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A B S T R A C T  

A social network consists of individuals and the relationships between them, which often influence each other. 

This influence can propagate behaviors or ideas through the network, a phenomenon known as influence 

propagation. This concept is crucial in applications like advertising, marketing, and public health. The influence 

maximization (IM) problem aims to identify key individuals in a social network who, when influenced, can 

maximize the spread of a behavior or idea. Given the NP-hard nature of IM, non-exact algorithms, especially 

metaheuristics, are commonly used. However, traditional metaheuristics like the variable neighborhood search 

(VNS) struggle with large networks due to vast solution spaces. This paper introduces DQVNS (Deep Q-learning 

Variable Neighborhood Search), which integrates VNS with deep reinforcement learning (DRL) to enhance 

neighborhood structure determination in VNS. By using DQVNS, we aim to achieve performance similar to 

population-based algorithms and utilize the information created step by step during the algorithm's execution. 

This adaptive approach helps the VNS algorithm choose the most suitable neighborhood structure for each 

situation and find better solutions for the IM problem. Our method significantly outperforms existing 

metaheuristics and IM-specific algorithms. DQVNS achieves a 63% improvement over population-based 

algorithms on various datasets. The results of implementation on different real-world social networks of varying 

sizes demonstrate the superiority of this algorithm compared to existing metaheuristic, IM-specific algorithms, 

and network-specific measures. 
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1. Introduction 

Social networks play an important role in 
disseminating information, thoughts, and ideas. A 
social network is a connected structure of elements 
formed for social interactions. Social influence 
occurs through the dissemination of information 
within the network. Nowadays, the analysis of social 
networks holds great importance in both theoretical 
and practical domains. This problem has been 
extensively studied in various fields, such as social 
sciences [1], psychology [2], marketing [3], and 
recommender systems [4]. One of the significant and 
common problems in social networks is identifying 
influential individuals within these networks, people 
who can exert the most influence on network 
members. 

In social networks, the behavior of key players 
plays a significant role in analyzing these networks. 
There are various criteria for analyzing influential 
nodes in a social network. For example, clustering 
coefficient, density, different centrality measures, 
degree, page rank, and so on can be mentioned. 
Finding influential nodes (key players) in large-scale 
networks is a complex task because the size of these 
networks is constantly expanding. 

A social network is defined as a graph 𝐺(𝑉, 𝐸) 
where 𝑉 is the set of network nodes and 𝐸 is the set 
of edges between them. The edge (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 in the 

network indicates the ability of node 𝑣𝑖 to influence 
or activate node 𝑣𝑗, which occurs with a probability 𝑝 

determined by a specific propagation model that 
simulates how information spreads in the social 
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network. One of the most commonly used 
propagation models in literature is the Independent 
Cascade (IC) model, where a node can be active or 
inactive at any given moment. Initially, all nodes 
except those in the initial set (seed set) are inactive. 
Each active node (𝑣𝑖) at time 𝑡 has a chance to 
activate its inactive neighbor (𝑣𝑗) with the probability 

of the edge weight between them. If 𝑣𝑖 succeeds, then 
𝑣𝑗 will become an active node at time 𝑡 + 1. This 

cascade process continues until no other active nodes 
emerge within a timestamp. The influence of a set 
𝑆 (𝑆 ⊆ 𝑉) is defined as the average number of 
activated nodes by set 𝑆, denoted by 𝐼𝐺(𝑆). The 
problem of finding influential nodes is thus defined 
as: 

Influence Maximization (IM): Given a graph 
𝐺(𝑉, 𝐸), the goal is to find a subset 𝑆 with at most 𝑙 
nodes from the set V such that 𝐼𝐺(𝑆) is maximized. 

Due to the NP-hard nature of the IM problem [5], 
non-exact methods such as metaheuristics are used to 
handle it. However, in the case of large networks, the 
solution space becomes excessively vast, posing a 
challenge for existing metaheuristics to yield 
satisfactory results. In such scenarios, it is crucial to 
explore innovative strategies or enhancements to 
existing algorithms to effectively tackle the 
complexity of IM in large-scale networks.  

In this paper, we choose Variable Neighborhood 
Search (VNS) algorithm as a metaheuristic to 
enhance using deep reinforcement learning [6]. VNS 
is renowned for its ability to find high-quality 
solutions in optimization tasks, making it a suitable 
candidate for solving combinatorial optimization 
problems such as IM. Its adaptability allows for 
seamless integration with diverse problem domains, 
while its balance between exploration and 
exploitation ensures efficient navigation of the 
dynamic search space inherent in social networks. 
Moreover, VNS's flexibility in exploring different 
neighborhood structures enables it to escape local 
optima and discover diverse solutions, which is 
crucial for addressing the complexity of social 
network analysis.  

VNS is a metaheuristic that sequentially explores 
different neighborhood structures to find new and 
diverse solutions. The main idea of the VNS 
algorithm is to define 𝑘𝑚𝑎𝑥 different types of 
neighborhoods for a problem, and during the 
algorithm, these neighborhoods are used in sequence 
to improve the current solution. If the current 
neighborhood cannot improve the current solution, 
then the next neighborhoods are used sequentially. If 
the current neighborhood can improve the current 
solution, this solution is selected as the new current 
solution, and the search process continues from this 
solution, starting with first neighborhood structure 
(Figure 1). 

