ارزیابی دقت تصویر هندسی تصاویر ماهواره‌ای با توان تفکیک بالا با استفاده از اطلاعات کنترلی

سیده باروی، محمدجواد ولیان، زوج، محمدرضا ماحی، مهدی مختراز

1. دانشجوی دکتری سنجش از دور، دانشگاه صنعتی خواجه نصیرالدین طوسی
2. استاد گروه فتوگرافی و سنجش از دور، دانشگاه صنعتی خواجه نصیرالدین طوسی
3. و. دانشیار گروه فتوگرافی و سنجش از دور، دانشگاه صنعتی خواجه نصیرالدین طوسی

تاریخ پذیرش مقاله: 1392/11/18
تاریخ دریافت مقاله: 1392/10/23

چکیده

زمین‌مرف‌سانی تصاویر ماهواره‌ای با توان تفکیک بالا با استفاده از اطلاعات از ماهواره‌های ماهواره‌ای بررسی شده است. به منظور سنجش اطلاعات از ماهواره‌های ماهواره‌ای، از داده‌های ماهواره‌ای عورض کنترلی مانند نقاط خطوط و یا سطوح در دو فضا استخراج شوند. سپس عورض نقاط از دو عورض استخراج شده تابعی به شکل تابعی برای حاصل انتقال بین دو فضا مشخص می‌شوند. از این باکیفیت توان تفکیک هندسی تصاویر، به دقت تفکیک اثر تأثیر مثبتی بر سطح لایه، در این مقاله این دسته بزرگ استفاده از عورض کنترلی خطر و یک تابعی آن با نقاط کنترلی در حاصل انتقال رشته بررسی شده است. محققین از این دسته در حذف خطاهای سیستماتیک بررسی شده است. نتایج بدست آمده نشان می‌دهد که ق하ی در حذف خطاهای سیستماتیک با استفاده از خطوط کنترلی پایین و در حدود 2 پیکسل است. همچنین دیاگرام برد پایین‌تر نیز وجود میزان چشمگیر خطاهای سیستماتیکی در نتایج نهایی را نشان می‌دهد. دیلی این امر، افروز بر دقت و توزیع خطوط کنترلی، ماهیت خطوط به سطح اطلاعات کنترلی نیز محسوب می‌شود.

کلیدواژه‌ها: تصاویر ماهواره‌ای با توان تفکیک بالا، تصویر هندسی، عورض خطوط، خطاهای سیستماتیک، ماهواره‌های، ماهواره‌های.
بمنظور بهره‌گیری از یکسانی بالای تصور ماهواره‌ای، نیاز است این تصور به سیستم خصوصی زمینی مشخص مرجع شود که به این روند زمین مرجع سازی (ثبت تصور به نقشه) گفته می‌گردد. چون این زمین مرجع‌های شامل شامل چهار مرحله اصلی استخراج عوارض گزارشی: تناوب‌های دینامیکی؛ تناوب‌های دینامیکی تابع انتقال؛ و از نهایت نمونه‌برداری مجدداً می‌شود. برای این منظور، عوارض کنترلی مورد استفاده به سه دسته تهیه، خطوط و سطح تقيید‌سنجشی مشوند (Goshtasby, 2005; Zitova and Flusser, 2003).

توجه به تحقیقات صورت گرفته می‌توان گفت استفاده عمیق از عوارض نقطه‌ای به دلیل معبث آنها مشکل است. از این عوارض، می‌توان به این موارد اشاره داشت:

1. سرعت پاپین استخراج و تناظر‌های دستی این عوارض استخراج و تناظر‌های اتوماتیک بسیار بیچیده این عوارض، به‌ویژه در فضاهای نامتوازن (همچون فضای تصور و زمین) به‌دلیل برخی‌های متغیر این فضاهای نامتوازن مانند مواد و نوسانات متفاوت) و نیز کمک اطلاعات متغیری برای عوارض نکنده (عوارض نقطه‌ای).

2. لزوم استفاده از عوارض کنترلی سایر اکثراً تعداد بالا، توزیع مناسب و تراکم زیاد در صورت استفاده از عوارض روی‌های عمیقی است.

3. حساسیت بالاتر عوارض نقطه‌ای به نویز در مقایسه با عوارض خطی.

