

SR The systematic risk value of the investment portfolio 
USR The unsystematic risk value of the investment portfolio 
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Multi-objective model 

After describing the relevant components, the proposed multi-objective model 

can be formulated as follow. This model has three main objective functions 

that attempt to maximize stock diversification and minimize VaR and stock 

risks. Three mentioned objective functions along with its relevant constraints 

shows as follow: 

Objective functions 

1

1 1

:
n n

ij i j

i j

Max Z d x x i j
= =

= × × ≠∑∑    
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{ }0,1jq j n∈ ∀ ∈  (15) 
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,
K

ij ik jk

k
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=

= − ∀ ∈∑   (16) 
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2
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r r
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×

=  
(19) 

The objective function (1) is to maximize the diversity of stock portfolio. 

Since the distance is an essential component to measure the difference between 

elements, then this criterion should play a fundamental role in the classification 

of investments. Therefore, variety can be calculated using the difference 

betweenetheeelements.aAccordingly, aiportfolio of stocks as N={S1, S2, …, Sn} 
is considered, and the Euclidean distance between the two selected stocks i and 

j is defined using equations (16) to (18). Finally, the integrated multi-criteria 

diversity index based on the Euclidean distance between each pair of elements 

can be introduced as D=∑ni=1 ∑nj=1 dij xixj. In this regard, increasing the 
value of 𝐷 means increasing the variation between items. Then, the variety of 

elective elements is estimated as total Euclidean distances between each pair of 

them. 

On the other hands, the objective function (2) is to minimize the 

systematic risk and unsystematic risk. Different indices have been proposed for 

risk measurement of stock portfolios, including the portfolio standard deviation 

introduced by Markowitz (1952). In order to calculate the variance of the stock 

portfolio, the weight of each share must be determined (xj) in the stock 

portfolio. The stock variance is calculated as equation (4) which represents the 

unsystematic risk. Also, equation (5) measure the systematic risk of the stock 

portfolio to calculate parameter βj the equation (19) is used. The objective 

function (3) is to minimize VaR which it represents the risk of loss for 

investments and estimates how much of the investment may be lost within a 

given time period when the market condition is stable. 

Equation (6) implies that the purchased stocks must be precisely the same 

as all available resources. Constraints (7) shows that the selected stocks in an 

investment portfolio should be less than or equal to the appropriate maximum 
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amount. Constraints (8) specified an upper bound for the weight of each share 

(xj) in the stock portfolio if this stock is selected, it can increase the 

diversification of the stock portfolio. In determining the upper bound for the 

decision variables, the investor's opinion is decisive, and it is determined by the 

minimum number of shares which the investor is willing to invest in them. 

Constraints (9) shows that the portfolio returns plus the VaR is related to the yt. 

Equation (10) shows that in α percentage ofnt�me the variableeyt is equal to one. 

When this variable is equal to one, the corresponding constraint in the first 

constraints category is redundant, in other words, the portfolio returns in α 
percent of the time or in [αT] of the time period can be negative. For the rest of 

the time, yt is equal to zero; it means the portfolio returns plus the VaR in 

periods that portfolio return is negative should be greater than zero. In 

constraints (11) ȓj represents the average return of each stock and EΩ
max

 is the 

maximum expected return of the stock’s portfolio and the expression (1-λ) 
EΩ

max
 indicates the minimum expected return of the portfolio. Given that the 

portfolio return is assumed to be the weighted sum of the return, the value of 

EΩ
max

 can be calculated using the equation (12). Finally, constraints (13)-(15) 

show the binary or non-negative decision variables.  

Solution approach 

To solve the proposed multi-objective model, two well-known meta-heuristics 

algorithms including a genetic algorithm (GA), and particle swarm 

optimization (PSO) are used. Moreover, Lingo software is used to obtain the 

ideal values of each objective functions. 

Genetic Algorithm (GA) 

GA is a highly effective and efficient random and meta-heuristic optimization 

method that has been used to solve many complex problems developed by 

Holland (1974). In this algorithm, first, the problem variables are chosen 

randomly; then they are combined to draw other points. GA as one of these 

algorithms is basically a computer search method composed of the gene and 

chromosome structures.  