 

Figure. 1. VNS Basic Algorithm [7] 

In this algorithm, 𝑘𝑚𝑎𝑥 represents the maximum 
number of neighborhood structures, and 𝑡𝑚𝑎𝑥 denotes 
the time condition for terminating the algorithm. The 
𝑆ℎ𝑎𝑘𝑒(𝑆, 𝑘) function generates a random 
neighborhood for solution 𝑆 based on kth 
neighborhood. Additionally, the 𝐿𝑆(𝑆′) function 
performs a local search to find the best local neighbor 
for the solution 𝑆′.  

Metaheuristics offers flexible problem-solving 
methods that can be applied across various domains 
without requiring specialized knowledge. However, 
they frequently fail to fully exploit the data generated 
during their execution, which leaves opportunities for 
enhancing performance and efficiency, particularly in 
complex problems. They do not effectively utilize 
past experiences from previous iterations, which 
could greatly influence the selection of search 
strategies, behavioral adaptation, and parameter 
tuning. These overlooked possibilities have the 
potential to substantially improve convergence speed 
and the overall quality of the solutions generated.   

 Specifically, in VNS, a challenge is the order in 
which the defined neighborhoods are utilized in the 
search process. In the basic algorithm, the defined 
neighborhood structures are used sequentially, and if 
a neighborhood fails to produce an improvement in 
the current solution, the next neighborhood is used. A 
drawback of this approach is that VNS does not 
leverage the data generated in previous iterations to 
determine the appropriate order of neighborhood 
utilization. This means that considering the impact of 
different neighborhoods in previous search iterations, 
the search process could be enhanced, and at each 
iteration of VNS, priority should be given to the 
neighborhood structures that have shown better 
performance in previous iterations of the algorithm. 

In this paper, deep reinforcement learning is 
utilized to tackle this challenge. Reinforcement 
learning (RL) is a category of machine learning 
methods in which agents interact with their 
environment, take actions, receive feedback (reward), 
and learn based on the rewards associated with each 
action. The goal of the proposed method is to learn 
the appropriate selection among different 
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neighborhood structures at each step of the search 
algorithm execution, leading to finding a better final 
solution in a shorter time.  

Traditional RL algorithms often rely on state-
action-value tables. These tables store the expected 
reward (value) for taking a specific action in a given 
state. This approach allows the agent to learn an 
optimal policy by selecting actions that maximize the 
expected future reward. However, maintaining and 
manipulating such tables becomes impractical in real-
world scenarios with many possible states (i.e., high-
dimensional state spaces).  Deep learning offers a 
powerful alternative to state-action-value tables. It is 
possible for RL to learn value functions or policies 
directly from data by applying neural networks as 
function approximators.  

Deep reinforcement learning (DRL) 
combines reinforcement learning with deep learning. 
In DRL, deep neural networks are integrated to 
enable agents to make decisions directly from 
unstructured input data without manual feature 
engineering. The algorithms handle significant inputs 
(such as video game screens) and optimize objectives 
(e.g., maximizing game scores). DRL has many 
applications in various fields, including robotics, 
video games, natural language processing, computer 
vision, education, transportation, finance, and 
healthcare. 

DRL often encounters challenges related to 
learning efficiency and stability. An essential 
technique to address these issues is experience replay. 
Experience replay is a concept in Deep Q-Networks 
(DQN) where past experiences, such as states, 
actions, and rewards encountered during agent-
environment interactions, are stored in a replay 
buffer. Experience replay does not discard data 
collected during agent-environment interactions; 
instead, it stores and utilizes this data for efficient 
learning. 

During training, the DRL agent benefits from 
experience replay by sampling a diverse range of past 
interactions stored in the replay buffer. These 
experiences, encompassing state transitions, actions 
taken, and received rewards, are used to update the 
agent's decision-making strategy, represented by 
either the value function (e.g., Q-values) or the policy 
itself. The critical advantage of experience replay lies 
in the random sampling mechanism. This approach 
disrupts potential correlations that might exist within 
consecutive observations during training. 
Additionally, it smooths over any unexpected 
changes in the data distribution encountered by the 
agent. By learning from such a diverse array of 
experiences, the agent achieves greater stability and 
efficiency in its learning process. 

The contributions of this paper can be 
summarized as follows: 

• Modeling the neighborhood structure 
selection in VNS as a Markov Decision 
Process (MDP). 

• Employing reinforcement learning to 
improve the process of neighborhood 
selection in VNS. 

• Using deep reinforcement learning models to 
control the large state space of IM. 

• Comparing the proposed method with other 
widely used algorithms on real-world 
network datasets. 

The structure of the remainder of the paper is as 
follows: Section 2 reviews related works. Section 3 
models the problem as an MDP. Section 4 presents 
the proposed method, called DQVNS. Section 5 
evaluates the results on different datasets compared 
to previous methods. Finally, Section 6 concludes the 
paper. 

