آرشیو

آرشیو شماره‌ها:
۴۰

چکیده

خشکسالی یکی از پدیده های آب و هوایی است که در همه ی شرایط اقلیمی و در همه ی مناطق کره ی زمین به وقوع می پیوندد. پیش بینی خشک سالی نقش مهمی در طراحی و مدیریت منابع طبیعی، سیستم های منابع آب، تعیین نیاز آبی گیاه  ایفا می نماید. در این پژوهش جهت تخمین شاخص بارش استاندارد 12 ماهه ی چهار ایستگاه باران سنجی دلفان، سلسله، دورود و بروجرد واقع در استان لرستان از مدل شبکه ی عصبی موجک استفاده شد و نتایج آن با سایر روش های هوشمند از جمله شبکه ی عصبی مصنوعی مقایسه گردید. برای این منظور از پارامتر بارش در مقیاس زمانی ماهانه در طی دوره ی آماری (1372-1392) به عنوان ورودی و شاخص بارش استاندارد به عنوان پارامتر خروجی مدل ها انتخاب گردید. معیارهای ضریب همبستگی، ریشه ی میانگین مربعات خطا و میانگین قدر مطلق خطا برای ارزیابی و عملکرد مدل ها مورد استفاده قرار گرفت. نتایج نشان داد هر دو مدل قابلیت خوبی در تخمین شاخص بارش استاندارد دارند، لیکن از لحاظ دقت، مدل شبکه ی عصبی موجک عملکرد بهتری نسبت به شبکه ی عصبی مصنوعی از خود نشان داده است. در مجموع نتایج نشان داد استفاده از مدل شبکه ی عصبی موجک می تواند در زمینه تخمین خشکسالی موثر باشد.

Drought Estimate Using Artificial Network Estimation Drought Using Intelligent Networks

Background and Objective Drought is one of the phenomena of climate that occurs in all climatic conditions and in all parts of the planet. Drought prediction has an important role in designing and managing natural resources, water resource systems, and determining the plant's water requirement. For estimating drought, various approaches have been introduced in hydrology that artificial models are the most important ones. In this study for evaluating the accuracy of the models in estimating the 12-month standard rainfall index, monthly data from four weather stations in Boroujerd, Dorood, Selseleh and Dolphan in Lorestan province have been used. For modeling of drought in these stations utilized wavelet neural network and artificial neural network models and the results were compared to each other for the accuracy of the studied models. In a few studies, each of the models presented in the drought estimation has been studied. But the purpose of this research is simultaneous analysis of these models at four stations for estimating the standard rainfall index. Methods  In this study, Boroujerd, Dorood, Selseleh and Dolphan that located in Lorestan province have been selected as the study area During the statistical period, the precipitation parameter was used at monthly time scale (1962-1372) for input and standard rainfall index as the output parameter of the models. For this purpose, at first 80% of the data (1372-1382) were selected for calibration of the models and 20% of the data (2012-2013) were used to validate the models. The wavelet neural network, which has a very good fit with the sinusoidal equations by separating the signal into high and low frequencies, can greatly increase the accuracy of the model and reduce noise. Artificial neural networks are inspired by the brain information processing system that ability to approximate patterns of a model has increased the scope of these networks. Correlation coefficient, root mean square error and mean absolute error value were used for evaluation and performance of the models. Results The results showed that both models have good performance in estimating the standard rainfall index in the four stations studied. Also, according to the evaluation criteria, the wavelet neural network model was found to have the highest accuracy and low error rate compared to the artificial neural network model. Conclusions In total, the results showed that the use of wavelet neural network model can be effective in estimating the standard rainfall index. also It can be useful in facilitating the development and implementation of management strategies to prevent drought and is a step in making managerial decisions to improve water resources.

تبلیغات