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varying parameters.

1. Introduction

There are situation in which risk of “over-estimation” is much higher than the
risk of “under-estimation”. Therefore, the main aim in this paper is choosing the
right loss function regarding the problem of asymmetry.

Bayesian point estimation of the normal distribution parameters is one of the
non-trivial problems in mathematical statistics and yet, there is certainly no
consensus about the most appropriate solution. Formally, point estimation may
be seen as a decision problem where the action space is the set of possible values
of the quantity on interest; foundations then dictate that the solution must depend
on both the utility function and the prior distribution (Bernardo, 2007).

Due to the importance of forecasting oil price, many different econometric
models of oil price forecasting have been used by researchers. In an overall view,
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despite the different types of model applied for oil price forecasting, applied
models ignored the asymmetry problem and so overlooked the difference of
“under-estimation” and “over-estimation” by using Quadratic Loss Function
(QLS). So, we use Kullback-Leibler (KL), Hellinger (H) and LINEX loss
function in Dynamic Linear Model (DLM) which is unprecedentedly new way to
consider “asymmetry” issue in forecasting price trajectories.

We fit the basic Hoteling Model of a depletable resource production with
DLM under QLS, LINEX, Hellinger and KL loss function (Zellner, 1986;
Bernardo & Juarez, 2003; Robert,1996) trying to address the results concerning
“over-estimation” and “under-estimation” differently.

2. Related literature review
2.1. Oil price forecasting

Due to importance of accurate prediction of oil price for producers and
consumers, there are plenty of academic papers and related articles looking for
the better fitness and forecasting models. Phillips and Loretan (1991) proposed a
nonlinear model of long-run price of oil by estimating the lagged real prices.
Green and Mark (1991) have used GMM for finding the related variable of price
formation. Samii (1992) with linear approaches, Moosa and Al-Loghani(1994)
with GARCH model for short-time and Schwarts (2003) with DLM for long-time
investigate the real spot price fluctuation in time by taking future prices and long
run changes through the time. Bahmani-Oskoee and Brown (2004) also use a
Kalman Filter model to pursue time-dependency of parameters of demand for
international oil demand.

Pindyck (1999) analyzes the stochastic dynamics of crude oil, coal and natural
gas prices using a large data set covering 127 years, and tries to assess whether
using Kalman filter in time series models are helpful in forecasting long horizons
evolution. Morana (2001) proposed a methodology of semiparametric forecasting
based on the bootstrap approach to short-term oil price. Ye et al. (2005) applied a
dynamic autoregressive model of seasonal changes. Sadorsky (2006) uses several
different univariate and multivariate statistical models (GARCH, TGARCH,
VAR, bivariate GARCH) to estimate forecasts of daily volatility in petroleum
futures price returns. Alquist and Kilian (2010) applied a structural model to
predict spot price of oil. They suggest “oil futures prices tend to be less accurate
in the mean-squared prediction error sense than no-change forecasts”. And some
of the most cited papers in oil price forecasting are Jammazi and aloui (2012),
Arouri et al. (2012), Nordhaus(1987), Kilian and Hicks (2013), Dvir and
Rogoff(2014), Jurado et al. (2015), Gao and Li(2017), Chen et al. (2018) Bakas
and Triantafyllo (2019), Zhang and Wang(2019).

2.2. LINEX Loss Function Literature Review
LINEX loss function has been proposed by Varian (1975) and developed by
Zellner(1986). In applied economics literature Cain and Janseen (1994) use
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LINEX in real estate price prediction, Christoffersen & Diebold (1997) study the
optimal prediction under asymmetric loss and indicate that GARCH are relevant
for optimal point prediction under LINEX loss function, Batchelor & Peel (1998)
applied an ARCH & ARCH-M test for Rational Expectation of agents under
LINEX, Paton and Timmerman (2007) evaluate forecast optimality in economics
and finance under asymmetric loss, Dopke et al. (2010) forecast German
business cycle under an asymmetric loss function and Hyun-Jae, R. (2012) test
the possibility of a monetary union in the ASEAN+3 countries: rationality and
asymmetric loss functions.