2. Related Works 

Kempe et al. [8] proved that IM is an NP-hard 
problem. Therefore, it is not possible to provide an 
exact polynomial-time algorithm for solving this 
problem. As a result, alternative methods such as 
approximation algorithms [5,9] and heuristic 
algorithms [10-15] have been proposed for solving 
this problem. 

Also, various metaheuristic algorithms [16-19] 
have also been proposed to solve this problem. 
Among them, we can mention genetic algorithm 
[16,17], simulated annealing algorithm [18], particle 
swarm optimization algorithm [19], ant colony 
optimization algorithm [20], and bee colony 
algorithm [21]. Most of these algorithms are 
evolutionary algorithms, in which a solution or a set 
of initial solutions evolve over various iterations, and 
eventually, after the algorithm stops, the best 
generated solution is returned as the final solution. 

One of the metaheuristic algorithms is the VNS 
algorithm, which attempts to improve the final 
solution for a problem based on selecting different 
neighborhood  structures. Despite its simplicity, this 
algorithm produces excellent results and has been 
used in various studies to solve multiple problems, 
including facility location [22], finding the longest 
common subsequence [23], routing [24], and 
scheduling [25]. 

However, despite its usefulness, this algorithm 
has some shortcomings. Like many other algorithms, 
it does not utilize the data generated in previous 
iterations to enhance its performance. Specifically, it 
does not utilize the data generated in previous 
iterations to determine the order of using 
neighborhood structures in subsequent iterations. 
This selection is done non-intelligently and 
sequentially. However, considering the impact of 
different neighborhood structures in previous 
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iterations, it is possible to conduct the search process 
more intelligently and prioritize the use of 
neighborhood structures in each iteration of VNS 
based on the performance of these neighborhood 
structures in previous iterations. 

To address this issue and improve this aspect of 
the VNS algorithm, this paper proposes a 
reinforcement learning-based approach using the 
deep Q-network (DQN), which selects an appropriate 
neighborhood structure in the current iteration that is 
likely to create better improvement in the current 
solution, based on the performance of different 
neighborhood structures in previous iterations. 

In this section, studies that have utilized 
reinforcement learning to improve the neighborhood 
selection process in VNS are investigated. 
Additionally, only studies are referenced whose 
proposed method is independent of the specific 
problem, as the goal is to improve VNS as a problem-
independent metaheuristic algorithm. 

The VNS algorithm was introduced in 1997, and 
its main idea is to systematically change 
neighborhoods to find an optimal solution and escape 
local optima. Due to its simplicity, effectiveness, and 
versatility, this algorithm has been used in various 
fields such as network design [26], continuous 
optimization [27], job scheduling [28,29], and vehicle 
routing [30]. 

Dos Santos et al. [31] proposed one of the 
pioneering works to employ the Q-learning algorithm 
to enhance VNS. They proposed a method called 
Reactive Search to select an appropriate local search 
at each step of the search process. In this method, RL 
was utilized in two stages: initial solution selection 
and local search method selection. In their method, 
the action space consists of the same number of 
neighborhood structure, and the state at each step is 
the type of neighborhood structure used in the 
previous step. 

Li et al. [32] presented a self-adaptive VNS 
algorithm. For each type of neighborhood structure, a 
probability is considered, and the algorithm, during 
the learning phase, increases or decreases the 
probability of selecting that type of neighborhood 
structure based on its performance in improving or 
not improving the current solution. 

Todosijević et al. [33] assigned a score for each 
sequence of different neighborhood structures. If 
using that specific sequence of neighborhood 
structures results in an improvement in the current 
solution, the score of that sequence increases by a 
constant value; otherwise, it decreases by the same 
amount. 

Shahrabi et al. [34] utilized the Q-learning 
algorithm to select estimated parameters of the VNS 
algorithm for solving the job shop scheduling 

problem. In their proposed algorithm, the state space 
is defined based on problem features (the number of 
jobs and the average processing time of operations), 
comprising 20 different states. Additionally, the 
action space is based on VNS algorithm parameters 
(the number of VNS iterations, the maximum number 
of iterations in local search, and the improvement 
threshold in local search), comprising 8 different 
actions. 

Thevenin et al. [35] introduced the LVNS 
method, where efforts were made to learn features 
that are often observed in good solutions during VNS 
execution and employ them in generating new 
neighbors. 

Shahmardan et al. [36] used the Q-learning 
method to select appropriate neighborhood structures 
in different states in the simulated annealing 
algorithm. In this method, the state is equivalent to 
the number of times the current solution is not 
improved, and the action is the type of neighborhood 
structure selected by the agent. 

Chen et al. [37] utilized a simple RL algorithm to 
learn the probability of using each neighborhood 
operator among 8 operators. In this algorithm, which 
applied to vehicle routing problem, the state 
represents the probability of selecting each 
neighborhood, and the action is the reduction or 
increase of these probabilities based on the 
improvement or non-improvement of the objective 
function. 

Zhao et al. [38] used Q-learning-based for 
balancing exploration and exploitation in VNS for 
solving a scheduling problem. In this method, the 
state represents the current solution status, and the 
action represents the type of neighborhood structures.  