برخلاف عوارض نقطه‌ای، عوارض خطی به‌دلیل ویژگی‌های منحصر به فردشان، همچون آسان تر بودن استخراج اتوماتیک عوارض خطی به‌بینی عوارض نقطه‌ای و نیز فرآیند عوارض خطی در تصاویر ماهواره‌ای بسیار در مناطق مشهیر برای برخی از زمین مرجع‌سازی و مطلوب‌باد (Habib et al., 2004; Yavari et al., 2016) مطرح‌باشند. برای این زمین مرجع‌سازی مطرح‌باشند در بالا می‌توان گفت که عوارض خطی برای برخی سیاست‌های کاربردی در حوزه

1. generalized point photogrammetry
2. Schenk
3. Free form linear features
در زمینه زمین‌مرجع‌سازی با استفاده از معادلات غیرپارامتریک، تحقیقات صورت گرفته بیشتر بررسی استفاده از ضرایب معلام رشتن و/or معادلات ساده‌تر همچون کانفکمال خطی است. از تحقیقات انجام‌شده در زمینه استفاده از معادلات غیرپارامتریک برای Liu Karic [2012] لی توان به این موارد اشاره داشت [Song et al., 2011] (Zang et al., 2011

یکی از نمونه‌هایی که در توپوگرافی بسیار به مورد استفاده قرار می‌گیرد ماهواره‌ای است که با استفاده از ضرایب معلام رشتن به‌عنوان معلامهای توجهی اویل را می‌توان در کار لو و همکاران [2012] یافت. همچنین در مقاله زانگ و همکاران [2011] برای شبکه تئوری مفصل الگوها و مدل MIHT 1/2 الفا تحقیق پارامترهای یک تابع ترسفورداسیون اتفاق استفاده شده است.

برخی از معادلات غیرپارامتریک مزایا و مزاحم‌های دارد از جمله می‌توان به این موارد اشاره داشت: ۱. عواملی که مشابه این معادلات دارند؛ ۲. میزان تناوب و/or مادات معمول تهیهکننده مورد استفاده و نوع سنجش‌دادهای ۳. نیاز به اطلاعات اولیه

1. Teo & Chen
2. Quasi-observation
3. rigorous models
4. field of view
5. interpolative MODELS
6. Rational Polynomial Coefficients (RPCs)
7. Lu et al.
8. Zang et al.
9. Unmanned Aerial Vehicles (UAV)
10. Modified Iterative Hough Transform (MIHT)
11. generality

물론 است که از دیگر تحفظات صورت گرفته می‌توان به تحقق
توابع و/یا (2010) آن‌ها شناخت که از تلفیق عوامل
خطی و نقطه‌ای در معادله شرط‌های خطی استفاده کرده

است

معادلات پارامتریک و یکی از منحصر به فردی
دارند که از جمله می‌توان به این موارد اشاره کرد:

۱. اکثر عوامل نقطه‌ای زمینی و/or پارامترهای
توجهی داخلی و خارجی غیردقیق بصورت
شیء مشاهده چرخشدر رونده بررسی با ارتفاعی
دقت آن‌ها

۲. نیاز این معادلات به نقطه کنترل بسیار اندک

۳. بیانیه‌های نقطه‌ای در لحظه تعریف‌برداری

۴. پرلیم حاجی خطای سیستم‌بندی از روی تعریف

۵. تفسیر قیزیک پارامترهای این معادلات.

ترکیب مهای این ویژگی‌ها بسیار می‌شود این

معادلات، ضمن داشتن دقت بالا و استاندارد حذف
خطای سیستم‌بندی را نیز دارا باید. از این

معادلات مدلی دارای نیز اطلاعات می‌تواند به‌طور این

می‌توان این معادلات معمولی نیز دارند که از آن جمله

می‌توان به این موارد اشاره کرده که این

واگذاری به سیستم

مختصات زمینی خاص (سیستم CI)

و استنگی بی به

سنجش مورد استفاده است.

کیفیت تئوری داخلی و خارجی و/or داده‌های
مدلی مربوط ۴. اکثریت داده‌های تئوری با قدرت
تهیهکننده به‌طور نابینایی در رونده
محل‌بندی می‌شود: ۵. پیچیدگی رضایت با لایی

می‌توان به مبهم رمزنگاری سیستم‌بندی. افزون بر این

موارد، مدل سنجش تئوریوا نیز تفسیری باید

تشکیل خام و/or اطلاعات مداری به دلیل سیستم

کیفیت های ارائه کننده تئوری در اختیار کاربران قرار

نمی‌گیرد: این بیان دسترسی به پارامترهای مداری و

تشکیل خام بسیار نا محقق بسیم است

استفاده از معادلات غیرپارامتریک متعامل شوند.