There are, also, other articles about LINEX loss function concerning the
fundamental statistics studies. Calabria & Pulicini (1996) test the performance of
Bayes estimation of exponential distribution under LINEX compared to MLE,
McCullough(2000) proposes a bootstrap method for prediction under asymmetric
and nonlinear loss function, Hwang et al. (2001) derived optimal Forecasting
Nonlinear Functions of returns, Li et al. (2007) investigate the accuracy of Bayes
estimator using LINEX loss under progressively Type-Il censored samples,
Anatolyev (2009) propose an optimal predictor of the model of dynamic
conditional expectation under LINEX, Franses et al.(2011) applied a Lin-Lin
Model of experts Estimation of sales forecasts, Pandy et al. (2011) applied a
statistical comparison between Bayesian and Maximum Likelihood Estimation of
Scale Parameter in Weibull Distribution under LINEX, Jafari-Jozani et al.(2012)
establish explicit connections between optimal actions derived under balanced
and unbalanced losses under various robust Bayesian analysis criteria including
posterior regret gamma-minimaxity, conditional gamma-minimaxed.

Intrinsic (KL and H) Loss Function

Bernardo and Juarez (2003) in Bayesian viewpoint introduces a reference
posterior and defines the intrinsic estimator which minimizes the expected loss
with respect to that reference posterior distribution. The resulting estimators are
shown have attractive invariance properties. Bernardo (2007) propose an Intrinsic
Point Estimator for the Normal Variance. Robert (1996) introduce the Bayes
estimators related to entropy Hellinger losses for Normal, Gamma, Binominal
and poison distribution, Jafari Jozani and Tabrizi (2013) estimate the Intrinsic
posterior regret gamma-minimax for the exponential family of distributions,
Hershey and Olsen(2007) by introducing two new methods, the variational
approximation and the variation upper bound approximate the Kullback Leibler
Divergence Between Gaussian Mixture Models (GMM), Erven and Harremos
(2014) compare the Rényi entropy with KL, Smith et al. (2006) illustrate
Markov-switching model selection using Kullback—Leibler divergence results
and introduce a new information criterion based on Markov Switching. There are
some other relevance papers on Hellinger loss function which are mentioned as
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“Intrinsic” loss like Maasoumi, (1993), Afgani et al. (2008), Ryu(1993),
Seghouane and Amari(2007 & 2012), Georgiou and A. Lindquist(2003).

3. Data and empirical methodology
3.1. Data

We examine the real price of oil over 106 year for period 1913-2018 which
obtained from U.S. Crude Oil First Purchase Price (Dollars per Barrel) available
in U.S. Energy Information Administration Historical Data. We then deflated this
nominal series to 1982 dollars using the Producer Price Index for All
Commodities obtained from Economic Research Division of U.S. Federal
Reserve Bank.
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Figure 1: logarithm of Real Oil Price (WTI $Per Barrel)
Source: Findings of this article

Table 1: Descriptive statistic of log real oil price (deflated by 1982)

Mean Median Maximum Minimum Standard Skewness Kurtosis
Deviation
0.91102 -0.0394 5.2742 -2.5742 2.39938 0.32461 1.726201

Source: Findings of this article

As shown in figure 1, the major changes (or structural breaks) can be
distinguished in 1933, 1973 and 2002 which is important in choosing a proper
Unit Root test. On the other hand we can observe a sharp and multiple slop
changes of the curve from figurel that is accompanied by high variance (SD) in
data description table.



E. Abounoori and M. A. Heydari 25

Table 2: Phillips-Perron Unit-Root Test Results

Phillips-Perron test statistic MNA 0.5000
Test critical values: 1% level -4.047795

5% level -3.453179

10% lavel -3.152153

*Mackinnon (1996) one-sided p-values.

Residual variance (no correction) 0.0835818
HAC corrected variance (Bartlett kernel) 0.000000

Source: Eviews’ output for Phillips- Perron Test of the data

In the next step, we run the Unit Root test for the logarithm of the real oil price.
Since the results of the Dickey-Fuller test are feebly sensitive to structural breaks
(Perron(1989), and undoubtedly, oil price data have several structural breaks
(Sadorovsky, 2006; Pindyck, 1999), we used the Phillips-Perron test. The result,
which has been shown in table2, indicates that the Unit Root of level cannot be
rejected. Also, figure 2 which is the results of the correlogram of level for
logarithm of real oil price, with 36 lags, confirms this. As we can see in the figure
2, due to the multiple shocks, the autocorrelation will slowly revert to the mean
and the shocks’ effects last for long time.

