در این پژوهش نتایج سه مدل ریزمقیاس نمایی SDSM، شبکة عصبی ANN، و مدل مولد آب وهوایی LARS-WG در شبیه سازی پارامترهای اقلیمی بارش روزانه، کمینه، و بیشینة دمای روزانه در منطقة شمال غرب ایران مقایسه شده است. منطقة مورد مطالعه شامل دوازده ایستگاه هواشناسی است که دارای آمار بلندمدت اند. از داده های دما و بارش روزانة ایستگاه ها در دورة 1961 1990 به عنوان دورة پایه در مدل و دورة 1991 2001 به عنوان دورة اعتبارسنجی استفاده شده است. در این بررسی از دو آزمون ناپارامتری و شاخص ریشة مجموع مربعات خطای مدل (RMSE) برای مقایسة دقت سه مدل استفاده شده است. نتایج نشان داد برای دماهای کمینه و بیشینه عملکرد مدل ANN بهتر از دو مدل دیگر است. برای داده های بارش، طبق شاخص RMSE، دقتِ مدل SDSM نسبت به دو مدل دیگر بیشتر است. بر اساس آزمون ناپارامتری من - ویتنی، عملکرد دو مدلِ SDSM و LARS-WG یکسان و بهتر از مدل ANN بود. تحلیل مکانی عملکرد سه مدل نشان می دهد که عملکرد مدل ها بسته به نوع اقلیم منطقه است؛ به طوری که منطقة جنوب غرب آذربایجان شرقی و کردستان، به سبب ناپایداری های بیشتر، عملکرد پایین تری دارند.