This algorithm initially begins with a set of random solutions 

(chromosomes) which is known as the population base, and then the value of 

each chromosome is determined according to the fitness function. Therefore, 

higher qualities of chromosomes have a greater chance of producing offspring; 

on this basis, the choice of parents is taken, and then the offspring are created 

by crossover operator on the parents. Finally, some of the genes of the 

offspring change with the mutation process, and then the new offspring are 
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replaced with the weakest chromosomes in the initial population. The main 

steps to solve an optimization problem via GA can be illustrated as Figure. 1 

Also, the mutation and crossover operators are presented in (Holland, 1974), 

and the reader advised to see the research. 

Step 1. Create the initial population; 

a) Generate random chromosomes. 

Step 2. Perform the main loop; 

b) Calculate the fitness functions of each chromosome. 

c) Select two chromosomes from the initial population using the roulette-

wheel operator. 

d) Do a crossover operator. 

e) Do  mutation operator. 

f) Repeat steps b to e until enough members to form the next generation be 

created. 

Step 3. Repeat step 2 while stopping criteria is not satisfied. 

Step 4. Display the obtained results. 

Figure 1. The pseudo-code of the genetic algorithm 

In the face of multi-objective optimization problems, one of the 

approaches to solving is to use an LP-metric approach which was introduced 

by Zelany (1974). This method is one of the compromise programming 

methods, and it works without achieving knowledge from the decision-maker, 

and it attempts to minimize the distance between some of the reference points 

and the probable solution (deviation). In this method, the choice of the 

reference point and the criterion for measuring the distance is an important 

topic. 

Based on this model, each objective of the problem (k objectives) is 

solved separately, and after normalizing, the answers are combined to find the 

optimal solution (the optimal answer that is the closest answer to the ideal 

answer). The mathematical form of this method can be displayed as follows. 

*

*
1

p
k

l l

l l

Z Z
Minimize Z

Z=

 −
=  

 
∑   

(20) 

p=1 refers to the same weight of all deviations, and an increase of 𝑝 

means more weight of larger deviations. Now, to form a fitness function (goal) 

for using in the genetic algorithm, the LP-metric approach is used according to 
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the following form: 

** *

3 31 1 2 2

* * *

1 2 3

Z ZZ Z Z Z
Minimize Z

Z Z Z

−− −
= + +   

(21) 

Where 𝑍1 is the objective function of the greatest diversity 

(diversification), 𝑍2 is the objective function of total risks includes systematic 

and unsystematic risks, and 𝑍3 is the objective of the VaR. Also, 𝑍1
*
, 𝑍2

*
, and 

𝑍3
*
 are the optimal amount of each of the objectives in terms of the problem 

constraints. 

Particle Swarm Optimization 

Eberhart and Kennedy (1995) proposed a particle swarm optimization 

algorithm which is inspired by the social behavior of animals, such as the 

collective migration of birds and fishes. Initially, this algorithm was used to 

explore the effective patterns on the simultaneous flying of birds, the sudden 

change of direction, and the optimal deformation of their groups. The change in 

the location of birds in the search space is influenced by the experience and 

knowledge of themselves and their neighbors. Therefore, the position of other 

birds affects the search of a bird. The result of the modeling of this social 

behavior is the process of searching for birds in the direction of successful 

areas. Birds learn from each other and move on to their best neighbors based 

on their knowledge. The basis of this algorithm is on the principle that at any 

given moment, each bird adjusts its location in the search space, according to 

the best place ever located and the best place in its entire neighborhood. The 

following relationships are also used to update the velocity and location of each 

of the particles. 

1 1 . 2 2 .( ) ( 1) ( ( 1)) (P ( 1))i i i best i g best iV t w V t c rand P x t c rand x t= × − + × − − + × − −
 

  (22) 

( ) ( 1) ( )i i ix t x t V t= − +    (23) 

Where w is the inertial weighting factor or moving in its path, which 

indicates the effect of the velocity vector of the previous iteration (Vi (t-1)) on 

the velocity vector in the current iteration (Vi (t)). Also, c1 and c2 represent the 

constant coefficient of training or motion in the direction of the best value of 

the examined particle and the best value among all population, respectively. 

Moreover, rand1 and rand2 are two random numbers with uniform distribution 

in (0, 1). The xi (t) and xi (t-1) represent the position vector of particles in the 

current iteration and previous iteration, respectively. 