Autocorrelation Fartial Correlation AC PAC  Q-Stat  Prob

) 1 0871 0,971 102,90 0.000
o 2 0941 -0.045 20043 0.000
N 3 08911 -0.013 20270 0.000
[ 4 0884 0.031 38034 0.000
o 5 0855 -0.044 46314 0.000
[ 6 0828 0.021 54156 0.000
L 7 0799 -0.051 61530 0.000
[ 8 0771 0.013 68477 0.000
g 9 0740 -0.086 74933 0.000
[ 10 0710 0.014 809.44 0.000
g 11 0675 -0.112 86432 0.000
il 12 0644 0.052 91483 0.000
[ 13 0615 0.017 961.37 0.000
T 14 0589 0.030 10046 0.000
[ 15 0565 0.023 10445 0.000
[ 16 0544 0.020 10825 0.000
T 17 0524 0.032 11178 0.000
L 18 0503 -0.050 1150.8 0.000
g 19 0476 -0.107 1180.6 0.000
il 20 0454 0.073 1208.0 0.000
[ 21 0434 0025 12335 0.000

|
|
|
I
I
|
|
|
|
|
|
I
I
|
|
|
|
|
! O
I

I

i}

lLLLLLERNEERRARRON

Figure 2: Correlogram for real oil price deflated to 1982
Source: Eviews result for Unit Root Test of the data

So, the results indicate that the trajectory of real oil price, fluctuate continuously
over time. So, in the next section, we use the theory of depletable resource
production, completely capable of explaining the continuous and unpredictable
fluctuation in level and slope of oil price trajectory through time.
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3.2. Empirical methodology
3.2.1. Oil price model
We use the basic Hotelling model of the depletable resource production in

competitive price market with constant marginal cost, €.

dlogipe) _ re Eq.(1)
- _rrh',;.
at (g" A —1lce Tt 4c

d . . . N
Where ?’: = r(p — ), and " is constant, € is extraction cost and p is price

level, the demand function designated by @ which is @ = A(pye™ + €)™,
so, 17 is elasticity of demand, 4 is shift parameter of demand and Ry is initial
level of reserve in the market.!

As it shown in eq.1, the increase of A (i.e. the transfer of the demand curve
upwards) leads to an increase in the level and slop of the logarithm of the price.
An increase in the cost of extraction, €, shall increase the oil price, but the slope
of the price trajectory, and accordingly, the logarithm of the price decreases. The
sudden rise in Ry, means discovery of new resources, will also lower the price.

To track the evolution of parameters, we use the process of the Ornstein-
Uhlenbeck (OU) transformations (Pindyck, 1999, Radchecko, 2005).

Pe=pPP;y byt hitto, t@ t+ 1,

Q1 =C1Py ey T @, Eq.(2)
Por = CoPypg T Wy

Where ¢, . and ¢, . are unobservable variables.?

For dynamic linear model estimation, we eliminate the trend by replacing the b, t
and ¢, .t with a Local Level and Linear Growth equations accordingly (Petris
etal., 2010).

P =pPeq T+t 1

P = C1Prp-q T @y, Eq.(3)
Pae = C2Pzeq + B0,

B. = J‘gr—i-l'ms,r

3.2.2. LINEX Loss Function

There are several loss functions in statistics. For instance, some of the most
popular loss functions are: the Absolute, All-or-Nothing, Quadratic Loss, LINEX
and Intrinsic Loss Function’.

! For a further proof and discussion, see Pindyck (1999).
2 For a detailed proof and discussion, see Lo and Wang (1995).
3 For further reading, see Koop et al. (2007).
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In this paper, due to implying the different weight on “under-estimation” and
“over-estimation” for real oil price estimation, we first use the Linear
Exponential loss function (LINEX) which have been proposed by Varian (1975)
and developed by Zellner (1986).