Zhang et al. [39] employed DRL for learning a 
suitable strategy in selecting neighborhood structures 
in the facility location problem. In this approach, a 
part of the solution is defined as the state, and the 
selected neighborhood structures are considered as 
actions. 

Alicastro et al [40] used the presented in [33] to 
improve the iterated local search metaheuristic. This 
method was applied to solve an additive 
manufacturing problem in 3D printers. 

Gu et al. [41] utilized Q-learning for selecting 
appropriate neighborhood structures in the taboo 
search algorithm for solving the Max-mean 
dispersion problem. In this approach, the state 
represents the last element added to the current partial 
solution, and the action includes a set of valid 
elements that can be added to the current state. 

Wang et al. [42] used Q-learning to enhance the 
search process in the bee colony algorithm for solving 
a scheduling problem. In their proposed method, the 
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state is defined based on the current status, and 
actions include various search and neighborhood 
operators. 

Alrashidi et al. [43] offered an efficient approach 
combining VNS with RL to solve the Green Vehicle 
Routing Problem (GVRP). The state space includes 
route configurations and vehicle capacities, while the 
action space comprises route modifications. The 
reward signal reflects cost reduction. 

Zhang et al. [44] addressed the distributed flow-
shop scheduling problem (DFSP), aiming to 
minimize makespan and energy consumption. It 
introduced a Q-learning-based multi-objective 
particle swarm optimization (QL-MoPSO) algorithm. 
Enhanced PSO divides particles into subgroups for 
faster convergence, while Q-learning guides variable 
neighborhood search (VNS) for balanced exploration 
and exploitation. 

Pugliese  et al. [45] utilized Q-learning for the 
local search within VNS. The agent selects actions 
based on the current state and received rewards, 
aiming to maximize the cumulative reward. To boost 
exploration, a parameter 𝜖 determines whether the 
next action is selected randomly or based on the 
maximum value. This method allows dynamic 
adaptation of neighborhood structures as actions and 
states in the search process, promoting effective 
problem-solving strategies. 

Overall, the main difference between the 
proposed method in this paper and the previous 
methods can be summarized as follows: 

• In most of the existing methods, due to the 
limitation of the action space and state space, 
tabular methods like Q-learning have been 
utilized. In the proposed method, to improve the 
solution, better generalization in the state space 
and better learning, a deep reinforcement learning 
method called DQN (Deep Q-Network) is 
employed. 

• In most of the existing methods, the similar and 
limited number of neighborhood structures have 
been used. To enhance the exploration of the 
solution space, six different exploration operators 
(equivalent to six different types of neighborhood 
structures) have been used to generate diverse and 
varied solutions. 

• In most of the existing methods, the state is 
defined based on a single previous action or on a 
fixed sequence of neighborhood structures. 
However, such definitions do not facilitate finding 
an adaptive sequence of neighborhood structures 
that leads to better solutions. In the proposed 
method, to improve the learning of the effects of 
neighborhood operators at each step of the VNS 
algorithm, the state is considered as a sequence of 
operators performed in previous stages of the 
algorithm. This enables the selection of an 

appropriate sequence of these neighborhood 
structures during algorithm execution. 

• This method has been employed to solve the IM 
problem. This problem is inherently NP-hard, and 
due to the fact that the solution size is a very small 
subset of the network nodes, it has high 
complexity. Many types of neighborhood 
structures may not cause a change in the objective 
function, which adds to the complexity of the 
problem.  

3. Formulating the problem as a Markov Decision 
Process (MDP) 

RL is a subset of machine learning methods in 
which an agent attempts to learn a good policy 
through trial and error and interaction with the 
environment. The policy refers to the mapping of the 
current state to an appropriate action. In other words, 
the goal of the agent is to learn to map the current 
state to the appropriate action at each time step, 
maximizing the discounted sum of numerical rewards 
received from the environment, as illustrated in 
Figure 2. 

In this approach, the agent is not told what action 
to take, but rather how good the selected action was. 
The selected actions not only affect instant rewards 
but also impact future states. When an agent takes an 
action 𝑎𝑡 in state 𝑠𝑡 at time 𝑡, it receives the outcome 
of its action with reward 𝑟𝑡+1 at time 𝑡 + 1 and 
transitions to state 𝑠𝑡+1. 

Each problem in RL is defined using the Markov 
Decision Process (MDP) model and is structured as a 
quintuple 𝑀 = (𝒮, 𝒜, 𝒫, 𝑅, 𝛾), where 𝒮 represents a 
finite state space, where 𝑠𝑡 ∈ 𝒮 indicates the state of 
an agent at time 𝑡. 𝒜 is a set of available actions for 
the agent, where 𝑎𝑡 ∈ 𝒜 denotes the action agent 
takes at time 𝑡. Also, 𝒫(𝑠𝑡 , 𝑎𝑡;  𝑠𝑡+1): 𝒮 ×  𝒜 ×
 𝒮 → [0,1] is a Markovian transition function 
indicating the probability of the agent transitions 
from state 𝑠𝑡 to state 𝑠𝑡+1 after taking an action 𝑎𝑡. 
𝑅: 𝒮 × 𝒜 → 𝑅 is a reward function that returns the 
immediate reward 𝑅(𝑠𝑡 , 𝑎𝑡) after taking an action 𝑎𝑡  

 

Figure. 2. Main components of reinforcement learning 
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in state 𝑠𝑡. Additionally, 𝛾 ∈ [0,1] is a discount factor 
indicating the rate of reward reduction over time. In a 
reinforcement learning problem, the goal is to 
maximize the total discounted rewards received by 
the agent (Eq. (1)). 