The best position found for particle i is defined by Pi .best while Pg .best 
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represents the best position found by the best particle among all particles. 

To prevent the excessive movement speed of a particle when they move 

from one location to another or velocity vector divergence, the velocity 

variations are limited to (Vmin ≤ Vi (t) ≤ Vmax). The pseudo-code of the particle 

swarm optimization algorithm is presented in Figure. 2. 

Initialize particle 

For each particle 

Calculate fitness value of the particle fi 

/*updating particle’s best fitness value so far*/ 
If fi is better than Pi .best 

Set current value as the new Pi .best 

End For 

/*updating population’s best fitness value so far*/ 
Set Pg .best to the best fitness value of all particles 

For each particle 

Calculate particle velocity according to equation (22) 

Update particle position according to equation (23) 

Calculate the fitness value of the particle fi 

/*Updating population’s best fitness value so far*/ 
Set Pg .best to the best fitness value of all particles 

End For 

End 

Figure 2. The pseudo code of particle swarm optimization algorithm 

Also, the chromosome used for these two algorithms is shown in Figure. 

3 By way of example, we suppose that eight stocks (j=5) exist and MaxNS=5. 

So, activate genes of the chromosome is less than or equal to MaxNS (see 

constraint (7). For instance, it supposed with 5 includes gens 1, 3, 4, 6, and 7. 

The initial chromosome with random data between (0, 1) are generated which 

sum of them be equal to 1 (based on the constraint (6) of the model). So, the 

proposed chromosome represents the percentage of stock j in the investment 

portfolio (xj). 

0.23 0 0.17 0.11 0 0.14 0.35 0 

Figure 3. The example of proposed chromosome used by algorithms 

Parameter setting 

Here, the parameters of algorithms are tuned to achieve the best performance, 

to this end Taguchi method are used (Taguchi, 1986). This method as one of 
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the designs of experiments approaches seeks to tune parameters using a set of 

the orthogonal array instead of full factorial experiments. To perform this 

method, Minitab software is utilized, and since the LP-metric approach is used 

to combine objective functions, so following response as “smaller is the better” 
for Signal-to-Noise ratio is used. 

S/No= −10×log(Σ(Y2
)/n))  (24) 

To do this at first, the levels of the parameters of each algorithm are 

provided in Table 1. Then, by performing the Taguchi method using Minitab 

software, the orthogonal arrays L
9
 and L

27
 are chosen for GA and PSO 

respectively. Finally, these two algorithms are ran using these sets of 

experiments and the results are presented in Tables 2-3. Furthermore, to decide 

on these results the Signal-to-Noise plots are illustrated in Figure. 5-6. 

Table 1. The parameters levels of each algorithm 

Algorithms Parameters 
Parameters level 

Level 1 Level 2 Level 3 

PSO 

C1 0.5 1 2 

C2 0.5 1 2 

W 0.5 0.75 1 

N-pop 100 200 300 

Max iteration 200 400 600 

GA 

Pc 0.7 0.8 0.9 

Pm 0.05 0.10 0.15 

N-pop 100 200 300 

Max iteration 200 400 600 

Table 2. The orthogonal array L
9
 and results for GA  

Pc Pm N-pop Max iteration Response 

0.7 

0.7 

0.05 

0.1 

100 

200 

200 

400 

25.23688 

27.47174 

0.7 0.15 300 600 26.57779 

0.8 0.05 200 600 26.85483 

0.8 0.1 300 200 25.36971 

0.8 0.15 100 400 27.27282 

0.9 0.05 300 400 27.93733 

0.9 0.1 100 600 26.68067 

0.9 0.15 200 200 26.77781 
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Figure 4. The Signal-to-Noise plots for GA  

