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ABSTRACT 

   Value at Risk (VaR) plays a central role in risk management. There are several approaches 

for the estimation of VaR, such as historical simulation, the variance-covariance and the 

Monte Carlo approaches. This work presents portfolio VaR using an approach combining 

Copula functions, Extreme Value Theory (EVT) and GARCH-GJR models. We investigate the 

interactions between Tehran Stock Exchange Price Index (TEPIX) and Composite NASDAQ 

Index. We first use an asymmetric GARCH model and an EVT method to model the marginal 

distributions of each log returns series and then use Copula functions (Gaussian, Student’s t, 
Clayton, Gumbel and Frank) to link the marginal distributions together into a multivariate 

distribution. The portfolio VaR is then estimated. To check the goodness of fit of the approach, 

Backtesting methods are used. The empirical results show that, compared with traditional 

methods, the copula model captures the value more successfully. 
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1. Introduction 

   Value at Risk (VaR) has become the standard measure used by financial 

analysts to quantify the market risk of an asset or a portfolio (Hotta et al., 

2008). VaR is defined as a measure of how the market risk of an asset or asset 

portfolio is likely to decrease over a certain time period under general 

conditions. It is typically implemented by securities houses or investment 

banks to measure the market risk of their asset portfolios (market value at risk), 

and yet it is actually a very general concept that has broader applications. 

However, VaR estimation is not difficult to compute if only a single asset in a 

portfolio is owned, and becomes very difficult due to the complexity of the 

joint multivariate distribution. Besides, one of the main difficulties in 

estimating VaR is to model the dependence structure, especially because VaR 

is concerned with the tail of the distribution (Hotta et al., 2008). 

  Theoretical research that relied on the VaR as a risk measurement was 

initiated by Jorion (1997) and Dowd (1998), who applied the VaR approach 

based on risk management emerging as the industry standard by choice or by 

regulation. Jorion (2000) provides an introduction to VaR, as well as 

discussing its estimation. The existing related academic literature of VaR 

focuses mainly on measuring VaR from different estimation methods to 

various calculation models. The first classical works in VaR methodology 

distinguish mainly three traditional estimation concepts, i.e., the historical, 

Monte-Carlo and variance-covariance approaches. Computational problems 

arise when one increases the number of assets in a portfolio. The traditional 

approaches for estimating VaR assume that the joint distribution is known, 

such as the most commonly used normality of the joint distribution of the 

assets return in theoretical and empirical models. The linear correlation 

assumes, for example, that the variance of the return on a risky asset portfolio 

depends on the variances of the individual assets and also on the linear 

correlation between the assets in the portfolio. In reality, the finance asset 

return distribution has fatter tails than normal distributions. Hence, it is shown 

in many empirical works that such multivariate distributions do not provide 

adequate results due to the presence of asymmetry and excess financial data. 

Linear correlation has a serious deficiency; namely, it is not invariant under 

non-linear strictly increasing transformation. Meanwhile the dependence 

measures derived from copulas can overcome this shortcoming and have 
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broader applications (Nelsen, 1997; Wei and Hu, 2002; Vandenhende and 

Lambert, 2003). 

   Furthermore, copulas can be used to describe more complex multivariate 

dependence structures, such as non-linear and tail dependence (Hürlimann, 

2004). Longin and Solnik (2001) and Ang and Chen (2002) found evidence 

that asset returns are more highly correlated during volatile markets and during 

market downturns. It is obvious that a stronger dependence exists between big 

losses than between big gains. One is unable to model such asymmetries with 

symmetric distributions. The use of linear correlation to model the dependence 

structure shows many disadvantages, as found by Embrechts et al. (2002). 

Therefore, the problem raised from normality could lead to an inadequate VaR 

estimate. 

   In order to overcome these problems, this paper resorts to the copula theory 

which allows us to construct a flexible multivariate distribution with different 

margins and different dependent structures, which allows the joint distribution 

of the portfolio to be free from any normality and linear correlation. The 

dependence measures derived from copulas can overcome this shortcoming 

and have broader applications. Financial markets exist with high (low) 

volatility accompanied by high (low) volatility, which means 

heteroskedasticity in econometrics. This is explained and fitted by the well-

known GARCH (Generalized Autoregressive Conditional Heteroskedastic) 

model and is widely reported in financial literature, as shown by Engle (1996) 

for an excellent survey. 

   Meanwhile, the copula method is based on the Sklar (1959) theorem which 

describes the copula as an indicator of the dependencies among variables. It 

explains the dependent function or connection function which connects the 

joint distribution and the univariate marginal distribution. Copula in particular 

has recently become the most significant new tool. It is generally applied in the 

financial field, such as risk management, portfolio allocation, derivative asset 

pricing, and so on. In our work we focus on portfolio risk management, 

especially in estimating VaR. 

   Patton (2001) constructed the conditional copula by allowing the first and 

second conditional moments to vary in time. After the methodological 

expansion of Patton (2001), the conditional copula began to be used in the 

estimation of VaR. Time variation in the first and second conditional moments 
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is widely discussed in the statistical literature, and so allowing the temporal 

variation in the conditional dependence in the time series seems to be natural. 

