عملکرد عضلات مؤثر در سه آزمون کشش بارفیکس، شنا سوئندی و بارفیکس اصلاح‌شده به روش الکترومایوگرافی (EMG)

غلامحسین لاسموری۱ - دکتر حسن دانشمندی - دکتر محمدحسین علیزاده

کارشناس ارشد تربیت بدنی و علوم ورزشی دانشگاه گیلان - استادیار دانشکده تربیت بدنی و علوم ورزشی دانشگاه تهران

چکیده
تحقیق حاضر با هدف بررسی و مقایسه عملکرد برخی از عضلات ناحیه کمرند شانه (دوسرپاژی، دلتوئید، سینه‌ای یزگر و سه سرپاژی) در آزمون‌های کشش بارفیکس، شنا سوئندی و بارفیکس اصلاح‌شده، انجام گرفته است. آزمون‌دهی‌ها در پژوهش حاضر با ۱۴ پسر سال ۱۲ ساله، به مدت ۲۳ ساعت و ۳۹ دقیقه برگزار گردیده است. در این بررسی، تأثیر آزمون‌ها بر عملکرد دوسرپاژی و سه سرپاژی در آزمون بارفیکس اصلاح‌شده مشاهده شد. در نتیجه، به بالاترین میزان اختلاف عملکرد سینه‌ای یزگر و دلتوئید در آزمون شنا سوئندی مشاهده شد. از این رو، می‌توان نتیجه گرفت که آزمون بارفیکس اصلاح‌شده و شنا سوئندی بر عضلات فوق به یک نسبت تأثیر می‌گذارند. در نتیجه، با توجه به موارد بالا و اجرای راحت‌تر و عدم نیاز به وسیله، آزمون شنا سوئندی برای اهداف فوق توصیه می‌شود.

واژه‌های کلیدی
آزمون کشش بارفیکس، آزمون شنا سوئندی، آزمون بارفیکس اصلاح‌شده، الکترومایوگرافی، عضله دوسرپاژی، عضله دلتوئید، عضله سینه‌ای یزگر، و عضله سه سرپاژی.

1- Emial: LASjooRi@yahoo.com
مدفوعه

آزمون در مفهوم عام به صورت ابزاری که می‌توان با آن میزان کیفیت شیء ویژه‌ای را به طور کمی و عینی به‌دست آورده، تعریف می‌شود (1). این ابزار، اصل و اساس سنجش را تشکیل می‌دهند و صحت و دقت اطلاعاتی که با اندازه‌گیری به‌دست می‌آید، مستقیماً به میزان پیشرفت تکامل آنها بستگی دارد (2 و 3). در سنجش قابلیت‌های جسمانی برای ارزیابی استقامت عضلات کمربند شانه، از آزمون کشش بارفیکس که از متدول ترین آزمون‌های سنجش استقامت عضلانی است، استفاده می‌شود (2 و 3). در حال حاضر، این آزمون کاربرد فراوانی در مراکز آموزشی کشور همچون دانشگاه‌ها و مدارس دارد و برای ارزیابی درس انجام شده مورد استفاده قرار می‌گیرد. حال آنکه اجرای آن هم‌اوازه با مشکلاتی برای دانش آموزان و دانشجویان همراه بوده و آزمون‌شونده‌گان بدنی سختی اجرای آزمون، رکود خوبی را به‌دست نمی‌آورند. عدم توانایی اجرای آزمون، موجب کاهش انگیزه روانی آزمودنی‌ها می‌شود. در این میان آزمون‌های دیگری که استقامت عضلات کمربند شانه را می‌سنجند، همچون آزمون اصلاح شده بارفیکس و آزمون شنا سوئیندی نیز وجود دارند که به‌نظر می‌رسد همان ویژگی‌های آزمون کشش بارفیکس را مورد ارزیابی قرار می‌دهد (2 و 4). اما تاکنون تحقیقات بسیار انگیزه در مورد مقایسه سه آزمون فوق انجام شده است که از جمله می‌توان به پژوهش لیلی بنیامین اشاره کرد که در روشی ویژه میله بارفیکس (شبکه‌ی دست رو به صورت و کف دست رو به صورت) را مورد مقایسه قرار داد. وی در نتیجه در آزمون بارفیکس ایستاده، بهتر است از روش کف دست رو به صورت استفاده شود (5).