معادلات غیرپارامتریک توسط متغیرهای

زمین را به طریق معادلات رضایتی تعمیم می‌کند و

سنگین از دور و/or

سال ماهان - شماره سوم - ماهی 1395
در مورد پارامترهای سنجش، همچون داده‌های اکتشافی و یا پارامترهای توجهی داخلی و خارجی، ۳ قابلیت به کارگیری این معادلات برای تصاویر عیلام. این تصاویر در معادلات پارامترهای کاهش استفاده نسخته‌اند. سادگی محسوسیت مهارت با زمان اجرا ۴ برابر این معادلات در مقایسه با معادلات پارامتریک، از میان عوامل از پارامترهای معادلات رشتی با این دیل که همی یا کنار همکار معادلات عیلام به دست آمده خاص به مدل‌های سه‌بعدی، تهیه شده و سیستم مورد نظر متقاضی و سنج مورد نظر متقاضی و سنجه در دور قرار گرفته‌اند. با توجه به توضیحات، در این مقاله مشخصه استفاده از خطوط کنترلی و تلفیق آن با نقاط کنترلی در تخمین پارامترهای معادلات رشتی به‌منظور ارزیابی دقت و توخالی آنها در حذف خطاهای سیستماتیک بررسی شده است.

۲- حل معادلات رشتی با استفاده از اطلاعات کنترلی

معادلات رشتی به‌دستور فاصله قابل حل است مستقل از زمین، و با استفاده از زمین در روش مستقل از زمین، پارامترهای معادلات رشتی با همان ضرایب معلوم رشتی با استفاده از مدل سنجش و از مدل کمی، عرض گسترده تصادفی حل و به‌همه‌گیری مجموعه ای از تصاویر عرض می‌شود. از اینجاه برای حل این معادلات از مدل سنجش استفاده شده است. می‌توان این معادلات را یادگیری مدل‌های پارامتریک دانست. هرچند که این ضرایب مدل‌های مقداری خطای اولیه های که جهت کاهش آنها باید از روش‌های چسبانی با پارامترهای مستقل از این چگونه فرضیات رشتی پس از این روند با دقت معادلات پارامتریک قابل قیاس است. این پارامترهای توجهی داخلی و خارجی و مدل سنجش برای تصاویر عیلام بریان را روند کمیابه این معادلات تصاویری در اختیار کاربران قرار نمی‌گیرد. به‌همین دلیل، ضرایب رشتی براساس روش‌های مستقل از زمین برای کاربران تهیه می‌شود.

1. ephemeris data
2. Partial images
3. Terrain-Independent
4. Terrain-Dependent
5. Bias-compensation
6. Elaksher
به منظور بهره‌گیری از عوارض خطي در معادلات رياضي، در اين مقاله از قرم پارامتریک خط در فضای تصوير بر اساس رابطه (1) استفاده شده است.

\[y = mx + b \]

(1)

برای این معادله، \((x,y)\) مختصات نقاط ابتدا و انتهاي خطوط در فضای تصوير و \((m,b)\) پaramترهای خط. به منظور تریف خطوط در فضای زمین در معادلات رياضي، می‌توان از معادلات ابتدا و انتهاي اين خطوط بهره‌مندی پیدا کرده و در این صورت برای انتقال از فضای تصوبر به زمین، براساس عوارض خطی رابطه (2) برقرار است:

\[\begin{align*}
\begin{cases}
x = F(X, Y, Z) \\
y = G(X, Y, Z)
\end{cases}
\end{align*}\]

(2)

در این معادله، \(X, Y, Z\) مختصات در فضای تصوبر و \(F\) و \(G\) مختصات در فضای زمین است. همچنین دو معادلات مرور نظر انتقال بین دو فضا بهشمار می‌رود. این معادله می‌تواند یک معادلة رشته استاندارد براي انتقال از فضای زمین به تصوبر با استفاده از تقسیم دو چندجمله‌ای باشد. از اینجاه در پیشرفت کاربردهای فتوگرافی فرض می‌شود که مخرج پچکسمان است. در این مقاله نيز از معادلات رشته با مخرج پچکسمان استفاده است. (Tao & Hu, 2001; Hu & Tao, 2002; Yavari et al., 2013 و (پارو، 2012 و (پارو، 2013).

این معادلات برای هر نقطه از یک خط در فضای زمین و خط منحنی آن در فضای تصوبر صدق می‌کنند.