Rockinger and Jondeau (2001) used the Plackett copula with the GARCH 

process with innovations modeled by Generalized Asymmetric Student-t 

Distribution of Hansen (1994), and proposed a new measure of conditional 

dependence. Palaro and Hotta (2006) used a mixed model with the conditional 

copula and multivariate GARCH to estimate the VaR of a portfolio composed 

of NASDAQ (National Association of Securities Dealers Automated 

Quotations system) and S&P500 indices. Jondeau and Rockinger (2006) took 

normal GARCH based copula for the VaR estimation of a portfolio composed 

of international equity indices. 

   Extreme Value theory (EVT) which is a branch of statistics that studies rare 

or extreme events is well suited to describe the above-mentioned fat-tailed 

property. It is important to mention that some EVT methods assumes that the 

data to be studied are independently and identically distributed (i.i.d.), which is 

not always the case for most financial log returns series. In this work, in order 

to estimate portfolio VaR with assets’log-returns which are not i.i.d. we adopt 

an approach proposed by McNeil and Frey. They use GARCH models to 

estimate the current volatility of the log-returns series and EVT for estimating 

the tail of innovations’ distribution of the GARCH model�before estimating 
VaR. They find that this approach gives better estimates than methods which 

ignore the fat tails of the innovations or the stochastic nature of the volatility. 

   Nyström and Skoglund combine ARMA (Autoregressive Moving average)-

(asymmetric) GARCH and EVT method to estimate quantiles of univariate 

portfolio risk factors. They find that for high quantiles (between 97% and 98%) 

the use of EVT does indeed give a substantial contribution and the Generalized 

Pareto Distribution (GPD) is better able to accurately model the empirically 

observed fat tails compared to the normal distribution. 

   This paper combines GARCH-EVT and copula to fit the financial data and to 

present a more adequate model in order to replace the classical joint 

multivariate normal distribution. The conditional copula-GARCH-EVT model, 

built for computing the VaR of portfolios, should be more reasonable and 

adequate. The conditional means being full of all past information, and it is 

mainly due to forecasting and fitting purposes that we estimate the one-day 

ahead VaR. Our work analyzes a portfolio composed of the NASDAQ and 
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TEPIX indices with daily returns and estimates of the one-day ahead VaR 

position following the flexible copula model. 

   This paper is related to Palaro and Hotta (2006) and Ozun and Cifter (2007), 

in which they discuss the application of conditional copula in estimating the 

VaR of a portfolio. But unlike the two literatures, we apply various copulas 

completely with different marginal distribution to estimate VaR of a portfolio 

with two assets, NASDAQ and TEPIX. In addition, compared with traditional 

methods (including the historical simulation method, variance-covariance 

method), this paper proves that the Frank copula – GARCH (EVT) model 

capturesVaR of the portfolio more successfully. 

   The rest of the paper is organized as follows. Section 2 presents marginal 

models including the GARCH and GJR models and we generalized Pareto 

distribution function to model the tail distribution for each asset. Section 3 

presents Sklar's theorem and the copula families. In addition, we introduce the 

estimation procedures of VaR. Section 4 presents the empirical procedure and 

results, followed by a conclusion in Section 5. 

 

2. Model for the marginal distribution & generalized Pareto 

distribution    function to    model the tail distribution 

   GARCH models have become important in the analysis of time series data, 

particularly in financial applications when the goal is to analyze and forecast 

volatility. It was first observed by Engle (1982) that although many financial 

time series, such as stock returns and exchange rates, are unpredictable, there is 

an apparent clustering in the variability or volatility. This is often referred to as 

conditional heteroskedasticity, since it is assumed that overall the series is 

stationary, but the conditional expected value of the variance may be time-

dependent. Our marginal model is built on the classical GARCH model and the 

GJR model, in which the standard innovation is to obey the normal distribution 

and Student-t distribution respectively. 

2.1. GARCH-n and GARCH-t model 

   Let the returns of a given asset be given by {Xt}t = 1, …,T. We consider that 

GARCH(1,1)  with standard innovation is a standard normal (GARCH-n) or a 
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standardized Student-t (GARCH-t) distribution respectively, where the model 

is as follows: 

xt = µ + at 

at = σt εt 

σ2
t = α0 + α1 a

2
t-1 + β α2

t-1 

εt ~ N (0,1)  or   εt ~ td . 

Here µ = E(xt) = E(E(xt | Ωt-1)) = E(µ t) = µ  is the unconditional mean of series 

return,     σ2
t = Var (xt | Ωt-1) = Var (at | Ωt-1) is the conditional variance,  α0 ˃ 0, 

α1  0, and α1+β ˂ 1, where Ωt-1 is the information set at t-1. In the normal 

case, α1+β ˂ 1 is sufficient for a stationary covariance, the ergodic process, and 
implies that the uncoditional variance of at is finite, whereas its conditional 

variance  σ2
t evolves over time. In the case of non-normal distributions, the 

condition is  α1 Var (εt) +.β ˂ 1. Under slightly weaker conditions, at may be 

ergodic and strictly stationary. Besides, d are the degrees of freedom.The 

method we estimate for the parameters is MLE(Maximum likelihood 

Estimation). We let  Ωt-1 = {a0, a1, ...,at-1 }. The joint density function can then 

be written as   (a0, a1, ...,at) =   (at | Ωt-1)   (at-1 | Ωt-2) …   (a1 | Ω0)   (a0 ). 

Given data a1, ...,at the log-likelihood is the following: 

LLF =∑      
    an-k | Ωn-k-1). 

   This can be evaluated using the model volatility equation for any assumed 

distribution for εt. Here, LLF can be maximized numerically to obtain MLE. 