 

𝑟1 + 𝛾𝑟2 + 𝛾2𝑟3 + ⋯ (1) 

where 𝑟𝑖 is the reward received by the agent at time 𝑖. 

The first step is to model the problem of selecting 
appropriate sequence of neighborhood structures in 
the VNS algorithm as an MDP model. In this 
modeling, the problem is defined as follows: 

• State: An array with a length of 𝑛𝒮 
representing the previous actions used in the 
previous 𝑛𝒮 iterations. In essence, the state 
represents a history of selected actions 
(neighborhood structures used) in previous 
iterations. In the proposed algorithm, 𝑛𝒮 =
6. 

• Action: The set of actions in the problem 
corresponds to the number of neighborhood 
structure defined in the VNS algorithm. In 
each iteration, depending on its current state, 
the agent selects one of the available 
neighborhood structures. The number of 
defined actions in this algorithm is set to 
𝑛𝒜 = 6. 

• Transition Function: By selecting an action 
in each iteration, an attempt is made to 
produce better neighbors (solutions) for the 
current solution using the corresponding 
neighborhood structure. If this attempt is 
successful, the current solution is changed to 
the improved solution; otherwise, the current 
solution remains unchanged. 

• Reward: The reward for each action is 
determined based on the difference between 
the value of the new solution generated by 
that action and the value of the current 
solution. If the new solution is better, the 
amount of this improvement is returned as a 
reward in the objective function; otherwise, a 
fixed value of -5 is returned as the reward. 

• Discount Factor: The discount factor value 
is 𝛾 = 0.95. 

4. Proposed Method 

In this section, the proposed method (DQVNS) 
for solving IM using DRL-based VNS is presented. 
Each solution is represented as an array of length 𝑛 
(the number of graph vertices), where 𝑙 elements (the 
number of influential nodes) take the value 1, and the 
remaining elements take the value 0. 

The DQVNS has the following six types of 
neighborhood structures: 

• Crossover: performs a crossover operation 
between the current solution and a random 
solution. 

• Mutation: applies a mutation operation to the 
current solution. 

• PairSwap: swaps the values of two elements in 
the current solution. 

• Inversion: reverses the elements between two 
random positions in the array. 

• Insertion: randomly inserts an element into the 
array and shifts the remaining elements to the 
right. 

• Displace: selects a random subarray of the 
current solution, insert it at a random index, and 
shifts the remaining array to the right. 

In selecting these six types of neighborhood 
structures, efforts have been made to choose 
operators that produce distinct and diverse solutions 
relative to each other. We will use the DQN algorithm 
[46], which is a combination of the Q-learning and 
deep neural networks. In the Q-learning algorithm 
[47], after performing each action, receiving a reward 
from the environment, and changing the state, the Q-
value (the value of action 𝑎𝑡 in state 𝑠𝑡) is updated 
according to Eq. (2): 

𝑄(𝑠𝑡, 𝑎𝑡  ) = 𝑄(𝑠𝑡, 𝑎𝑡  ) + 𝛼[𝑟𝑡+1 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎 ) − 𝑄(𝑠𝑡, 𝑎𝑡  )]  (2) 

where 𝛼 is the learning rate. In fact, 𝑄(𝑠𝑡 , 𝑎𝑡) is 
the average sum of rewards that the agent will receive 
from this state onwards and determines its value. In 
the DQN network, a deep neural network is used to 
approximate the value function Q. The architecture of 
this network for the proposed method is shown in 
Figure 3. 

As shown in the Figure 3, an array with a length 
of 𝑛𝒮, representing the selected neighborhood 
structures in the previous 𝑛𝒮 iterations, is provided as 
input to the network. The network consists of three 
fully connected hidden layers with a size of 24 and 
ReLU activation function. The output layer has a size 
of 𝑛𝒜 , indicating the total number of neighborhood 
structures in the VNS algorithm, and has a Sigmoid 
activation function. The output layer returns the value 
of each neighborhood structures. The higher the value 
of a neighborhood structure, the more likely it will be 
selected for applying to the current solution. After 
this stage, an 𝜖-greedy algorithm is used for action 
selection. This means that with a probability of 1 −
𝜖, an action (neighborhood structure) with a higher 
value will be selected, and with a probability of ϵ, one 
of the other actions will be randomly selected. 

After determining the action, the corresponding 
neighborhood structure is applied to the current 
solution, and the reward corresponding to the change 
in the objective function for this action is determined. 
Additionally, the current state is updated based on the 
selected action. The loss function for this network is 
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the difference between the objective value (𝑟𝑡+1 +
𝛾 max

𝑎
𝑄(𝑠𝑡+1, 𝑎)) and the estimated value by the 

network (𝑄(𝑠𝑡 , 𝑎𝑡)). Based on this loss function, the 
parameters of the network will be updated. 

