آرشیو

آرشیو شماره‌ها:
۴۰

چکیده

شناسایی کامل مخاطرات و اولویت بندی آن ها در جهت عدم آسیب به طبیعت از اولین گام های مدیریت منابع طبیعی می باشد. لذا معرفی یک سیستم جامع قابل ارزیابی، درک و ارزشیابی، درجهت کنترل مخاطرات ضروری می باشد این پژوهش با هدف مدلسازی و پیش بینی میزان مخاطرات محیطی به دنبال افزایش تخریب در محیط های طبیعی به کمک شبکه عصبی مصنوعی (ANN) انجام گرفت. به این ترتیب تعداد 600 نمونه خاک و پوشش گیاهی در واحدهای همگن اکولوژیک برداشت شد. نمونه های خاک با روش ترانسکت نواری به توجه به عمق خاک و در چهار پروفیل (cm5،10،15،20) تهیه شد. نمونه های گیاهی نیز با روش سطح حداقل و با استفاده از پلات های مربع 2 2 با توجه به نوع، تراکم و پراکنش پوشش گیاهی برداشت شد. نمونه برداری در دو زون امن و سایر استفاده ها مدل سازی با کمک ANN در محیط متلب انجام شد. مدل بهینه پرسپترون چندلایه با دو لایه پنهان، تابع تانژانت سیگموئید و 19 نورون در هر لایه و ضریب تبیین 90/0 انتخاب شد. نتایج آنالیز حساسیت نشان داد، رطوبت وزنی خاک در شدت کاهش تنوع زیستی و ریسک سیل و همچنین افزایش ریسک انقراض گونه های اندمیک منطقه اثرگذار خواهد بود، و پس از آن وزن مخصوص ظاهری و حقیقی و تخلخل خاک و فاصله از جاده نقش کلیدی در تخریب پوشش گیاهی، افزایش سیل و افزایش ریسک انقراض پوشش گیاهی را دارند. لذا پیشنهاد می شود اقدامات مرتبط با احیای خاک و پوشش گیاهی در این پارک به منظور کاهش تخریب های آتی هرچه سریعتر انجام شود.

متن

تبلیغات