The method for estimating the parameters above is the MLE method, which is 

introduced in the following section. We use the observation (x1, x2, …,xt) to get 

the conditional marginal distribution of Xt+1 defined as the following; 

P (Xt+1   x.│Ωt) = P (at+1   (x-u) │Ωt) 

  = P (εt+1   
     

√       
     

 
│Ωt) 
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2.2. GJR-n and GJR-t model 

   In the GJR model (see Glosten et  al.,  1993) the following is the volatility 

generating process, where GJR-n means the standard innovation is a standard 

normal distribution and GJR-t means the standard innovation is a standardized  

Student-t distribution. 

xt = µ + at 

at = σt εt 

σ2
t = α0 + α1 a

2
t-1 +   σ2

t-1 + γ st-1 a
2

t-1 

εt ~ N(0,1)   or   εt ~ td 

 Where        {
             
              

 

Moreover, α0 ˃ 0, α1≥ 0, β ≥ 0, β + γ ≥ 0, and α1+ β+½ γ ˂�1, while    is a 

dummy variable which equals one when εt is negative and is nil elsewhere. 

   Unlike the classical GARCH model, the GJR model contains an asymmetric 

effort. Here, asymmetry is�captured by the term multiplying γ. when γ�is 
positive, it means that negative�shocks (ε ˂ 0) introduce more volatility than 
positive shocks of the same size in the subsequent period. The estimation of the 

parameters above is also introduced in the following section. The conditional 

marginal distribution of Xt+1 is almost the same as the GARCH model, which 

is defined as the following: 

 P (Xt+1   x │Ωt) = P (εt+1   
     

√       
     

        
 
│Ωt) 
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2.3. Extreme Value Theory (EVT) 

   Extreme Value theory (EVT) which is a branch of statistics, which studies 

rare or extreme events, is well suited to describe the above mentioned fat-tailed 

property. It is important to mention that some EVT methods assume that the 

data to be studied are independently and identically distributed (i.i.d.), which is 

not always the case for most financial log returns series. In this work, in order 

to estimate portfolio VaR with assets’log-returns which are not i.i.d.      there 

are two principal kinds of model for extreme values (Embrechts et al., 1997). 

The block maximum models are the oldest group of models. They are models 

for the largest observations collected from large samples of identically 

distributed observations. The peaks-over-threshold (POT) models are modern 

methods for EVT. They directly model all large observations which exceed a 

high threshold.  

   Within the POT class of models one may further distinguish two styles of 

analyses. One is the semi-parametric models built around the Hill estimator 

(Hill, 1975) and its relatives and the other is the fully parametric models based 

on the generalized Pareto distribution or GPD (Embrechts et al., 1997). This 

study applies to the latter style of analysis.  

2.3.1. Generalized Pareto Distribution (GPD) 

   The GPD describes the limiting distribution for modeling excesses over a 

certain threshold. If X is a random variable (say daily portfolio losses) which is 

generalized Pareto distribution, then its distribution function has this form: 

    (x) = {
  (  

  

 
)

  

 
            

     ( 
 

 
)               
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Where   ˃ 0 and x ≥ 0 when   ≥ 0 and 0 ≤ x ≤ -    when   ˂ 0. The 
parametrs   and   are referred to as the shape and scale parameters, 

respectively. The GPD is generalized in the sense that it contains a number of 

specific distributions under its parameterization. When   ˃ 0 ,the distribution 
function Gγ,β is that of heavy tailed ordinary pareto distribution; when   = 0 we 

have a light tailed exponential distribution and when   ˂ 0 we have a short 
tailed pareto type II distribution. Moreover, for fixed x the parametric form is 

continuous in  , so, lim  →0 Gγ,β (x) = G0,β (x). The GPD family can be 

extended by adding a location parameter   ϵ  , that is 

Gγ,µ ,β (x) = Gγ,µ,β (x - µ) 

The support has to be adjusted accordingly. When   = 0 and   = 1, the 

representation in known as the standard GPD.The GPD density function has 

the form 

    (x) = {

 

 
(  

  

 
)

    

 
            

 

 
   ( 

 

 
)                    

 

The tail of the density fattens and the peaks are sharping with increasing  , 

while with increasing   the central part of the density gets more flat. 

 

3. Copula theory and estimation procedures 

   In statistics literature, the idea of a copula arose as early as the 19th century 

in the context of discussions of non-normality in multivariate cases. Modern 

theories about copulas can be dated to about forty years ago when Sklar (1959) 

defined and provided some fundamental properties of a copula. 

3.1. Sklar's theorem 

   Let F denote an n-dimensional distribution function with margins F1 , F2 ,�…, 
Fn , and then there exists a copula representation (canonical decomposition) for 

all real (x1 , x2 , ..., xn), such that: 

F (x1 , …., xn) = p (X1 ≤ x1 , …. , Xn ≤ xn )   

                       = C (P(X1 ≤ x) , …. , P(Xn ≤ xn)   
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                       = C (F1(x1) , …. , Fn(xn)). 

   When the variables are continuous, Sklar's theorem shows that any 

multivariate probability distribution function can be represented with a 

marginal distribution and a dependent structure, which is derived below: 

  (x1, …, xn) = 
           

        
   

                     =  
           

        
    ∏

       

   
        

                     = c (  ̃ )    ∏        . 