If let the A =8 — & which denote the scalar estimation error in using 8 to
estimate @, the L(A)= be*™*—cA—b where a,c = 0 ,b =0, is the
Varian (1975) convex loss function, so, if let the ab = ¢, we shall have:

L(A) =b[e*™® — aA — 1] a®0,b>=0 Eq.(4)

For the posterior pdf, p (E D) is N(¥,6%) , the value of @ that minimize
- 2
Eq.(4)is 8 =y — =~ (Zellner, 1986).

Table 3: Admisible Risk and Point Estimation under QLS and LINEX

Loss Function Square Error LINEX
Admissible point estimation of y ¥y ._E;TB =5 — ?
T
r:T: - ﬂ',: r:T:
Admissible risk of estimation R.(¥) = — rR.{(8.V=5
3(.- :] n L-[: E‘) In

Note:_these risk functions, denoted by R, where the subscript L denotes risk relative to the LINEX
loss function and S denoting square error loss function.

3.2.3. Intrinsic Loss Function

Kullback-Leibler: If p(x | &, ) and p(x | 8, ) are probability densities with
the same support X, the directed logarithmic of p(x | &, ) from p(x | 8, ) is
defined as ( )

_ plx|86, Eq.(5)

ky(6,18,) Lp(xlﬁl]logp—(xlgz)dx
The directed logarithmic divergence (often referred to as Kullback-Leibler
information) is non-negative, and it is invariant under bijections of both x and 6.
It is additive in the sense that, if x € X and yE Y are conditionally independent
given 8,, then the divergence ky+(8,,8,) of p(x. v 1 8,) from p(x.y|6,)
is simply ky(8, 18, ) + ki (8, | 8, ); if data x are assumed to be a random
sample x = {x,,...n} from p(x | 8 ),then the divergence of p(x | 6, )
from p(x]68,) is simply n times the divergence of p(x |8,) from
p(x | 8, ). Under appropriate regularity conditions, there are many connections
between the logarithmic divergence and Fisher’s information (see e.g. Stine,
1959; Bernardo and Juarez, 2003). Furthermore, k;(8,,8,) has an attractive



28 Comparison of Kullback-Leibler, Hellinger and LINEX with ...

interpretation in information-theoretical terms: it is expected amount of
information (in natural units, nits) necessary to recover p(x | €,) from
p(x16,).

However, the directed logarithmic divergence is not symmetric and diverges if
the support of p(x | 8, ) is an strict subset of the support of p(x | &; ). To
simultaneously address those two unwelcome feature we propose to use the
symmetric intrinsic
discrepancy 85 (8, | 8, ) = min{k, (6, 1 8, ).ky (8, 16,)}. To simply the
notation, the subindex X we will dropped from both &;(8, | 8,) and
k(65 1 8, ) whenever there is no danger of confusion. (Robert, 1996).

Let x = {x4,....x,} be a random sample from a Normal N(x | u, o?)
distribution, and let ¥ and 5= respectively be the corresponding sample mean and
variance, with n¥ = X x;, and ns® = X, (x; — ). In terms of precisions,
A;=a7% the directed logarithmic divergence Kk{u, A, | 4.} of
N(x |y, A,) from N(x | gy, 4y ) is

e N (x| py, A7) Eq.(6)
N AT — Tl '
J|_ ot aztion S 2

1 Ay Ay .
:E[Eﬂg__ L+—+ A0 — p2)7]

And the intrinsic discrepancy between the estimated model N(x | %, A*)and the
assumed model N(x | i, 4 ) is
S {A%, p% A, pu} = min[k{ A%, p¥ | L u} k{4 p| A%, p%]] Eq.(7)

The reference prior when both p and A are of interest is (4, ;) = A%, and the
corresponding (joint) reference posterior is Normal-Gamma

m(u1x) = N(u | £ (nd) ™ )Ga(d 1 =, %5)
Thus, the reference posterior expected intrinsic loss may then be computed as
d(Appg 1) = [ [728{n,, AL p, AYw(p, A | x)dAdp Eq.(8)

a concave function. The intrinsic estimator {u*,A"} is its unique minimum

{x,A*(x)}, where the exact value of A*(x) requires one-dimensional numeric

integration, but which is very well approximated by
n—2 1
A" (x) % 2 =§(E[A | x]+ Mo[41x]) Eq.(9)
Bernardo & Juarez (2003).