Table 3. The orthogonal array L
27

 and results for PSO  

C1 C2 W N-pop Max iteration Response 

0.5 0.5 0.5 100 200 26.51833 

0.5 0.5 0.5 100 400 25.59528 

0.5 0.5 0.5 100 600 28.93421 

0.5 1 0.75 200 200 27.42218 

0.5 1 0.75 200 400 28.92652 

0.5 1 0.75 200 600 25.59709 

0.5 2 1 300 200 26.7662 

0.5 2 1 300 400 26.97564 

0.5 2 1 300 600 25.57436 

1 0.5 0.75 300 200 26.71327 

1 0.5 0.75 300 400 26.30941 

1 0.5 0.75 300 600 25.34503 

1 1 1 100 200 27.99651 

1 1 1 100 400 26.18041 

1 1 1 100 600 25.10245 

1 2 0.5 200 200 26.97777 

1 2 0.5 200 400 26.78379 

1 2 0.5 200 600 26.02241 

2 0.5 1 200 200 26.20638 

2 0.5 1 200 400 25.45439 

2 0.5 1 200 600 27.79816 

2 1 0.5 300 200 26.10074 

2 1 0.5 300 400 27.69621 

2 1 0.5 300 600 27.77765 

2 2 0.75 100 200 25.41882 

2 2 0.75 100 400 28.62868 

2 2 0.75 100 600 28.57616 
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Figure 5. The Signal-to-Noise plots for PSO  

Finally, based on Figure. 4 it can be found that the values of 0.7, 0.1, 100, 

and 200 are selected for Pc, Pm, N-pop, and Max iteration, respectively. 

Likewise, Figure. 5 shows that the values of 1, 0.5, 1, 300, and 200 are selected 

for C1, C2, W, N-pop, and Max iteration, respectively. Therefore, these values 

set for final running via two algorithms. 

The Model Test 

To implement the model and measure its efficiency, we performed a test of data 
from the top 30 companies in Tehran Stock Exchange (TSE) by considering 
several features such as volume, value, no. of trades, closing price, and market 
capitalization are reported in Table 4. These mentioned values are used as Sjk 
(characteristic k from the stock j) to calculate dij (Euclidean distance between 
two selected stocks i and j). 

Table 4. The data of several characteristics of TSE 

No. of 

stock 
Stock Volume Value 

No. of 

trades 

Closing 

price 
Market Cap. 

1 PSER1 85129 1346570522 30 15818 949080000000 

2 SROD1 3419185 6250270180 137 1828 1480680000000 

3 GHND1 213094 2458456478 105 11537 2322400000000 

4 LAMI1 85005 822253365 4 9673 580380000000 

5 STEH1 703972 1865525800 64 2650 4637500000000 

6 SKHS1 53487 576054990 10 10770 1346250000000 

7 LTOS1 6935364 16499230956 3926 2379 11895000000000 

8 KFAN1 107918 597541966 12 5537 1107400000000 

9 KPRS1 134324 741468480 25 5520 687820000000 
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10 TAMI1 13607192 75180532959 949 5525 895050000000 

11 KSKA1 255239 866791644 69 3396 849000000000 

12 SDAB1 16242679 30337442919 1240 1868 1681200000000 

13 SGRB1 8707993 35504401399 662 4077 2038500000000 

14 SHGN1 1098484 3337877588 173 3039 1528310000000 

15 SSEP1 13316758 16381365367 680 1230 3013500000000 

16 BSTE1 5100963 5629783797 345 1104 6624000000000 

17 SRMA1 1221949 4292722164 143 3513 519924000000 

18 DMVN1 207080 4753109980 144 22953 688590000000 

19 CIDC1 2972619 4214050974 249 1418 6806400000000 

20 SPKH1 3589819 25670837173 457 7151 1430200000000 

21 SHSI1 183910 3213792791 124 17475 536701000000 

22 SMAZ1 2698947 5347058509 210 1981 2442570000000 

23 SURO1 5125563 18111440764 598 3534 2473800000000 

24 SKOR1 3397425 4126797445 217 1215 2673000000000 

25 KHOC1 5552238 24675514218 698 4444 2888600000000 

26 SIMS1 14952728 24632102295 892 1647 1770640000000 

27 ABAD1 7113800 15744651573 855 2213 531120000000 

28 SFKZ1 41145366 74593472749 1523 1813 10198100000000 

29 SSOF1 983403 2694829420 153 2740 1507000000000 

30 NSTH1 11588115 31572081897 847 2725 2043750000000 

Also, the returns values of stocks in each time period are provided in 
Table 5 and the values of average returns, β coefficients, and variance, per 12 
months are given in Table 6. Furthermore, the values of dij and σij can be 
obtained using their related formulas and the values of desired confidence level 
(α), percentage of the minimum expected return of portfolio (λ), maximum 
investment in stocks (U), and the maximum number of stocks in the investment 
portfolio (MaxNp) are assumed as 0.2, 0.6, 0.1, and 20, respectively. 