   If all margins are continuous, then the copula is unique and is in general 

otherwise determined uniquely by the ranges of the marginal distribution 

functions. An important feature of this result is that the marginal distributions 

do not need to be in any way similar to each other, nor is the choice of copula 

constrained by the choice of marginal distributions. 

3.2. The copula family 

   The copula family used in our work includes commonly used copulas which 

are the Gaussian copula, the Student-t copula, and the Archimedean copula 

family such as the Clayton copula, Frank copula, Gumbel copula. The class of 

Archimedean copulas was named by Ling (1965), but it was recognized by 

Schweizer and Sklar (1961) in the study of t-norms. The main reasons why 

they are of interest are that they are not elliptical copula, and allow us to model 

a big variety of different dependence structures. We consider in particular the 

one-parameter Archimedean copulas. This paper investigates the five kinds of 

copula and examines whether they suit the financial data or not. 

   The copula family studied in this paper includes the Gaussian copula, 

Student-t copula, Clayton copula, Frank copula, Gumbel copula, which are 

shown as follows: 

1. Gaussian copula 

      The Gaussian copula C
Ga

ρ of a d-dimensional standard normal distribution, 

with linear       correlation matrix , is the distribution function of the random, 
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vector (Ф(X1),…,Ф(Xd))            where Ф is the univariate standard normal 
distribution function and X ~ Nd(0,ρ).  

 Hence, 

C
Ga

ρ = P(Ф(X1) ≤ u1, …. , (Ф (Xd) ≤ ud) = Фd
ρ (Ф-1

(u1),…,Ф-1
(ud)) 

Where Фd
ρ is the distribution function of X. 

2. Student-t copula 

   The Student's t copula C
t
ѵ,ρ  of a d-dimensional standard Student's t 

distribution with      

ѵ ≥ 0 degrees of freedom and linear correlation matrix ρ, is the distribution of 
the random vector  (tѵ (X1) ≤ u1 ,…., tѵ (Xd) ≤ ud) , where X has a t

d(0,ρ,ѵ) 
distribution and  tѵ is the univariate standard  Student's t distribution function. 

Hence, 

C
t
ѵ,ρ = P( tѵ (X1)�≤�u1 ,….,�tѵ (Xd) ≤ ud) = t

d
ѵ,ρ (t

-1
ѵ(u1),….., t-1

ѵ (ud)) 

With t
d

ѵ, ρ the distribution function of X. 

3. Clayton copula 

   The generator is given by φ (u) = u
-α

 -1, hence φ-1
 (t) = (t+1)

-1/α
, it is 

completely monotonic if α ˃ 0. The Clayton d-copula is therefore: 

C (u1,….,ud) =  [∑   
   –       

   ] -1/α
  with α ˃ 0 

4. Frank copula 

   The generator is given by  

     = ln (
          

         
) 

Hence 

φ-1
 (t) = -1/α  ln ( 1+exp(t)(exp(-α) – 1 )) 

It is completely monotonic if α ˃ 0. The Frank d-copula is therefore: 

C (       ) = - 
 

 
 ln {1+ 

∏               
   

                  with     when n   
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5. Gumbel copula 

   The generator is given by φ (u) = (-ln (u)
 α

)
 α

, hence φ-1
(t) = exp (-t

1/α
), it is 

completely monotonic if α ˃ 1. The Gumbel d-copula is therefore: 

C (u1,…..,ud) = exp{ - [∑       
      

  ] 1/α
 } with α ˃ 1 

 

 3.3. Estimation method 

   This paper uses estimation methods such as the maximum likelihood method 

and inference function for margins (IFM) method. 

IFM estimates the parameters in the log-likelihood function in two steps: 

1. Estimate the margins’ parameters θ1 by performing the estimation of 
the univariate marginal distributions 

             ̂  =         
∑ ∑         

 
   

 
      ). 

2. Given   ̂ , perform the estimation of the copula parameter    

             ̂  =        
 ∑                

                 ̂  . 

The IFM estimator is defined as   ̂   (  ̂    ̂  . 

 

 3.4. Simulation from Copulas 

   One of the main applications of copula related to this work is the VaR 

estimation, using Monte Carlo Simulation approach. In this section, we 

describe a general method to simulate draws from a chosen copula using a 

conditional approach (Conditional Sampling). We first describe the simulation 

principle in a bivariate case then we extend it in the multivariate case. Assume 

a bivariate copula in which all of its parameters are known. Our task is to 

generate pairs        of observations of (0, 1) uniformly distributed random 

variables   and   whose joint distribution is C. To do so, we use the 

conditional distribution 

            |      
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For the random variable   at a given value u of . From probability theory, we 

know that, 

            |      =        
                 

  
 = 

  

  
 =        

   Where       is the partial derivative of the copula, it is shown that       is a 

non-decreasing function and exists for almost all     (0, 1). Thus, we can 

generate the random pair (   ) in the following steps: 

1. Generate two independent random variables u and t from U (0, 1); 

2. Set   =   
  (t), where   

   is the inverse function of   ; 

3. The pair (   ) is just the random numbers from the copula. 

  The idea is the same when extending the simulation to a multivariate case. 

The goal in multivariate case is to simulate          from the copula C 

(       ). We do it in the following steps: 

1. Generate     U (0, 1) 

2. Set 

                 ) = P (     │  =   ) = 
              

   
 

      We put    =   
  (  │  ), where      U (0, 1) 

3. In general, 

                     ) = P (     │  =  ,…,     =     ) 

                                  =

                 

          
                   

          

⁄  

 We put    =   
  (            ), where      U (0, 1). 

