

 http://dx.doi.org/10.22133/ijwr.2024.459158.1219

 A. Maleki Ghalghachi, M. Roayaei Ardakani, " Deep Q-Learning Enhanced Variable Neighborhood Search for Influence Maximization in Social

Networks ", International Journal of Web Research, vol.7, no.2,pp.23-36, 2024, doi: http://dx.doi.org/10.22133/ijwr.2024.459158.1219.

*Coressponding Author
Article History: Received: 24 December 2023; Revised: 12 March 2024; Accepted: 18 March 2024.

Copyright © 2022 University of Science and Culture. Published by University of Science and Culture. This work is licensed under a Creative Commons
Attribution-Noncommercial 4.0 International license(https://creativecommons.org/licenses/by-nc/4.0/). Noncommercial uses of the work are permitted,
provided the original work is properly cited.

Deep Q-Learning Enhanced Variable

Neighborhood Search for Influence

Maximization in Social Networks

Afifeh Maleki Ghalghachi a, Mehdy Roayaei Ardakani b*

Department of Electrical and Computer Engineering, Tarbiat Modares University (TMU), Tehran, Iran;

m.afifeh@modares.ac.ir a, mroayaei@modares.ac.ir b

A B S T R A C T

A social network consists of individuals and the relationships between them, which often influence each other.

This influence can propagate behaviors or ideas through the network, a phenomenon known as influence

propagation. This concept is crucial in applications like advertising, marketing, and public health. The influence

maximization (IM) problem aims to identify key individuals in a social network who, when influenced, can

maximize the spread of a behavior or idea. Given the NP-hard nature of IM, non-exact algorithms, especially

metaheuristics, are commonly used. However, traditional metaheuristics like the variable neighborhood search

(VNS) struggle with large networks due to vast solution spaces. This paper introduces DQVNS (Deep Q-learning

Variable Neighborhood Search), which integrates VNS with deep reinforcement learning (DRL) to enhance

neighborhood structure determination in VNS. By using DQVNS, we aim to achieve performance similar to

population-based algorithms and utilize the information created step by step during the algorithm's execution.

This adaptive approach helps the VNS algorithm choose the most suitable neighborhood structure for each

situation and find better solutions for the IM problem. Our method significantly outperforms existing

metaheuristics and IM-specific algorithms. DQVNS achieves a 63% improvement over population-based

algorithms on various datasets. The results of implementation on different real-world social networks of varying

sizes demonstrate the superiority of this algorithm compared to existing metaheuristic, IM-specific algorithms,

and network-specific measures.

Keywords— Social Networks, Deep Reinforcement Learning, Influence Maximization, DQN.

1. Introduction

Social networks play an important role in
disseminating information, thoughts, and ideas. A
social network is a connected structure of elements
formed for social interactions. Social influence
occurs through the dissemination of information
within the network. Nowadays, the analysis of social
networks holds great importance in both theoretical
and practical domains. This problem has been
extensively studied in various fields, such as social
sciences [1], psychology [2], marketing [3], and
recommender systems [4]. One of the significant and
common problems in social networks is identifying
influential individuals within these networks, people
who can exert the most influence on network
members.

In social networks, the behavior of key players
plays a significant role in analyzing these networks.
There are various criteria for analyzing influential
nodes in a social network. For example, clustering
coefficient, density, different centrality measures,
degree, page rank, and so on can be mentioned.
Finding influential nodes (key players) in large-scale
networks is a complex task because the size of these
networks is constantly expanding.

A social network is defined as a graph 𝐺(𝑉, 𝐸)
where 𝑉 is the set of network nodes and 𝐸 is the set
of edges between them. The edge (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 in the

network indicates the ability of node 𝑣𝑖 to influence
or activate node 𝑣𝑗, which occurs with a probability 𝑝

determined by a specific propagation model that
simulates how information spreads in the social

http://dx.doi.org/10.22133/ijwr.2024.459158.1219

International Journal of Web Research, Vol. 7, No. 2, Summer-Autumn, 2024

24

network. One of the most commonly used
propagation models in literature is the Independent
Cascade (IC) model, where a node can be active or
inactive at any given moment. Initially, all nodes
except those in the initial set (seed set) are inactive.
Each active node (𝑣𝑖) at time 𝑡 has a chance to
activate its inactive neighbor (𝑣𝑗) with the probability