شکل 1. تصویر ماهواره‌ای به‌همراه نقطه‌ی 1 مورد استفاده از منطقه‌ای از رویه

1. Structural Linear Feature-based Matching method (SLIM)
2. Ground Control Lines (GCLs)
3. Ground Control Points (GCPs)
4. Independent Check Points (ICPs)
۱-۳ تست‌های تجربی

در این بخش براساس داده‌های استفاده می‌شود، معادله رشته و نیز تلفیق خطوطی و نقاطی رشته‌های متغیر، غیرقابل‌توجه و نیز آنها در دقت معادلاتی رشته بررسی شده است. همچنین به‌منظور بررسی قابلیت مدل مورد نظر در حذف خطاهای سیستماتیک، دیاگرام برای مانند/راز نابینایی به‌دست‌آمده قرار گرفته است. در این دیاگرامها برای تعیین به‌تريناته، از ضریب آفت ۱۰۰۰ استفاده شده است.

در این اساس نتایج حل معادله رشته برای جدول گوناگون با استفاده از اطلاعات کنترلی در جدول ۱ مشخص است. در این جدول، تعادل خطوط کنترلی، نقاط کنترل و نقاط چک به‌ترتیب ۹۱، ۴۰ و ۴۴ هستند.

همچنین بیشترین ترم برای اینکه در جدول زیر مشخص شده است. افرزون برای این دیاگرام بردار باقی مانده‌ها روز مجموعه‌ای مورد استفاده برای پرده در هر حالت نیز در شکل ۲ آورده شده است.

همان‌طور که از نتایج به‌دست‌آمده در جدول ۱ مشخص می‌شود، معادله رشته سنتی با استفاده از خطوط کنترلی دقتی کمتر از حالت تلفیق اطلاعات کنترلی دارد. از سوی دیگر مشاهده می‌شود که در بیشتر موارد، با افزایش تریم حالت دقت در هر دو حالت کاهش می‌یابد که این ممکن است به دلیل واگذاری بین ترم‌ها باشد. بعضاً دیگر، یکی از معایب معادلات رشته پرده نظر فیزیکی با بهره‌برداری که سبب می‌شود انتخاب ترکیب به‌هنه تریم برای مجموعه‌ای مورد نظر به‌صورت سنتی (از روش سی و خط) عمل می‌کند. این نتایج هم‌چنین به‌دست‌آمده در انتخاب ترم‌های وابسته به دلیل تغییر‌اتناب‌های تریم‌ها در معادلات رشته سبب کاهش دقت و نیز بروز خطاهای سیستماتیکی می‌شود.