غفوری و همکاران در سال 1374 در تحقیقی دریافتند علت عدم انجام آزمون بارفیکس ایستاده، ضعف عضلان کمربند شانه است. آن‌ها در تجزیه و تحلیل یافته‌های خود، اشاره داشتند در آزمون بارفیکس بیشترین فعالیت توسط عضله دوسر بازویی است. در آزمون شنا سوئیندی، فعال ترین عضله، عضله دوسر بازویی است (6). همچنین فیروزی (1377) در تحقیقی به این نتیجه رسید که دانش آموزان شنا سوئیندی را آسان‌تر و مناسب‌تر می‌دانند (7). در حالی که در سال‌های اخیر، ایفولد آزمون کشش بارفیکس را به صورت اصلاح شده معرفی کرد، زیرا اجرای آن به‌صورت آسان‌تر و دل‌به‌دارتر از آزمون بارفیکس ایستاده است. با توجه به کاربرد هر سه آزمون،
تاکنون تحقیق خاصی به منظور مقایسه این آزمون‌ها از نظر کارکرد مهم‌ترین عضلات مؤثر در کمربند شانه و بازو انجام نشده‌تا با مقایسه عملکرد عضلات، آزمون‌های سه‌گانه را تجزیه و تحلیل کنده. بنابراین در این پژوهش، محقق بر آن است سه آزمون فوق را با هم مقایسه کرده و پس از تجزیه و تحلیل عضلانی هر آزمون، تیمین کند که عضلات درگیر و مؤثر در هر آزمون کدام است.

روش تحقیق

آزمودن‌های پژوهش حاضر را ۱۲ بفس سالم ۱۲ ساله با میانگین قد ۱۴۸±۳/۲۲ سنینمتر، وزن ۴۷±۲/۲۲ کیلوگرم و حداکثر دارای ۹ ماه سابقه ورزشی تشکیل می‌دادند. بدین منظور نخست مشخصات آزمودن‌ها در برگه مشخصات فردی ثبت و سپس وزن و قد آنها اندازه‌گیری شد. آنگاه در حین اجرای آزمون‌های بارفیکس ایستاده، بارفیکس اصلاح شده و شنایدی سوئدی، میزان فعالیت عضلات دوشماراژویی، دلنولید، سینه‌ای بزرگ و سه‌سربازوی، توسط دستگاه الکتروماپوگراف ثبت و پروری شد. در این مرحله مطابق شکل ۱ برای هر عضله ۳ الکتروود در قسمت شکم عضله نصب شد (دو الکتروود مثبت و یک الکتروود منفی). الکتروودها از یک طرف به وسیله لیدجست هایپی به بدن آزمودن‌ها، و از طرف دیگر، توسط دستگاه کنترل از راه دور به دستگاه الکتروماپوگراف چهار کانال متصل بود. هر یک از عضلات به وسیله سیم‌های رابط به یک کانال متصل شد (دوسربازویی، کانال یک، دلنولید - کانال دو، سینه‌ای بزرگ - کانال سه، سه‌سربازویی - کانال چهار). آزمودن‌ها بعد از نصب لیدجست‌ها و سیم‌های رابط، در حالت شروع آزمون قرار می‌گرفتند، سپس با شنیدن کلمه «شروع»، آزمون را اجرا می‌کردند و در نهایت با کلمه «کار به اتمام می‌رسید. هر آزمودنی، هر آزمون را ۳ بار اجرا می‌کرد. ترتیب نش عضلات متعاقب اجرا هر آزمون، در رابطه‌ی متناقص به دستگاه الکتروماپوگراف، نیت و ضبط می‌شد.
نحوه اجرای آزمون‌ها