The proposed algorithm, as shown in Figure 4, is 
as follows. Here 𝜖, 𝛼, and 𝛾 are parameters of the RL 
algorithm as introduced before, and 𝑚𝑎𝑥_𝑖𝑡 is the 
maximum number of iterations in the VNS algorithm, 
set to 100. Specifically, the innovation of this 
algorithm lies in line 4 (where DQN is used instead 
of Q-learning to control the large state space and 
better generalization), in line 6 (where the 
neighborhood structure is dynamically selected based 
on the current state of the algorithm), and in lines 14-
15 (where the algorithm's state and DQN’s state are 
adaptively updated to capture the performance of the 
algorithm in the current step).  For a better 
understanding of the algorithm, its flowchart is 
presented in Figure 5. The novelty of the algorithm. 

5. Results and Discussion  

In this section, we compare the results of the 
proposed method (DQVNS) on a number of real-
world networks with previous methods. The dataset 

and their characteristics are shown in Table 1. In this 
implementation, the Independent Cascade (IC) model 
is used, where the probability of propagation in each 
network is specified in column 𝑝. 

The 𝜖-greedy algorithm used starts with an initial 
value of 1 for 𝜖, which decreases during the algorithm 
execution by a factor of 0.99 until it reaches a 
minimum value of 0.1. The learning rate is set to 𝛼 =
0.05, and the discount factor is 𝛾 = 0.95. The results 
of the proposed algorithm on these six datasets are 
compared with well-known algorithms, which can be 
categorized as follows: 

• VNS: The basic VNS algorithm.  
• Well-known metaheuristics which have 

been applied on IM before including: 
o GWO: Grey Wolf Optimization 

Algorithm [51] 
o GA: Genetic Algorithm [52] 
o PSO: Particle Swarm Optimization 

Algorithm [53] 
o ABC: Artificial Bee Colony Algorithm 

[54] 
o FF: Firefly Optimization Algorithm [55]  
o CS: Cuckoo Search Algorithm [56]  

 

Figure. 3. DQVNS Neural Network Architecture 

 

Figure. 4. DQVNS Pseudo-code  
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Figure. 5. DQVNS Flowchart 

Table 1. Datasets Characteristics 

# dataset p #nodes #edges reference 

1 HAM 0.03 2426 16631 [48] 

2 
EGO-

Facebook 
0.01 4039 88234 [48] 

3 Wiki-votes 0.01 7115 103689 [49] 

4 PGP 0.06 10680 24316 [50] 

5 Hepph 0.1 12008 118521 [50] 

6 NetHept 0.1 15223 31376 [50] 

• Centrality measures including:  
o Degree: Degree centrality is a 

fundamental concept in network 
analysis. It measures the importance of a 
node within a network by counting the 
number of connections the node has to 
other nodes. 

o Eigenvector: This is another network 
analysis measure used to assess the 
influence or importance of a node within 
a network. Unlike degree centrality, 
which counts the number of connections, 
eigenvector centrality considers the 
quality of those connections. By 
considering not just the number of 
connections but also their influence, 
eigenvector centrality provides a more 
nuanced view of a node's importance 
within a network.  

• IM Methods: IM-specific algorithms which 
have been applied on this problem including:  
o GWIM [57] 
o TOPSIS [58] 

o ID [59] 
o TI-SC [48] 
o PMC [50] 

5.1. Influence Comparison 

The results of comparing the proposed method 
with the mentioned algorithms are shown in Table 2. 
As evident in this table, The DQVNS algorithm 
demonstrated superior performance by achieving the 
highest influence scores in all six datasets.  

Traditional metaheuristics often struggle to 
maintain an optimal balance between exploration and 
exploitation. DQVNS dynamically adjusts this 
balance through RL. This ensures that the algorithm 
effectively explores the search space while efficiently 
exploiting known-good solutions. Traditional 
metaheuristics rely on pre-defined heuristics and lack 
adaptive learning capabilities. These algorithms can 
become computationally expensive due to their 
reliance on population-based search strategies.  

Unlike population-based algorithms, DQVNS 
maintains a low computational overhead by focusing 
on a single solution and enhancing it through 
intelligent learning mechanisms. This efficiency is 
crucial for large-scale datasets, where computational 
resources are a limiting factor. The proposed method 
integrates Deep Q-Learning, enabling it to adaptively 
refine its search strategy based on real-time feedback, 
thus improving performance over time. The 
consistent performance of DQVNS across diverse 
datasets highlights its robustness and generalizability. 
Whether dealing with small or large networks, 
DQVNS effectively maximizes influence, proving its 
applicability across different scenarios. 

For the HAM dataset, DQVNS achieved an influence 

of 426, which is the best result among all algorithms. 

The second-best result was provided by GWO. The 

DQVNS algorithm outperforms all other algorithms 

by approximately at least 20%, which indicates its 
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superior efficiency. In the EGO-Facebook dataset, 

DQVNS achieved the highest influence score of 481, 

outperforming other algorithms, including GWO 

with a score of 464 and PSO with a score of 451. 