   The conditional approach is very elegant, but it may not be possible to 

calculate the inverse function analytically. In this case, one has to do it 

numerically, and this procedure might be computationally intensive. In the case 

of Archimedean Copulas, this method maybe rewritten using theorem 6.1 page 

189, in which gives that: 
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               = 
                        

                          
 

 With C (       ) =                     is an Archimedean copula 

with generator  (u). 

 

3.5. Estimation of VaR 

   VaR is a concept developed in the field of risk management in finance. It is a 

measure defining how a portfolio of assets is likely to decrease over a certain 

time period. We define the VaR of a portfolio at a time t (return from t -  t to 

t), with a confidence level (1-  ), where     (0, 1) is defined as: 

    ( ) = inf {s:   ( )     }, 

   Where    is the distribution function of the portfolio return      at time t, and 

we have 

 P (         ( )     ) =  . This means that we have 100 (1-   )% 

confidence that the loss in the period  t will not be larger than VaR, where 

     means the information set at time t- 1. We consider our portfolio return 

     composed by a two-asset return denoted as      and      , respectively. The 

portfolio return is approximately equal to the following: 

     =       + (1-   )      , where   and (1-   ) are the portfolio weights of 

asset 1 and asset 2. Thus, the portfolio return is defined as: 

P (         ( )     ) 

= P (      + (1-   )           ( )     ) 

= P (       
        

 
 

     

 
          )  . 

  In our work, we arbitrarily consider the two assets' weight to be equal, but this 

is not a constraint and they can vary freely. It means   =1/2, where the 

confidence level   s assumed to be equal to 0.05, such that: 

P (         ( )     ) 
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= P (
 

 
     + 

 

 
         ( )     ) 

= P (       
        

 
 -            ) = 0.05. 

   Because the portfolio return is continuous, the VaR estimation formula is 

defined by the following, and Sklar's theorem is introduced here. 

P (         ( )     ) 

=∫  
 

  
∫             

        

 
       

  
                    

=∫  
 

  
∫     (    )   (    )               

        

 
       

  
        

  (         )             

   In addition to the conditional copula-GARCH (EVT) method, we estimate 

the VaR by using different classical approaches, such as the historical 

simulation method, variance-covariance method, which we present briefly in 

the following. 

   Historical simulation assumes that the distribution of the return will reappear. 

It can be thought of as estimating the distribution of the returns under the 

empirical distribution of the data. It is common and easy to use and compute. 

The variance-covariance method assumes the asset to have normality, and the 

VaR estimation formula is defined by: 

    
 = [    ]   [

    
      

 

     
     

 ]   [  
  

] =   ∑   
   

      (   =      .    +      , 

Where      and     
  are the return and the variance of the portfolio return in 

time t, respectively,    is the portfolio weight of asset i, and    is the 

standardized normal inverse with   probability. 
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4. Empirical results 

4.1 The data 

   For this paper we choose to use a hypothetical portfolio consisting of indices 

from TEHRAN (TEPIX) and NASDAQ. The data consists of 1761 daily 

observations for the period between April 24, 2001 and April 24, 2014 

downloaded from Yahoo Finance(NASDAQ) and TSETMC
2
 (TEPIX). To 

eliminate spurious correlation generated by holidays, we eliminate those 

observations when a holiday occurred at least for one country from the 

database. 

   Fig. 1 illustrates the relative price movements of each Index. (Initial level of 

each Index has been normalized to unity to facilitate the comparison of their 

relative performances).  

 

 

Fig. 1. Relative Price movements of each Index. 

 

   Since stock prices are mostly non-stationary, it is common in time series to 

model related changes of prices, that is the log return series. The log returns of 

the indices aredefined as: 

     = ln( 
    

      
 ),   = 1,2. 

                                                           
2 . Tehran Securities Exchange Technology Management Company 
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Where      is the     index price at time j;i=1,2 corresponding to stock index 

from TEHRAN STOCK EXCHANGE and NASDAQ, respectively. The 

market returns of TEHRAN SEand NASDAQ are shown in Fig. 2. 

     

 

Fig. 2. Daily returns of TEPIX and NASDAQ 

   Table 1 provides summary statistics on market returns and statistic tests 

about the ARCH effects. We can find that NASDAQ has a negative skewness 

(-.0660459) and TEHRAN SEhas a positive skewness (0.746618). The LM (K) 

statistic clearly indicates that ARCH effects are likely to be found in both 

TEHRANSE and NASDAQ market returns. We consider the GARCH and GJR 

model introduced in the previous section to fit the time series data in order to 

create i.i.d observations to estimate the copula. Moreover, an excess of kurtosis 

is significant when higher than 3. It means that the empirical observations of 

returns display fatter tails than the normal distribution. 
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Table 1. Descriptive statistic and Engle tests. 