آزمون کشش بارفیکس، در حالت اجرایی می‌شود که پشت دست‌ها رو به صورت قرار داشته و آزمودنی میله بارفیکس را با دو دست و به اندازه عرض شانه‌ی بار، می‌گرفت. سپس تلاش می‌کرد تا با چم گردن آرنج‌ها و بدون استفاده از تاب دادن بدن، جانه‌ی خود را به بالای میله بارفیکس برساند (شکل ۲).
در اجرای آزمون بارفیکس اصلاح شده، آزمودنی مطابق شکل ۲۳، به صورت مورب در زیر میله بارفیکس با آرنج‌های کامل‌کشیده، اوپرین می‌شد. سپس با فرمان رو تلاش می‌کرد تا جانه خود را به نخ پلاستیکی بالای سر خود برساند.
در آزمون شنا شوندی نیز آزمودنی در حالی که دست هایش به اندازه عرض شانه باز و آرنج ها کاملاً کشیده بود، بر روی زمین قرار می‌گرفت. با شنیدن صدای رو تناها اندازهای که مفصل آرنج وی تا زاویهٔ ۹۰ درجه خم می‌شد به پایین می‌رفت. در این آزمون پنجه‌های رو به جلو بود و قسمت‌های دیگر بدن با زمین تمام نداشت (شکل ۴). در این مطالعه برای توضیف داده‌ها، از آمار توصیفی شامل نمودارها، جداول، میانگین و انحراف معیار و برای داده‌های پیوست آزمونهای ANOVA استفاده شد.
نتایج و بافت‌هایی تحقیق

نتایج حاصل از این تحقیق به صورت جداول و نمودارها بیان شده است. جدول ۱ شامل اطلاعاتی جون سند، وزن و رکورد آزمون‌های، جدول ۲ مربوط به میانگین و انحراف استاندارد درصد کارایی عضلات در آزمون‌های سه‌گانه‌ای، کشش بارفیکس، بارفیکس اصلاح شده و شناش سوئیندی، جدول ۳ مربوط به ضرایب همبستگی میان درصد کارایی عضلات دوسرپاوزی، دلتون، سینه‌بزرگ و سه سرپاوزی در آزمون‌های سه‌گانه‌ای فوق است.

نمودارهای ۱ و ۲ میانگین متغیرهای کمی اندازه‌گیری شده را مورد مقایسه قرار داده‌اند. نتایج آزمون‌ها با توجه به روش آماری ANOVA و آزمون یپسرد شده به شرح زیر است:

۱- در آزمون‌های بارفیکس ایستاده و بارفیکس اصلاح شده، فعالیت عضله سرپاوزی تفاوت معنی‌داری را نسبت به سایر عضلات مورد مطالعه داشت و فعالیت‌برد.
۲- فعالیت عضله دلتون نسبت به دیگر عضلات در آزمون شنا شناش سوئیندی، تفاوت معنی‌داری داشته و فعالیت پیشرفتی دارد.
3- حداکثر میزان فعالیت عضلات دلتونید و سینهای بزرگ، در اجرای آزمون شنای سوندی گزارش شده است.

4- حداکثر میزان فعالیت عضلات دوسرپاژویی و سه سرپاژویی در اجرای آزمون بارفیکس ایستاده گزارش شده است.

جدول 1- میانگین و انحراف استاندارد قد، وزن و رکورد بارفیکس ایستاده، بارفیکس اصلاح شده و شنای سوندی

<table>
<thead>
<tr>
<th>متغیرها</th>
<th>محاسبات</th>
<th>رکورد بارفیکس</th>
<th>رکورد بارفیکس</th>
<th>وزن (کیلوگرم) استاده</th>
<th>قدر (سانتی‌متر)</th>
<th>رکورد شنای سوندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین و انحراف</td>
<td>استاندارد</td>
<td>126 ± 0.5/10</td>
<td>126 ± 0.5/11</td>
<td>114 ± 0.7/30</td>
<td>148 ± 0.7/23</td>
<td>126 ± 0.5/10</td>
</tr>
</tbody>
</table>