For the Wiki-Votes dataset, DQVNS 
demonstrated a significant improvement in influence, 
achieving a score of 272. This score is notably higher 
than those of GA, which scored 161, and GWO, 
which scored 240. DQVNS also showed a 50% 
improvement over other population-based 
algorithms. The Eigenvector algorithm scored the 
lowest with a score of 50. The data in Table 2 indicate 
that all algorithms demonstrated generally poor 
performance when applied to the Wiki-Votes dataset, 
with a broad decrease in effectiveness. However, 
DQVNS exhibited relatively consistent performance 
across datasets, showing less sensitivity to the Wiki-
Votes data compared to the other algorithms 
evaluated. For the PGP and NetHept datasets, 
DQVNS outperforms population-based algorithms 
by 25% and achieves a 50% improvement over PSO. 
In Hepph dataset, DQVNS achieved the highest 
influence score of 4789, while FF recorded the lowest 
score of 3991. In this case, our algorithm provided the 
best result. 

Centrality measures for influence maximization, 
such as Degree and Eigenvector centrality, were also 
evaluated. These methods leverage graph-theoretic 
metrics to identify influential nodes in a 
network. These methods consistently scored lower 
than DQVNS because they are inherently static and 
do not adapt to the specific characteristics of the 
network during the influence maximization process. 
These rely on global graph properties that might not 
capture the nuanced interactions and dynamics of the 
network. These methods do not optimize, and nodes 
are ranked based on predefined metrics. Unlike 
DQVNS, these measures overlook more complex 
influence patterns that can be captured through 
optimization techniques. While these methods are 
simple and scalable, their simplicity limits their 
effectiveness in complex networks. DQVNS, on the 
other hand, employs sophisticated learning and 

optimization techniques that can better handle the 
complexities of real-world networks. 

The comparative analysis demonstrates the 
superiority of the DQVNS algorithm over traditional 
metaheuristics and statistical methods in influence 
maximization tasks. By integrating DQN with VNS, 
DQVNS effectively leverages adaptive learning, 
maintains computational efficiency, and achieves a 
balanced exploration-exploitation trade-off. By 
utilizing these capabilities, DQVNS consistently 
produces better results when applied to a variety of 
datasets, highlighting its effectiveness and robustness 
when applied to influence maximization in complex 
networks. 

5.2. Running Time Comparison  

To compare the running time of the algorithm 
with other methods, the population size in all methods 
is set to 100. Additionally, the running time is 
calculated for 100 iterations. As evident from the 
results presented in Table 3Error! Reference source 
not found., the proposed algorithm demonstrates 
significantly lower execution time compared to other 
algorithms, except VSN. This notable reduction in 
execution time can be attributed to the fact that, 
unlike other algorithms, the proposed method is not 
population-based. Population-based algorithms 
typically require considerable computational 
resources to manage and update multiple solutions 
simultaneously. In contrast, our algorithm focuses on 
a single solution, thus streamlining the computational 
process and reducing overhead. 

The purpose of this comparison is to illustrate 
those intelligent mechanisms, when integrated into 
single-solution metaheuristics like VNS, can 
effectively enhance performance while preserving 
low running time. By leveraging these intelligent 
mechanisms, it is possible to achieve a balance where 
the algorithm operates efficiently and yields 
substantial results. This is particularly important in 
scenarios where computational efficiency is critical, 
such as real-time applications or large-scale 
optimization problems. Given the significant   

Table 2. Influence Results  

Algorithm 

/dataset 
VNS Degree Eigenvector IM Methods CS FF ABC PSO GA GWO DQVNS 

HAM 414 286 281 359 (ref. [58]) 406 353 353 333 353 416 426 

EGO-
Facebook 

460 370 251 383 (ref. [48]) 455 449 438 451 324 464 481 

Wiki-votes 252 246 50 250 (ref. [59]) 208 186 174 122 161 240 272 

PGP 605 429 331 530(ref. [57]) 586 524 492 418 465 624 634 

Hepph 4662 3986 3954 4410 (ref. [50]) 4113 3991 4103 4118 3995 4499 4789 

NetHept 1080 800 736 980 (ref. [50]) 1020 885 939 702 840 1080 1119 
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reduction in running time without compromising on 
solution quality, it is reasonable to conclude that 
single- solution approaches provide a viable and 
efficient alternative to traditional population-based 
methods when augmented with adaptive and dynamic 
enhancements. This makes them highly suitable for 
practical applications in influence maximization and 
other complex optimization problems. 

5.3. Scalability Comparision 

Also, to compare the scalability of this algorithm 
with other algorithms, the growth of running time 
based on the dataset size (number of nodes) is shown 
in Figure 6. However, since besides the number of 
nodes, other network characteristics (such as the 
number of edges, network topology, etc.) also affect 
the running time of algorithms, the running time may 
not necessarily increase proportionally with the 
increase in the number of nodes. However, as shown, 
the DQVNS algorithm has better scalability 
compared to other algorithms (comparable to VSN), 
meaning that with an increase in the size of the input 
network, its running time increases with less slope. 