Statistics TEHRAN NASDAQ 

Sample number 1761 1761 

Mean 0.181498 0.040666 

Standard deviation 1.013129 2.024999 

Skewness 0.746618 -.0660459 

Excess of Kurtosis 9.91903 8.334417 

Max 7.066277 9.122931 

Min -5.681502 -13.54392 

Engel –test(Returns) Q-statistic P-value Q-statistic P-value 

LM(4) 31.2617 0 161.5694 0 

LM(6) 63.0537 0 196.7675 0 

LM(8) 66.2475 0 202.0752 0 

LM(10) 75.4711 0 211.755 0 

Ljung-Box(Return) stat P-value stat P-value 

Lag=40, α=0.05 5.898e+004 0 5.9784e+004 0 

Jarque-Bera 3673.288 0 2215.986 0 

 

4.2. The marginal distribution & generalized Pareto distribution 

function to model the tail distribution 

   Modeling the tails of a distribution with a GPD requires the observations to 

be approximately independent and identically distributed (i.i.d.). However, 

most financial return series exhibit some degrees of autocorrelation and, more 

importantly, heteroskedasticity. Fig. 3 and 4 shows sample ACF 

(autocorrelation function) of returns and sample ACF of squared returns for the 

two countries. The ACF of returns reveals some mild serial correlation.    

However, the sample ACF of the squared returns illustrates significant degree 

of persistence in variance, which implies that we need a GARCH model to 

condition the data for the subsequent tail estimation process. Thus, we consider 

the univariate marginal model introduced in Section 2, the classical GARCH 

model and the GJR model. We fit AR (1)-GARCH and GJR models for 

NASDAQ and AR (6)-GARCH and GJR models for TEHRANSE as the initial 

models with normal and Student-t distributions, respectively. Tables 2 and 3 

represent the maximum likelihood results, the ARCH and Ljungbox test for 

model adequacy, and the AIC (Akaike information criterion) and BIC 

(Bayesian information criterion) criterion  for model selection Tables 2 and 3 
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show that the Ljung-Box test applied to the residuals of the GARCH-n, 

GARCH-t , GJR-n and GJR-t models. Table 3 shows the results with values 1 

meaning that the test rejects the null hypothesis at a 5% of significance level. 

 

 

Fig. 3. Sample ACF of the Returns 



112 
 

Iranian Journal of Finance 

 

Fig. 3. Sample ACF of the Squared Returns. 

 

Table 2. Estimation GARCH-GJR model and statistic test. 

Mode

l 

GARCH-n GARCH-t GJR-n GJR-t 

Index TEHRAN NASDA

Q 

TEHRA

N 

NASDA

Q 

TEHRA

N 

NASDA

Q 

TEHRA

N 

NASDA

Q 

LLF 5.8 

e+003 
4.6e+00

3 
6.1 

e+003 
4.7e+00

3 
5.8 

e+003 
4.6e+00

3 
6.1 

e+003 
4.7e+00

3 
AIC -

1.15e+0

04 

-

9.2e+003 

-

1.2e+00

4 

-

9.4e+00

3 

-

1.1e+00

4 

-

9.2e+00

4 

-

1.2e+00

4 

-

9.4e+00

3 
BLC -

1.15e+0

04 

-

9.2e+003 

-

1.2e+00

4 

-

9.4e+00

3 

-

1.1e+00

4 

-

9.2e+00

4 

-

1.2e+00

4 

-

9.4e+00

3 
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Table3. Estimation GARCH-GJR model and statistic test. 

Mode

l 

GARCH-n GARCH-t 

Index TEHRAN 

R
esu

lt 

NASDAQ 

R
esu

lt 

TEHRAN 
R

esu
lt 

NASDAQ 

R
esu

lt 

Ljung

-Box 

Q-

statisti

c 

P-

value 

Q-

statisti

c 

P-

value 

Q-

statisti

c 

P-

value 

Q-

statisti

c 

P-

value 

QW(1

) 

0.07.3 0.7909 0 0.0213 0.884 0 4.3869 0.036

2 

1 0.0042 0.948

2 

0 

QW(3

) 

0.317 0.9568 0 0.5474 0.66 0 10.946

5 

0.12 1 1.9182 0.589

6 

0 

QW(5

) 

0.3291 0.9971 0 4.0416 0.542

8 

0 12.037

9 

0.034

3 

1 4.4519 0.486

3 

0 

QW(7

) 

1.4583 0.9839 0 4.7421 0.991

4 

0 20.338

5 

0.004

9 

1 5.1226 0.645 0 

Engel

-test 

Q-

statisti

c 

P-

value 

 Q-

statisti

c 

P-

value 

 Q-

statisti

c 

P-

value 

 Q-

statisti

c 

P-

value 

 

LM(4

) 

9.8528 0.043 1 1.3947 0.845

1 

0 9.6627 0.046

5 

1 0.6594 0.956

2 

0 

LM 

(6) 

11.515

7 

0.0737 0 1.4102 0.965

2 

0 10.846

9 

0.093

2 

0 0.6969 0.994

6 

0 

LM 

(8) 

13.152

9 

0.1067

0 

0 1.4522 0.995

5 

0 12.743

5 

0.121 0 0.7602 0.999

4 

0 

LM 

(10) 

15.860

7 

0.1037 0 2.2102 0.994

5 

0 16.242

2 

0.092

9 

0 1.4668 0.999 0 

Mode

l 

GJR-n GJR –t 

Index TEHRAN 

R
esu

lt 

NASDAQ 

R
esu

lt 

TEHRAN 

R
esu

lt 

NASDAQ 

R
esu

lt 

Ljung

-Box 

Q-

statisti

c 

P-

value 

Q-

statisti

c 

P-

value 

Q-

statisti

c 

P-

value 

Q-

statisti

c 

P-

value 

QW(1

) 

0.0028 0.9579 0 0.0165 0.897

9 

0 3.8472 0.049

8 

1 0.0013 0.971 0 

QW(3

) 