Moreover, in order to find the ideal values of each objective function, the 
model is solved using Lingo software and applying these values of parameters. 
Therefore, values of 1.637845E+15, 0.04760250, and 0.1019152 are obtained 
as goal values for Z1

*, Z2
*, and Z3

*, respectively. 

Table 5. The values of return per time period 

Stoc

k 

Time period 

1 2 3 4 5 6 7 8 9 10 11 12 

1 
0.07

4 

0.00

9 

-

0.02

1 

-

0.00

7 

0.08

7 

0.06

3 

0.00

8 

0.04

7 
-0.05 

0.04

3 
0.04 

0.09

4 

2 
0.01

8 
-0.01 

0.00

2 

0.03

1 

0.02

5 

0.08

4 

0.07

6 

0.02

3 

-

0.00

0.06

7 

0.07

5 

0.06

7 
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2 

3 
0.08

3 

0.09

9 

0.02

2 

0.05

6 

0.01

9 

0.04

2 

-

0.01

5 

-

0.01

1 

0.06 
0.02

1 
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5 

0.05
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4 
0.09

5 

-
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1 
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4 

0.07

6 
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4 
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3 
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5 
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1 
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6 

0.05

9 
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6 
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5 
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9 
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6 
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8 

-

0.07

6 
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9 
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4 
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5 
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3 
-0.01 
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8 
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9 

0.04

5 

6 0.08 
0.00

6 
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0.04

2 

0.00

5 

0.05

2 
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1 
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1 
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7 
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2 
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7 

7 
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7 

0.01

7 

0.00

3 
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3 

0.00

1 

0.05

9 
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5 
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4 
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8 

0.04

4 

0.05

2 

0.03

7 

8 0.02 
0.00

8 
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8 

0.03

7 
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1 
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0.00

3 
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8 

-
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8 
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8 
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2 
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0.03

5 
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8 

0.01

9 

-
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3 
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4 
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6 
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2 
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7 

0.05

5 

0.00
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6 
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0.03

3 

0.07

8 

0.05

3 

0.01

6 

0.05

2 
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0.05 
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3 

0.04

3 

0.02

5 

0.05

6 

0.03

6 
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0.00

7 
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3 

0.02

7 

0.06
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0.01 

0.03

2 

0.01
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0.09 

0.06

6 

0.04

9 

0.04

4 

0.08

4 

12 
0.04

7 

0.02

3 

0.06

9 

0.08

3 

0.02

6 

0.07

6 

0.02

6 

0.06

7 

0.04

9 

-

0.02

6 

0.08

4 

0.05

6 

13 
0.08

4 

0.02

2 

0.00

8 

0.04

5 

0.08

2 

0.06

4 

-

0.00

2 

0.03

7 

0.05

3 

0.08

4 

0.03

5 

0.00

9 
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0.05

2 

0.01

3 

0.00

5 
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3 

0.08

2 

0.04

3 

0.03

6 
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2 
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3 
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7 

-
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1 
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-
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1 
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8 
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8 
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3 
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9 
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1 
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7 
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1 
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3 
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4 
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Table 6. The values average return, risk, and variance  

No. of stock Stock ȓj βj σj
2
 

1 PSER1 0.0323 0.87093 0.0020148 

2 SROD1 0.0380 0.06868 0.0011504 

3 GHND1 0.0429 2.01574 0.001351 

4 LAMI1 0.0440 0.22713 0.0027536 

5 STEH1 0.0317 0.47747 0.0019204 

6 SKHS1 0.0433 0.60596 0.0009699 

7 LTOS1 0.0508 1.85937 0.0010876 

8 KFAN1 0.0388 0.04512 0.0012971 

9 KPRS1 0.0421 0.27834 0.0007863 

10 TAMI1 0.0512 0.83632 0.000522 

11 KSKA1 0.0444 0.77006 0.0007828 

12 SDAB1 0.0483 0.06571 0.0010219 

13 SGRB1 0.0434 0.75252 0.000943 

14 SHGN1 0.0321 2.26474 0.001517 

15 SSEP1 0.0356 1.22938 0.0015803 

16 BSTE1 0.0493 2.46817 0.0009395 

17 SRMA1 0.0488 0.86654 0.0007515 

18 DMVN1 0.0589 0.70185 0.0007121 

19 CIDC1 0.0431 0.95924 0.0009286 

20 SPKH1 0.0526 2.53406 0.0016097 
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21 SHSI1 0.0388 0.60239 0.0006408 