جدول 2- میانگین و انحراف استاندارد درصد کارایی عضلات مورد مطالعه در آزمون‌های سه‌گانه

<table>
<thead>
<tr>
<th>متغیرها</th>
<th>محاسبات</th>
<th>میانگین درصد کارایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>آزمون‌ها</td>
<td>بارفیکس استاندارد</td>
<td>± انحراف استاندارد</td>
</tr>
<tr>
<td>بارفیکس استاندارد</td>
<td>± انحراف استاندارد</td>
</tr>
<tr>
<td>شنای سوندی</td>
<td>± انحراف استاندارد</td>
</tr>
<tr>
<td>بارفیکس اصلاح شده</td>
<td>± انحراف استاندارد</td>
</tr>
<tr>
<td>در مجموع سه‌آزمون</td>
<td>± انحراف استاندارد</td>
</tr>
</tbody>
</table>
جدول ۳ - همبستگی بین درصد کارایی عضلات مورد مطالعه از آزمون‌های سه‌گانه

<table>
<thead>
<tr>
<th></th>
<th>دستورالعمل و سینهای</th>
</tr>
</thead>
<tbody>
<tr>
<td>عضلات</td>
<td>آزمون‌ها</td>
<td></td>
<td>شتاب‌سوزی</td>
<td>پارافیکس اصلاح‌شده</td>
<td>پارافیکس ایستاده</td>
</tr>
<tr>
<td>شتاب‌سوزی</td>
<td>۰/۰۹۴۲</td>
<td>۰/۱۰۰۰</td>
<td>۰/۲۸۵۸</td>
<td>۰/۰۹۱۵</td>
<td>۰/۲۰۰۰</td>
</tr>
<tr>
<td>بچه‌سوزی</td>
<td>۰/۰۶۹۱</td>
<td>۰/۰۶۷۷</td>
<td>۰/۰۸۷۷</td>
<td>۰/۰۸۵۰</td>
<td>۰/۰۶۰۰</td>
</tr>
<tr>
<td>بچه‌سوزی</td>
<td>۰/۰۸۰۰</td>
<td>۰/۰۸۰۰</td>
<td>۰/۰۸۰۰</td>
<td>۰/۰۸۰۰</td>
<td>۰/۰۸۰۰</td>
</tr>
</tbody>
</table>

\[a = 0.05 \]
\[a = 0.01 \]

بحث و نتیجه‌گیری

بررسی اختلاف میانگین درصد کارایی عضلات دوسرپاژوری، دلنیشته، سینهای بزرگ و سه‌سرپاژوری در هر یک از سه آزمون پارافیکس ایستاده، شتاب‌سوزی و پارافیکس اصلاح شده (جدول ۲) نشان داد در آزمون پارافیکس، عضله سه‌سرپاژوری با میانگین درصد کارایی ۴۱/۲ درصد، بیشترین فعالیت و عضله دوسرپاژوری با میانگین درصد کارایی ۳۷/۸ درصد کمترین فعالیت را دارند.

علت کاهش فعالیت عضله در سر را می‌توان با چرخش داخلی ساعد هنگام اجرای آزمون‌ها توجیه کرد. زمانی که دست با چرخش داخلی ساعد همراه است، تاندون عضله دوسرپاژوری یک نیمه پایدار زنده زیرین جرخی شده و خط کشش آن در جهت مستقیم قرار نمی‌گیرد. در حالی که وقتی ساعد دارای چرخش خارجی است، تاندون عضله دوسرپاژوری فاقد هرج و همگی می‌باشد و خط کشش ناشی از انقباض، دمایاً در جهت تاکید مفصل آن منجر است. این موضوع که عضله دوسرپاژوری در وضعیت اول کارایی کم‌تری دارد، با الکتروماپوگرافی ثبت شده است (جدول ۲) و (۱۰). از طرفی همان‌گونه که از همبستگی بین درصد کارایی عضلات (جدول ۳) مشاهده می‌شود، درصد کارایی عضلات دوسرپاژوری و سه‌سرپاژوری همبستگی منفی وجود دارد.