0.0261 0.9989 0 1.617 0.655

5 

0 12.618

3 

0.005

5 

1 2.2445 0.523

2 

0 

QW(5

) 

0.0329 1 0 3.6062 0.607

4 

0 13.471

8 

0.019

3 

1 4.5807 0.469

2 

0 

QW(7

) 

0.4255 0.9997 0 4.2187 0.754

3 

0 25.252 0.000

7 

1 5.1816 0.637

8 

0 

Engel

-test 

Q-

statisti

c 

P-

value 

 Q-

statisti

c 

P-

value 

 Q-

statisti

c 

P-

value 

 Q-

statisti

c 

P-

value 

 

LM(4

) 

9.0633 0.0595 0 1.8062 0.771

3 

0 7.0254 0.134

6 

0 0.8993 0.924

7 

0 

LM 

(6) 

11.749

7 

0.0678 0 1.8933 0.929

2 

0 11.396 0.076

9 

0 1.0177 0.984

9 

0 

LM 

(8) 

12.524

6 

0.1293 0 2.0371 0.979

9 

0 11.778

6 

0.161

4 

0 1.2068 0.996

6 

0 

LM 

(10) 

16.974

5 

0.0749 0 3.0334 0.980

6 

0 19.353

6 

0.036 1 2.1566 0.995 0 
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   Given the standardized, i.i.d. residuals from the previous step, we estimate 

the empirical CDF of each index with a Gaussian kernel in interior and EVT in 

each tail, because the interior of a CDF is usually smooth, and non-parametric 

kernel estimates are well suited, but kernel smooth tends to perform poorly 

when applied to the upper and lower tails. To better estimate the tails of the 

distribution, we apply EVT to those residuals that fall in each tail. 

 

4.3. Copula modeling 

   After having estimated the parameters of the marginal distribution  , we 

continue to estimate the copula parameters as explained previously. Five 

copula functions are applied in our work: Gaussian copula, Student-t copula, 

and some Archimedean copula. According to the MLE and IFM methods, the 

selected copula functions will be fitted to these residuals series. The copula 

modeling result is showed in Table 4. Table 4 shows the results we estimate 

from the MLE or IFM method. 

   It is obvious to find the best fitting copula function we used the AIC and BIC 

criterion for model selection here. Table 4 shows that Clayton, Frank, Gumbel 

copulas AIC and BIC are the smallest, especially with the GARCH-t and GJR-t 

marginal distribution model.  

  Frank and Plackett's copulas, especially with the GARCH-t marginal 

distribution, which are a better fit than the Gaussian copula. In fact, the 

Gaussian copula with the GARCH-t marginal distribution model is the well-

known distribution, which is the multivariate normal distribution we always 

assume in the classical method. 

   According to the AIC and BIC values of all kinds of copulas, the Clayton, 

Frank, Gumbel copulas is the best fitting function to describe the dependence 

structure of the bivariate return series. 
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Table 4. Parameter estimates for families of copula and model selection 

statistic. 

Copula Parameter GARCH-n GARCH-t GJR-n GJR-t 

 

Gaussian 

  0.0822 0.0785 0.0764 0.0718 

LLF 5.8163e+003 6.1003e+003 5.823e+003 6.114e+003 

ALC -1.163e+004 -1.22e+004 -1.164e+004 -1.223e004 

BIC -1.162e+004 -1.219e+004 -1.164e+004 -1.222e+004 

 

 

Student-t 

  0.0707 0.0676 0.0655 0.0623 

D 6.5010 6.0822 6.5095 6.129 

LLF 5.1863e+003 6.1003e+003 5.823e+003 6.114e+003 

ALC -1.163e+004 -1.22e+004 -1.164e+004 -1.222e+004 

BIC -1.162e+004 -1.219e+004 -1.163e+004 -1.221e+004 

 

Clayton 

  0.0821 0.081 0.0692 0.0643 

LLF 5.8165e+003 6.1003e+003 5.8229e+003 6.1139e+003 

ALC -1.163e+004 -1.22e+004 -1.164e+004 -1.223e+004 

BIC -1.162e+004 -1.219e+004 -1.166e+004 -1.222e+004 

 

Frank 

  .04058 0.3922 0.3782 0.3648 

LLF 5.816e+003 6.1e+003 5.823e+003 6.114e+003 

ALC -1.163e+004 -1.22e+004 -1.164e+004 -1.223e+004 

BIC -1.162e+004 -1.219+004 -1.164e+004 -1.222e+004 

 

Gumbel 

  1.0667 1.0649 1.0663 1.0668 

LLF 5.8163e+003 6.1003e+003 5.823e+003 6.1139e+003 

ALC -1.163e+004 -1.22e+004 -1.164e+004 -1.223e+004 

BIC -1.162e+004 -1.219e+004 -1.164e+004 -1.222e+004 

 

 

4.4. Estimation of VaR 

   This paper initially uses the sample-in data, which contains1440 return 

observations, to estimate VaR1441 at a time t = 1441, and at each new 

observation we re-estimate VaR, because of the conditional level and the VaR 

estimation formula. It means that we estimate VaR 1442 by using observations 



116 
 

Iranian Journal of Finance 

t = 2 to t = 1441 and estimate VaR 1443 by using observations t = 3 to t = 1442 

until the sample-out observations we have updated are used up. Because we 

have 321 sample-out observations left, there are total 321 tests for VaR. The 

number of violations of the VaR estimation is calculated using various copula 

functions and are presented in Table 5. 