22 SMAZ1 0.0306 0.62865 0.0016452 

23 SURO1 0.0471 0.26890 0.0004872 

24 SKOR1 0.0310 0.89911 0.0036724 

25 KHOC1 0.0375 0.41613 0.0008477 

26 SIMS1 0.0404 0.85472 0.000953 

27 ABAD1 0.0246 0.67493 0.0009492 

28 SFKZ1 0.0470 0.49921 0.0016605 

29 SSOF1 0.0403 0.52709 0.0013175 

30 NSTH1 0.0464 0.21421 0.0011461 

Results 

The results of testing the models using various approaches are reported. They 
are representing the proportions of the budgets to be invested in each 
company's stock. Several criteria are used to compare three approaches such as 
the return rate, the real diversity index, systematic risk, unsystematic risk, 
amount of stock in the portfolio, VaR, CVaR, Treynor ratio, and Sharpe ratio. 
The comparison of these approaches is illustrated in Table 7. 

Also, it should be noted that all calculations are based on using the branch 
and bound solver of the Lingo 9 software and MATLAB software.  After 
solving the problem with the data of the previous section and the mentioned 
goals, Tables 7-9 have been obtained. 

Table 7. Comparison of related criteria in three methods 

Criteria 

LP-metric based methods 

Lingo (local 

optimum) 
GA PSO 

No. of stock in the 

basket 
15 20 18 

Portfolio return 7.2601982 7.3625147 6.8695723 

Sterling diversity 

index 
5.75207E+12 5.849442E+12 5.7125365E+12 

Unsystematic risk 0.0001763 0.00014698 0.00018759 

Systematic risk 1.003981 1.009777 1.022365 

VaR 0.1365164 0.1275286 0.1478549 

Treynor ratio 2.848356 2.736524 2.7475632 

Sharpe ratio 0.268086 0.245869 0.2763576 

CPU time 2700.53 58.36 112.42 
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According to Table 7, the GA has the least CPU time and VaR, and the 
highest portfolio return and sterling diversity index. So, it can be selected as 
the best approach and the related decision variables of it are provided in Table 
8. 

Table 8. Obtained values of decision variables using GA 

Variable Value Variable Value Variable Value Variable Value 

EΩ
max

 0.00508 x(19) 0.10000 q(7) 1.00 q(25) 0.00 

x(1) 0.00000 x(20) 0.00000 q(8) 1.00 q(26) 1.00 

x(2) 0.01848 x(21) 0.03430 q(9) 1.00 q(27) 0.00 

x(3) 0.02140 x(22) 0.02262 q(10) 1.00 q(28) 1.00 

x(4) 0.03222 x(23) 0.00000 q(11) 0.00 q(29) 0.00 

x(5) 0.10000 x(24) 0.03918 q(12) 1.00 q(30) 0.00 

x(6) 0.02104 x(25) 0.00000 q(13) 1.00 y(1) 1.00 

x(7) 0.10000 x(26) 0.01795 q(14) 0.00 y(2) 0.00 

x(8) 0.02733 x(27) 0.00000 q(15) 1.00 y(3) 0.00 

x(9) 0.03438 x(28) 0.10000 q(16) 1.00 y(4) 0.00 

x(10) 0.03156 x(29) 0.00 q(17) 1.00 y(5) 0.00 

x(11) 0.00000 x(30) 0.00 q(18) 0.00 y(6) 0.00 

x(12) 0.01618 q(1) 0.00 q(19) 1.00 y(7) 0.00 

x(13) 0.02490 q(2) 1.00 q(20) 0.00 y(8) 1.00 

x(14) 0.00000 q(3) 1.00 q(21) 1.00 y(9) 0.00 

x(15) 0.09204 q(4) 1.00 q(22) 1.00 y(10) 0.00 

x(16) 0.10000 q(5) 1.00 q(23) 0.00 y(11) 0.00 

x(17) 0.06643 q(6) 1.00 q(24) 1.00 y(12) 0.00 

x(18) 0.00000       

 

According to Table 8, the following 20 companies can be selected as an 
optimal portfolio:  SROD1, GHND1, LAMI1, STEH1, SKHS1, KFAN1, 
KPRS1, TAMI1, KSKA1, SGRB1, SHGN1, BSTE1, SRMA1, DMVN1, 
SPKH1, SMAZ1, SURO1, KHOC1, ABAD1, and SSOF1. And the values of 
Z1, Z2, and Z3 result in 5.849442E+12, 1.004157 and 0.1275286, respectively. 