5.4. VNS and DQVNS comparison 

IM is crucial for optimizing strategies in 
networked systems such as social networks. The 
results are compared against various traditional 
metaheuristic algorithms, demonstrating the 
superiority of VNS and the further optimization 

achieved by DQVNS. VNS and DQVNS 
outperformed traditional metaheuristics across most 
datasets. As a result of leveraging the strengths of 
VNS and enhancing them through RL, DQVNS 
achieved the highest influence scores. The VNS 
employs a multi-neighborhood search strategy in 
order to explore diverse regions of the search space 
effectively. This capability helps escape local optima 
and find better solutions, making it superior to single-
neighborhood or less adaptive metaheuristics. By 
integrating Deep Q-Learning, DQVNS further 
enhances VNS performance. RL enables the 
algorithm to learn optimal strategies dynamically, 
improving the search process and resulting in better 
influence scores. For example, DQVNS improved the 
score from 460 (VNS) to 481 on the EGO-Facebook 
dataset.  

DQVNS benefits from intelligent neighborhood 
selection guided by RL. This strategic selection helps 
focus the search on promising areas, enhancing the 
algorithm's efficiency and effectiveness. The 
comparative analysis highlights the effectiveness of 
VNS in influence maximization due to its multi-
neighborhood search strategy, making it superior to 
other traditional metaheuristic algorithms. Further 
optimization through Deep Q-Learning significantly 
enhances VNS performance, leveraging 
reinforcement learning to select optimal 
neighborhoods  and refine  search strategies. This 

Table 3. Running Time Results 

Algorithm 

/dataset 
VNS CS FF ABC PSO GA GWO DQVNS 

HAM 179 2004 7417 1512 1551 1545 910 323 

EGO-Facebook 371 3218 13221 2619 2785 2411 2200 605 

Wiki-votes 667 5412 23440 5296 5305 4690 4419 869 

PGP 1085 8012 37500 7053 7032 6200 6032 1463 

Hepph 1313 10561 50500 10204 10134 9353 9003 1913 

NetHept 1429 11087 53500 10976 10929 8890 8835 2112 

  

Figure. 6.  Scalability Results 
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combination not only outperforms traditional and 
population-based metaheuristics but also maintains 
computational efficiency, demonstrating the 
robustness and superiority of DQVNS for influence 
maximization tasks in complex networks. 

In this section, the running times of the VNS 
algorithm are compared with its enhanced version, 
DQVNS, against traditional population-based 
metaheuristics. The results demonstrate how DQVNS 
retains the low running time of single-solution 
methods while offering significant performance 
improvements. Population-based algorithms are 
typically chosen for influence maximization tasks 
because they explore a broader solution space by 
maintaining multiple solutions simultaneously. This 
can be advantageous for finding influential nodes and 
maximizing the spread of influence but at the cost of 
higher running times. Our proposed 
method intelligently selects the most promising 
neighborhoods to explore. This adaptive 
enhancement improves the quality of the solutions 
while maintaining low computational costs. Despite 
the increase in running time compared to VNS, 
DQVNS's running time is still substantially lower 
than that of population-based methods. The DQVNS 
algorithm balances the efficiency of single-solution 
approaches and the comprehensive search 
capabilities of population-based methods. This makes 
it a viable influence maximization alternative, 
offering high performance and low computational 
overhead. 

6. Conclusion and Future Work 

The paper introduces a deep reinforcement 
learning-based method to enhance neighborhood 
structure selection in the VNS metaheuristic 
algorithm, which calculates the probability of 
selecting each neighborhood structure for the current 
iteration based on the performance of different 
neighborhood structures in previous iterations of the 
algorithm. 

To evaluate the proposed algorithm, it was 
applied to the complex combinatorial problem of IM 
in social networks. The results obtained from this 
algorithm on various datasets of different sizes and 
the comparison of these results with various 
commonly used methods demonstrate the satisfactory 
performance of the proposed method in terms of 
accuracy and runtime. 

The DQVNS algorithm demonstrates significant 
improvements in solving the IM problem; however, 
there are limitations to consider. Firstly, the algorithm 
was applied only to specific datasets, which may not 
fully capture the complexity of real-world social 
networks. As a result, generalizing these findings to 
networks with different structures remains uncertain. 

Furthermore, integrating DRL with VNS 
introduces computational complexity. Although the 
algorithm’s running time was manageable on the 
tested datasets and was even less than other 
population-based algorithms, the time complexity 
may increase when applied to datasets with different 
structures. 

Another important consideration is that, although 
the proposed method was applied to the VNS 
algorithm in this paper, the underlying idea of 
intelligent neighborhood structure selection has 
broader applicability. This concept could be extended 
to other metaheuristic and state-space search 
methods, potentially enhancing their performance as 
well. 

For future research, several suggestions are 
proposed. The first suggestion is to use RL to 
improve the performance of other metaheuristic 
algorithms. The second suggestion is to utilize RL to 
enhance other aspects besides neighborhood structure 
selection in metaheuristic algorithms. Additionally, 
the last suggestion is to employ multi-agent RL to 
enhance population-based search algorithms. 
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