   The numbers of violations in Table 5 are the numbers of sample observations 

being located out of the critical value. The mean error shows for each copula 

function, the average absolute discrepancy per marginal model between the 

observed and expected number of violations. When the estimation of the 

number of violations calculated by various copula functions is closer to the 

expected number of violations (i.e., 16), the values of the mean error are small. 

From the results in Table 5, the Frank copula shows the minimum mean error 

with a 95% level of confidence and Student-t copula shows the minimum mean 

error with a 99% level of confidence. That is, the Frank copula is the best 

adequate copula for describing the return distribution of the portfolio. 

   The following is the comparison with traditional VaR estimation. The results 

we estimate using the traditional methods are shown in Table 6. In this table, 

Frank-copula- GARCH-n stands for the Frank copula with a GARCH-n 

marginal distribution and Frank-copula- GARCH-t, the Frank copula with a 

GARCH-t marginal distribution and t-copula- GARCH-n, the t-student copula 

with a GARCH-n marginal distribution and t-copula- GJR-t, the t-student 

copula with a GJR-t  . It is obvious to see the VaR of the historical simulation 

(HS) method and variance-covariance (VC) method are underestimated and 

this represents the highest mean error at   = 0:05 and   = 0:01.  
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Table 5. Number of violations of the VaR estimation. 

At   =0.05 
Trading 

days 
321 Expected no. of 

violations 

16 

Copula GARCH-n GARCH-t GJR-n GJR-t Mean error 

Gaussian 21 21 21 22 5.25 

Student-t 17 24 19 16 3 

Clayton 19 15 18 21 2.75 

Frank 16 16 20 22 2.5 

Gumbel 14 17 11 13 2.75 

At   =0.01 

  Expected no. of 

violations 

3 

Gaussian 4 5 6 6 2.25 

Student-t 2 5 6 2 1.75 

Clayton 2 1 0 0 2.25 

Frank 3 1 0 0 2 

Gumbel 0 0 0 0 3 

 

Table 6. Number of violations of VaR estimation. 

Trading days             321 

  5% 1%  

Expected no. of violations 16 3 Mean error 

Frank-copula- GARCH-n 16 3 0 

Frank-copula- GARCH-t 16 1 2 

t-copula- GARCH-n 17 2 2 

t-copula- GJR-t 16 2 1 

HS 5 1 13 

VC 10 6 9 
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5. Conclusion 

   This paper estimates different copulas with different univariate marginal 

distributions, and traditional methods to compare the results. The Frank copula 

describes the dependence structure of the portfolio return series quite well, in 

which we choose it by the AIC and BIC of the model criterion, producing the 

best results of the reliable VaR limit. 

   The comparison of the performance of the copula method to that of the 

traditional method shows that the copula model captures the VaR most 

successfully. The copula method has the feature of flexibility in distribution, 

which is more appropriate in studying highly volatile financial markets, and in 

which traditional methods lack. 

 

  



   119 
 

 

Studying the effects of USING GARCH-EVT-COPULA METHOD TO…  

 

References 

Jondeau, E. Rockinger, M, 2006. The copula-GARCH model of conditional 

dependencies: An international stock market application. Journal of International 

Money and Finance 25 (5), 827-853. 

Ozun, A., Cifter, A., 2007. Portfolio value-at-risk with time-varying copula: 

Evidence from the Americans. Marmara University. MPRA Paper No. 2711. 

Thomas J. Linsmeier and Neil D. Pearson, 1996, "Risk Measurement: An 

Introduction to Value at Risk" 

Patton, A. J. (2002). Modelling time-varying exchange rate dependence using the 

conditional copula. Working paper, UCSD. 

Palaro, H., Hotta, L.K., 2006. Using conditional copulas to estimate value at risk. 

Journal of Data Science 4 (1), 93-115. 

Jen-Jsung Huang, Kuo-Jung Lee, Hueimei Liang, Wei-Fu Lin, 2009, "Estimating 

value at risk" 

Engle, R. F. and T. Bollerslev, 1986, "Modeling the persistence of conditional 

variances." Econometric Review 5:1–50. 

Dias, A., and Embrechts, P. (2003). Dynamic copula models for multivariate high- 

frequency data in ifnance. Working Paper, ETH Zurich: D�partment of 

Mathematics. 

Embrechts, P. and Hoing, A., Juri, A. (2003). Using copula to bound the value-at-

risk for functions of dependent risks. Finance and Stochastic 7, 145-167. 

Embrechts, P., Lindskog, F. and McNeil, A.J. (2003). Modelling dependence with 

copulas and applications to risk management. In Handbook of Heavy Tailed 

Distributions in Finance (Edited by S. T. Rachev), 329-384 Elsevier  

Wang Z R, Chen X H, Jin Y B and Zhou Y J (2009): '' Estimating risk of foreign 

exchange portfolio: Using VaR and CVaR based on GARCH-EVT-Copula 

model''. Physica A: Statistical Mechanics and its Applications 389 (21), 4918-

4928. 

Palaro, P. Hender, Hotta, K. Luiz, '' Using Conditional Copula to Estimate Value-

at-Risk''. Journal of Data Science 4(2006), 93-115. 

Ngoga Kirabo Bob (2013):''Value at Risk Estimation. A GARCH-EVT-Copula 

Approach''. Master thesis of Mathematic and Statistic, University of 

Stockholm's.  