جدول ۱- استفاده از خطوط کنترلی و نیز تلفیق خطوط و نقاط

<table>
<thead>
<tr>
<th>رشته میزان‌رسال</th>
<th>ترکیب</th>
<th>معادله رضایت</th>
<th>نقطه کنترل</th>
<th>نقطه چک (بررسی پیکسل)</th>
<th>RMSE (درجه ۱۱ نرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XY</td>
<td>۶۲۴</td>
<td>۷۸۲</td>
<td>۸۴۲</td>
<td>۷۸۲</td>
<td>۴۰۴</td>
</tr>
<tr>
<td>+XZ</td>
<td>۶۱۳</td>
<td>۸۴۲</td>
<td>۸۲۴</td>
<td>۷۸۲</td>
<td>۴۰۴</td>
</tr>
<tr>
<td>+YZ</td>
<td>۷۲۴</td>
<td>۸۴۲</td>
<td>۷۸۲</td>
<td>۸۴۲</td>
<td>۴۰۴</td>
</tr>
<tr>
<td>+X۲</td>
<td>۸۴۲</td>
<td>۷۸۲</td>
<td>۸۴۲</td>
<td>۷۸۲</td>
<td>۴۰۴</td>
</tr>
<tr>
<td>+Y۲</td>
<td>۸۴۲</td>
<td>۷۸۲</td>
<td>۸۴۲</td>
<td>۷۸۲</td>
<td>۴۰۴</td>
</tr>
<tr>
<td>+Z۲</td>
<td>۸۴۲</td>
<td>۷۸۲</td>
<td>۸۴۲</td>
<td>۷۸۲</td>
<td>۴۰۴</td>
</tr>
<tr>
<td>+X۲Y</td>
<td>۸۴۲</td>
<td>۷۸۲</td>
<td>۸۴۲</td>
<td>۷۸۲</td>
<td>۴۰۴</td>
</tr>
<tr>
<td>+X۲Z</td>
<td>۸۴۲</td>
<td>۷۸۲</td>
<td>۸۴۲</td>
<td>۷۸۲</td>
<td>۴۰۴</td>
</tr>
<tr>
<td>+Y۲Z</td>
<td>۸۴۲</td>
<td>۷۸۲</td>
<td>۸۴۲</td>
<td>۷۸۲</td>
<td>۴۰۴</td>
</tr>
<tr>
<td>+X۲Z۲</td>
<td>۸۴۲</td>
<td>۷۸۲</td>
<td>۸۴۲</td>
<td>۷۸۲</td>
<td>۴۰۴</td>
</tr>
<tr>
<td>+X۲Y۲</td>
<td>۸۴۲</td>
<td>۷۸۲</td>
<td>۸۴۲</td>
<td>۷۸۲</td>
<td>۴۰۴</td>
</tr>
<tr>
<td>+Y۲Z۲</td>
<td>۸۴۲</td>
<td>۷۸۲</td>
<td>۸۴۲</td>
<td>۷۸۲</td>
<td>۴۰۴</td>
</tr>
<tr>
<td>+X۲Y۲Z۲</td>
<td>۸۴۲</td>
<td>۷۸۲</td>
<td>۸۴۲</td>
<td>۷۸۲</td>
<td>۴۰۴</td>
</tr>
<tr>
<td>+X۲Y۲Z۲۲</td>
<td>۸۴۲</td>
<td>۷۸۲</td>
<td>۸۴۲</td>
<td>۷۸۲</td>
<td>۴۰۴</td>
</tr>
</tbody>
</table>
ابناشگی پارامترهای ویژه جلوگیری از حذف خطاهای سیستماتیک از طریق مدل می‌شود. به همین دلیل در هیچ‌یک از فواصل استفاده از خطوط کنترلی و نیز تلفیق اطلاعات کنترلی، سمل قادر به رسیدن به دقت زیر پیکسل است (شکل (3)).

برای بهبود نتایج به دست‌آمده، مشاهده گردیده که با افزایش تعداد نتایج در بیشتر موارد کاهش سیاه‌پاشیده یافته است و لازم است به‌دست‌آوردهای این مطالعه ابناشگی پارامترهای ایجادشده بر اثر انتخاب ترمیم وابسته غیر ضروری و نیز کاهش دقت دو مورد نظر با استفاده از خطوط کنترلی به‌مراتب کمتر از حالت تلفیقی است (شکل (3)).

(مستحکم و ارضاگاه) و دقیقت اطلاعات کنترلی؛ حساسیت به جریان انتخابی چندجمله‌ای‌ها (عوامل گوناگونی همچون توده‌گرایی، توزیع و تعداد اطلاعات زمینی به‌همراه نوع و هندسه تصور سوال استفاده در تولید ترم و جریان مناسب چندجمله‌ای مؤثر است) و در نهایت تفسیر فیزیکی پارامترهای معادله رشته. به همین دلیل، با استفاده ترم‌ها در نظر گرفته شده است. این مقاله سیاه‌پاشیده بر اثر فاقدی و ترم‌ها معمولاً نتیجه‌گیری شده باشد. استفاده از روش و ترم‌های مناسب ترم‌ها و انتخاب تعداد اطلاعات کنترلی برای برای حل پارامترهای مجهول بسیار خطرای اضافی با نام خطای

1. over-parameterization errors
2. sub-pixel accuracy

شکل 2. دیاگرام بردار پایلی‌های بازی بهینه ساز می‌شود که با استفاده از خطوط کنترلی، با استفاده از تلفیق خطوط و نقاط کنترلی

شکل 3. سطوح RMSE نقطه‌ای که در دو حالت حل براساس خطوط کنترلی و نیز حالت تلفیقی

شکل 4. افزودن یک، دیاگرام بردار باقی‌مانده برای نتایج نخوان

می‌دهد که نتایج استفاده از خطوط کنترلی شامل مقادیر بیشتری از خطاهای سیستماتیکی‌که با تلفیق اطلاعات کنترلی، افزودن بر افزایش دقت، میزان این خطاهای تهیه شده کاهش می‌یابد؛ هرچنین هیچ‌یک از حالت‌ها قادر به حذف کامل خطاهای سیستماتیکی از روی نتایج نیستند.