یعنی با کاهش فعالیت یکی بر فعالیت دیگری افزوده می‌شود. پس می‌توان نتیجه گرفت با کاهش فعالیت عضله دوسرپاژوری بر فعالیت عضله سه‌سرپاژوری افزوده گشته و این دو عضله
در اجرای آزمون‌ها نقش مخالف یکدیگر را به عهده دارند. همچنین براساس اطلاعات مدرج در جدول ۲، عضله سه‌سرربازی در مجموع سه آزمون از عضله سینه‌ای بزرگ فعال‌تر بوده است.

نتایج پژوهش حاضر با تأثیر تحقیق آندرسون و همکاران (۱۹۸۳) مطابقت دارد. آندرسون در تحقیق عملکرد عضلات سینه‌ای بزرگ و سه‌سرربازی را در سه حالت آرنج صاف، آرنج با زاویه ۹۰ درجه و آرنج با حداکثر فلکشن را مورد بررسی قرار داد و نتیجه‌گرفت در مجموع سه حالت، عضله سه‌سرربازی بیشترین فعالیت و عضله سینه‌ای بزرگ کمترین فعالیت را داشته است. تفاوت تحقیق آندرسون با پژوهش حاضر، در سن و جنس آزمودنی هاست. به طوری که آزمودنی‌های آندرسون مورد و زن بودند که در تحقیق حاضر فقط جنس مذکر مورد نظر بوده است؛ دوم آنکه سن آزمودنی‌های آندرسون ۲۱ تا ۳۱ سال بوده که در تحقیق حاضر سن آزمودنی‌ها ۱۲ سال است (۹). همچنین در مورد فعالیت بیشتر عضله دوسرربازی نسبت به عضله دلتونید در آزمون بارفیکس استفاده، به روش پشت دست رو به صورت، می‌توان به تحقیق نورشاهی و همکاران (۱۹۸۷) اشاره کرد (۶).

نورشاهی در تحقیق خود عملکرد عضلات دوسرربازی و دلتونید را در حین اجرای آزمون بارفیکس به روش الکترومانوگرافی مورد تحقیق و تحلیل قرار داد و نتیجه‌گرفت عضله دلتونید نسبت به عضله سینه‌ای بزرگ فعال‌تر بوده است. براساس نتایج به‌دست آمده، تنش عضله دوسرربازی در اجرای آزمون بارفیکس ۸۷۳ میلی ولت و تنش عضله دلتونید ۶۰ میلی ولت است. در نتیجه میزان فعالیت عضله دوسرربازی در اجرای آزمون بارفیکس استفاده از عضله دلتونید بیشتر است که این مطلب با نتایج به‌دست آمده از پژوهش حاضر مطابقت دارد. تفاوت پژوهش حاضر با تحقیق نورشاهی در جنس، سن و تعداد نمونه‌های مورد مطالعه است.

نورشاهی در تحقیق خود از ۲۸ دانشجوی دختر و پسر (۱۰ دختر و ۱۸ پسر) استفاده کرد. در آخر می‌توان به مشابهت فعالیت عضلات سینه‌ای بزرگ و دلتونید اشاره کرد. همانگونه که از درصد کاراپی عضلات فوق مشاهده می‌شد، عضله دلتونید با کاراپی ۷۵۰ درصد و عضله سینه‌ای بزرگ با کاراپی ۷۴ درصد، تقیی‌تر در اجرای آزمون‌های سگانه، فعالیت مشابه‌ی را
عملکرد عضلات مؤثر در سه آزمون کشش بارفیکس، شنای سوئدی ... ۱۴۷

نشان می‌دهد. نتایج تحقیق فوق با نتایج تحقیق فریبرا مطابقت دارد.
فریرا و همکاران در تحقیقی دو روس گرفتن میله بارفیکس را با دستهای باز و استحکام متقی کردن و تبیج به هر دو روش عضلات سینه‌ای بزرگ و دلتوثید به طور مساوی نقش دارند (۱۲).