Furthermore, to show the efficiency of the proposed multi-objective 
model, it is compared with Markowitz and diversification-risks models.  These 
values are presented in Table 9. 
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Table 9. Compression of the proposed model with Markowitz and diversification-risks models 

using LP-metric based GA 

Criteria 

Models 

Markowitz 
Diversification-

risks 

Diversification-

risks-VaR 

Diversification-

risks-CVaR 

Portfolio return 7.2324586 7.1854796 7.3625147 7.4101649 

Sterling diversity 

index 
5.72326 5.94315 5.849442 5.713564 

Unsystematic risk 0.0001632 0.000149687 0.00014698 0.00014911 

Systematic risk 1.0037235 1.0056985 1.009777 1.008813 

Treynor ratio 2.475325 2.811276 2.736524 2.684121 

Sharpe ratio 0.2138545 0.2643252 0.245869 0.240647 

CPU time 51.12 54.75 58.36 61.05 

 

To validate the framework, their model includes Markowitz, 
diversification-risks, diversification-risks-VaR, and diversification-risks-CVaR 
models are solved 15 times with different population sizes to display the 
average returns of stock portfolios, as shown in Figure 6. In this investigation, 
we have used the conventional method of calculation VaR (VaR= -σ2 Zα -µ) 
with the assumption that the distribution of returns is normal with a mean of µ 
and σ2 variance at the α confidence level, based on these assumptions the 
conditional value at risk (CVaR) model is calculated which is one of the 
developed versions of VaR model. This risk measure quantifies the amount of 
tail risk of the portfolio that proposed in 2000 by Rockafellar and Uryasev.  

 

 
Figure 6. Average of stock returns in different iteration using four model 
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Since the optimal return rate for investment based on a market index is 
defined as an interval between 6.5 and 8.5, so based on Fig. 6, only in the 
diversification-risks model the average return is lower than the desired value. 
In other models, the average portfolio returns are higher than the mentioned 
values. Therefore, it can be concluded that the proposed model can be chosen 
as a suitable model. 

Conclusion 

This study introduces the Euclidean distance criterion as a measure of stock 

portfolio diversification and uses a multi-objective model attempts to select 

optimal stock portfolios. The model aims to maximize diversification and 

minimize VaR, and stock risks including systematic and unsystematic risks. 

Also, maximizing returns are considered as a constraint of this model. Since 

the proposed model is nonlinear (and regarding computational complexity, it is 

NP-hard) the study utilizes two meta-heuristic algorithms to solve the model. It 

further validates portfolio selection by using the data of the top 30 active 

companies in the TSE for the 12 months. The findings show that the GA has 

the least CPU time and VaR, and the highest portfolio return and sterling 

diversity index. So, it can be selected as the best approach, and the related 

decision variables can be reported based on the results of 20 active companies 

in the TSE that were selected as the optimal portfolio. Moreover, to show the 

effectiveness of the proposed multi-objective model, we compared our 

proposed model with Markowitz and diversification-risks models. After testing 

our model for 15 times with different population sizes, we found that the 

average portfolio returns are higher than the desirable values resulted from the 

market index.  

Various studies have been conducted to investigate the relationship 

between returns and risk in the selection of stock portfolios. However, in the 

field of quantification of diversity index, no particular mathematical 

formulation has not been introduced so far. In this research, the Euclidean 

distance criterion has been tested as a tool for the quantitative assessment of 

the diversity index. Also, the research model is designed based on deterministic 

parameters, the unfeasibility of short selling, and without considering the 

transaction cost. For the future study, it is suggested that in addition to the 

uncertainties of parameters of a model, the effect of short selling and 

transaction costs on the index of diversity be studied. In addition, the different 

methods in VaR computations can be utilized in the model and the results 

should be compared.  
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