5 علاوه بر دلایل مطرح شده در پایان نتایج به‌دست‌آمده، چه
از زیادی دقت تصمیم هنرمندی تصادف ماهورارایی با وان تنکیب بالا

به‌دلیل ویژگی‌های خطوطی به عنوان اطلاعات

کنترلی نیز باشد. در این صورت می‌توان گفت:

1. برای هر خط کنترلی فرض می‌شود که تمامی نقاط

قرارگذاری‌های روز آن در فضای تصویر رفتار خطوطی

مشابه با نقاط ایندیکاتوری آن دارند. هرچند در

تصاویر پوپوروم (به‌عنوان تصادف مورد استفاده در

تکسیلا) یک خط کنترلی روی چندین خط

تصویربرداری با هندسه‌های مختلف قرار می‌گیرد.

همچنین این نوع از تصادف خطوطی‌های پانورامیک

دارند. این موضوع ممکن است یکی از دلایل عویضی

خطهای سیستماتیک که به‌عده در جهت ۴۰ با

بیان کرد.

1. بیشتر تلفیق فیزیکی پارامترهای ماهورارایی که متنبر به

استفاده از تلفیق فیزیکی پارامترهای ماهورارایی

Š۰۰۷ با دو دلیل انتخاب نادرست می‌شود.

2. نمای این معادلات به استفاده از اطلاعات کنترلی

سبار به دلیل انتخاب نادرست می‌شود.

در نتیجه باید تحقیق سئوالات مربوط به تلفیق

استفاده از دیگرگونه استفاده از یک تلفیق

واسته، علی‌رغم موارد خاصی باشگاهی‌پارامترها، سبب

می‌شود مقدار قدرت حذف خطهای سیستماتیک پیش‌داشت.

این مشکلات تخصیص اطلاعات کنترلی نمی‌توان افزایش

چشم‌گیری می‌دهد. بر این اساس، نمای روی

به‌هم‌بستگی در باقت تر ترازهای بیشتر در مقاله دیگری از

پیشنهادگان این مقاله بررسی شده است. افرزون بر این، از

نتایج مشخص می‌شود که دقت معادله رشته تریپایه تلفیق

اطلاعات کنترلی (تقارب و خطوطی) بیشتر از خطوط کنترلی

به‌هم‌بستگی است به‌جز درگیر، حل معادلات رشته با

استفاده از دیگرگونه استفاده از دیگرگونه به دقت ۱۳ پیکسل

رسیده است که با تلفیق نقطه‌ای دو خطوط کنترلی، این دقت

به حدود ۱ پیکسل از آن‌ها بیشتر است. از سوی دیگر،

دیگرگونه راهبرد باقی مانده‌ها نیز قبیلی اطلاعات تلفیقی برای

کاهش خطهای سیستماتیک را در مقایسه با حل

براساس خطوط کنترلی بهبودی نیز باشد.

3. نتیجه‌گیری

به‌منظور انتقال بین دو فضای تصویر و زمین از معادله

رشته استفاده شده است زیرا مزایای محصوره‌فرای

دارد همچنین عمومی‌تر، داشتن و نیازمندیشان به اطلاعات

اولیه در مورد پارامترهای توجهی داخلی و خارجی و نیز

مدل سنجش. هرچند این معادلات با دو نمونه

8

ستجیش از دور "ک آرتان" سال هفتم، شماره سوم، ۱۳۹۳ 12
سیمی باوری و همکاران

غیرپارامتریک که پیشتر اشاره شد، قادر به حذف کامل خطاهای سیستماتیک نیست.

5- تقدیر و تشکر
نویستگان این مقاله از سرمایه نقشپردازی کشور باید در انتخاب قراردادن نقشه‌های ۱۰۰۰x۱۰۰۰ شهر ارومیه سپاسگزارند.

6- منابع
پاوری، س.، ۱۳۸۴. منبع مرجع سازی آتوماتیک تصادفی با توان تفکیک بالای ماهواراهای با استفاده از مدل‌های رایانه‌سازی غیرپارامتریک. مقاله دکتری. دانشگاه صنعتی خواجه نصیرالدین طوسی. دانشکده ژئودزی و زئوتکنیک، دیپلمه فنوتگرامری و سنجش از دور.

پاوری، س.، ۱۳۸۵. تصویر هندسی تصادفی ماهواراهای مخزونی شده با استفاده از مدل‌های ریاضی سپارشی غیرپارامتریک. پایان‌نامه کارشناسی ارشد. دانشگاه صنعتی خواجه نصیرالدین طوسی، دانشکده ژئودزی و زئوتکنیک، دیپلمه فنوتگرامری و سنجش از دور.

Fraser, C. & Hanley, H., 2003, Bias Compen-