Hellinger: Given two densities p(x | 8, ) and p(x | 8, ) with respect to a
dominating measure v, the Hellinger distance H(p(x | 8, ),p(x 1865 ))is
defined by
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H(p(x1 6,).p(x186,)) =§f (o(x18) - Vp(x [6,)) dv(x) ~ Fa.(0

If f(x | &) is the normal N (8, 1) distribution, the Hellinger loss is
Ly(8,d) =1 —exp{—(8—d)*/8}.

Consider an N(x, T) prior on 8. The Bayes estimator of & is then
= (-d)? (@-%°" @-pf
Arg maxg J‘_x exp{— 3 — 5 ~ oo dg

*= g- 4 d 7 i
= Arg mnde‘ e:-:p{—E(S + ——] + E{; +x +T_::]}dﬁg_ /!

e

4 (n’ x u ]: g d-
= Arg maxzexp E+2+2r: 5+=1-|.-‘r:_8
_ x4y
= Arg maxgy {n’ - T:H:I ) Eq.(11)
. “x+
And we recover the usual posterior mean, rf: +1“. Robert (1996)

4. Empirical results

We applied the DLM to estimate Equation (3), which is a dynamic linear form
of space-state models. The basic model is AR (1) and the values of coefficients
and parameters are unknown. We run the maximum likelihood to estimate the
unknown parameters and to avoid the “local maximum” we used different initial
values, and finally we selected the unknown values of equation (3) which had the
highest likelihood values. We, then, implemented the conventional DLM (under
least squares loss function) in the State- Space model with R programming using
the "dIm" package'. This was done to pave the way for comparing the results of
the DLM under the alternative loss functions, i.e. QLS and LINEX, KL and
Hellinger.

Table 4: MLE values of the unknown parameters

Oy Cusgr | Tegy Cug Oy P ML Convergence

4

5.86 8.92 2.45 18.7 0.00013 0.9997 | -62.748 0
Source: Findings of this article

Now consider a general form of State-Space Model where & represent the state
variable which is latent, and ¥ denoting the observed variable.

{Er =G,y + @,

Ve =R+ W, Eq.(12)

! Further details are available in Petris et al. (2010).
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DLM Oil price filter (left) and forecast (right) under QLS

Source: Findings of the article based on DLM under QLS

4.1. DLM under LINEX loss
To enter the LINEX loss function into the DLM, assuming the normal
conjugate of the posterior distribution, we fulfill the process of filtering of the
following calculations by replacing the admissible LINEX point estimation
amount into the each following values
I.  mean and conditional variance = (8, | ¥;.._; )
II.  mean and conditional variance 7 (Y. 1 ¥y, _; )
I1Il.  mean and conditional variance 7 (8, 1 v,,, )
For initiation of filtering, and afterward the forecasting, we put the initial values
of mean by (price of 1913, average of first 5 years, 0 ,0) and the variance by
(2.5, 2.5, 0,0) into the one-step-ahead filtering 1913- 2013 and afterward

forecasting the data of real price of oil for 2014 -2020, for LINEX parameters.
The results are as follows:

Table 5: One-step-ahead forecast values under QLS and LINEX

LINEX LINEX LINEX
YEAR | OBSERVATION FORE?:IASSTlNG FORECASTING | FORECASTING | FORECASTING
A=1B=1 A=2,B=2 A=3,B=3
2014 5.18976417 5.263746 5.263713 5.263214 5.261058
2015 4.43718996 5.258482 5.258449 5.257951 5.255796
2016 4.26239938 5.253224 5.25319 5.252693 5.250541
2017 453252171 5.24797 5.247937 5.247441 5.24529
2018 4.82087644 5.242722 5.242689 5.242193 5.240045
2019 - 5.23748 5.237447 5.236951 5.234805
2020 - 5.23224 5.232209 5.231714 5.22957

Source: Findings of the article.
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Based on the results of table 5, we calculate the Theil’s inequality coefficient
(table. 6) to compare the results of two alternatives loss functions in which lower
values of Theil indicate the better results of forecasting under LINEX loss
function.

Table 6: Theil coefficient for the Loss Function forecasting

INE-g_lﬁEII__ITY UNDER UNDER LINEX | UNDER LINEX | UNDER LINEX
R QLS A=1B=1 A=2B=2 A=3B=3
Theil 0.069179808 0.069177075 0.069136347 0.068960005

Source: Findings of the article.