به طور خلاصه یافته‌ها نشان دادند در آزمون بارفیکس ایستاده، دو عضله دوسربازویی و سربرازویی و در آزمون شنای سوئدی، دو عضله دلتوثید و سینه‌ای بزرگ بیشترین فعالیت را دارند. همچنین با جمع درصد کارایی عضلات نامبرده در هر یک از دو آزمون شنای سوئدی و بارفیکس ایستاده و مقایسه این دو درصد با هم، مشاهده شد که هر دو آزمون در فعال کردن مجموع عضلات تقیبی به یک نسبت مؤثرند. بنابراین با توجه به نمروه صفر کمتر، عدم نیاز به وسایل خاصی و اجرای آسانتری توسط دانش‌آموزان، ارزیابی دقیق و آسان برای دبیران تربیت بدنی (۵) و مهم تر از همه افزایش اعتماد به نفس آزمودنی‌ها، محقق بیشتر می‌کند به جای دو آزمون بارفیکس ایستاده و بارفیکس اصلاح شده در مدارس و دانشگاه‌ها، از آزمون شنای سوئدی برای ارزیابی استقامت عضلات کمرندی شانه و تخصصی بخشی از نمروه درس تربیت بدنی، استفاده شود.
منابع و مآخذ
1- امیرتاش، علی مهدو. "جزوه سنگش و اندوزه گیری"، دانشگاه تربیت معلم، ۱۳۶۸.
2- تندرنویس، فریدون. "بررسی چگونگی گرفتن میله بارفیکس"، فصلنامه ورزش، شماره‌های ۱۷ و ۱۸، ۱۳۷۷.
3- شیخ، محمود؛ باقرزاده، فضل‌الله. "سنگش و اندازه‌گیری در تربیت بدنی"، انتشارات علم و حركت، ۱۳۷۶.
4- غفوری، فرزاد. "بررسی میزان آمادگی جسمانی دانشجویان دانشگاه تبریز"، دانشگاه
تبریز، ۱۳۸۴.

۵- فیروزی، امیر. "نهمه دنیا استاندارد شده آزمون اصلاح شدهٔ شنا در دانش آموزان". خلاصه مقالات (۶) یپرآموخته، تبریز. ورزشکاران و ورزش، انتشارات اداره کل تربیت بدنی وزارت آموزش و پرورش، ۱۳۷۷.

۶- نورشاهی، سریم؛ اکرمی، شهرام. خنثی‌سازی. میزان درگیری عضلات کمری از سه در اجرای بارفیکس و شنا روزی زمینی. طرح پژوهشی دانشگاه آزاد اسلامی واحد مرکز، ۱۳۸۰.

۷- همئی نژاد، مهرعلی؛ رحمانی، نیا، فرهاد. "سنجه‌نگارانه‌گری در تربیت بدنی"، انتشارات دانشگاه پام دوز، ۱۳۷۹.

۸- یغمی، لیلی. "مقایسه دو روش گرفتن میله بارفیکس در دو آزمون استاندارد در بین دختران ۷ تا ۱۷ سال شهرستان ارومیه"، پایان نامه، دانشگاه آزاد اسلامی واحد تهران مرکز، ۱۳۷۷.

۱۰- Folsomeek, S.I. Herauf, J.Adam's, "Relationship Among Selected a Hrites and 3 Measures of upper - body strengh and Endurance in Elementary School Children", Perceptual and Motor Skills, 1992, 75(3).

۱۲- M.I. Ferreia, "Analysis of deltoid muscle (anterior portion) and pectoralis major muscle (clavicular portion) in rowing exercises with closed grip", electromyograpf. clin. neurophysiol, 1996, 36.