4.2. DLM under Hellinger and Kullback-Leibler loss

To capture the dynamic linear model of eq.3 under the Intrinsic losses like
Hellinger and Kullback-Leibler, in accordance with eg.9, we applied the Mean
for point estimation on KL loss function and simply extract the related amount of
the loss-fitted estimation taking the sample size of 1000 and 10,000 and replace
the posterior mean of the date which minimized the related loss function into the
calculation of three steps of DLM estimation, and follow the procedure to finally
find the best point-estimation based on the KL loss function.

To find point estimation of DLM under Hellinger loss, we need to find the
appropriate amount of the parameters of prior distribution for eq.11. To do so, we
need two assumptions which can help us to determine the parameters of prior

distribution. By assuming -0.9x < T::f

< +0.9x and based on experienced

Bayesian method, we assumed 2 = 6.09 and g = 5.8 which will give well-
approximation amount of prior for the first observation. To replace the Hellinger-
fitted amount into DLM, we use the prior parameters in calculation of

n [:Hr | ¥yie—a )

Table 7: One-step-ahead forecast values under QLS and LINEX

YEAR | OBSERVATION | FOREGASTING FORECASTING | FORECASTING HELLINGER
N=1000 N=10000
2014 5.18976417 5.263746 5.2638 5.263751 5.271815
2015 443718996 5.258482 5.258536 5.258487 5.266543
2016 4.26239938 5.253224 5.253277 5.253229 5.261277
2017 453252171 5.24797 5.248024 5.247976 5.256016
2018 4.82087644 5.242722 5.242776 5.242728 5.25076
2019 5.23748 5.237533 5.237485 5.245509
2020 - 5.23224 5.232296 5.232248 5.240263

Source: Findings of the article




32 Comparison of Kullback-Leibler, Hellinger and LINEX with ...

Based on the results of table 7, we calculate the Theil’s inequality coefficient
(table. 6) to compare the results of two alternatives loss functions.

Table 8: Theil coefficient for the Loss Function forecasting

THEIL UNDER UNDER UNDER UNDER
INEQUALITY QLS KL KL HELLINGER
INDEX N=1000 N=10000
Theil 0.069179808 0.069184207 0.069180249 0.06984

Source: Findings of the article

5. Conclusion and Discussion

1. The findings of table 6 and 8, Theil index, indicate that better results of
forecasting are captured through LINEX, than QLS or H and KL. As an example,
for logarithm of oil price in 2014, the difference between conventional loss
function (QLS) and LINEX is 0.027, if we convert the logarithm value into the
real value of oil price, the difference will be $1.028, which is a considerable
improvement in accuracy of forecasting.

Also, the difference between Theil indexes is not remarkably high, but
considers the fact that the estimation takes place under logarithm transformation
and it will be remarkably meaningful for oil price forecasting.

2. According to the results the DLM under the conventional Quadratic Loss
function and LINEX loss functions, admissible variance of the estimation under
LINEX are less than the QLS. Note that the simulation results are susceptible to
the variance of the prediction error; therefore, improvement of simulation results
can be expected.

3. LINEX loss function for a = 1, is quite asymmetric with overestimation being
more costly than underestimation (Zellner, 1986). It would be significantly
important, especially when one intended to assess the price of oil in a tough
situation, like international boycott of an oil exporter country. So, as the
dependency of governments’ budget to the oil revenues deepens, the over-
estimation of oil price gets more sensitive and even more vulnerable. The LINEX
loss function allows the researcher to choose between the risks, lower the
prediction error variance occasionally, and adjust the precisions beside the
preferences of the research.

4. Since the asymmetry is more important in socio-economic studies, choosing
the appropriate loss function will also be more significant. For example, when we
fit a model on the number of political assassinations or casualties on anti-
government clashes over an economic variable such as uncertainty, investment
and growth, then researcher can no longer, and should not, be indifferent between
a unit of ’positive error” and “negative error” in the estimation. Therefore, in the
socio-economic studies, choosing the appropriate loss function will be much
more significant.

5. Our findings confirm that in the DLM forecasting, the LINEX loss function
has more accurate forecasting results than other loss function.
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