of the edge weight between them. If 𝑣𝑖 succeeds, then
𝑣𝑗 will become an active node at time 𝑡 + 1. This

cascade process continues until no other active nodes
emerge within a timestamp. The influence of a set
𝑆 (𝑆 ⊆ 𝑉) is defined as the average number of
activated nodes by set 𝑆, denoted by 𝐼𝐺(𝑆). The
problem of finding influential nodes is thus defined
as:

Influence Maximization (IM): Given a graph
𝐺(𝑉, 𝐸), the goal is to find a subset 𝑆 with at most 𝑙
nodes from the set V such that 𝐼𝐺(𝑆) is maximized.

Due to the NP-hard nature of the IM problem [5],
non-exact methods such as metaheuristics are used to
handle it. However, in the case of large networks, the
solution space becomes excessively vast, posing a
challenge for existing metaheuristics to yield
satisfactory results. In such scenarios, it is crucial to
explore innovative strategies or enhancements to
existing algorithms to effectively tackle the
complexity of IM in large-scale networks.

In this paper, we choose Variable Neighborhood
Search (VNS) algorithm as a metaheuristic to
enhance using deep reinforcement learning [6]. VNS
is renowned for its ability to find high-quality
solutions in optimization tasks, making it a suitable
candidate for solving combinatorial optimization
problems such as IM. Its adaptability allows for
seamless integration with diverse problem domains,
while its balance between exploration and
exploitation ensures efficient navigation of the
dynamic search space inherent in social networks.
Moreover, VNS's flexibility in exploring different
neighborhood structures enables it to escape local
optima and discover diverse solutions, which is
crucial for addressing the complexity of social
network analysis.

VNS is a metaheuristic that sequentially explores
different neighborhood structures to find new and
diverse solutions. The main idea of the VNS
algorithm is to define 𝑘𝑚𝑎𝑥 different types of
neighborhoods for a problem, and during the
algorithm, these neighborhoods are used in sequence
to improve the current solution. If the current
neighborhood cannot improve the current solution,
then the next neighborhoods are used sequentially. If
the current neighborhood can improve the current
solution, this solution is selected as the new current
solution, and the search process continues from this
solution, starting with first neighborhood structure
(Figure 1).

Figure. 1. VNS Basic Algorithm [7]

In this algorithm, 𝑘𝑚𝑎𝑥 represents the maximum
number of neighborhood structures, and 𝑡𝑚𝑎𝑥 denotes
the time condition for terminating the algorithm. The
𝑆ℎ𝑎𝑘𝑒(𝑆, 𝑘) function generates a random
neighborhood for solution 𝑆 based on kth
neighborhood. Additionally, the 𝐿𝑆(𝑆′) function
performs a local search to find the best local neighbor
for the solution 𝑆′.

Metaheuristics offers flexible problem-solving
methods that can be applied across various domains
without requiring specialized knowledge. However,
they frequently fail to fully exploit the data generated
during their execution, which leaves opportunities for
enhancing performance and efficiency, particularly in
complex problems. They do not effectively utilize
past experiences from previous iterations, which
could greatly influence the selection of search
strategies, behavioral adaptation, and parameter
tuning. These overlooked possibilities have the
potential to substantially improve convergence speed
and the overall quality of the solutions generated.

 Specifically, in VNS, a challenge is the order in
which the defined neighborhoods are utilized in the
search process. In the basic algorithm, the defined
neighborhood structures are used sequentially, and if
a neighborhood fails to produce an improvement in
the current solution, the next neighborhood is used. A
drawback of this approach is that VNS does not
leverage the data generated in previous iterations to
determine the appropriate order of neighborhood
utilization. This means that considering the impact of
different neighborhoods in previous search iterations,
the search process could be enhanced, and at each
iteration of VNS, priority should be given to the
neighborhood structures that have shown better
performance in previous iterations of the algorithm.

In this paper, deep reinforcement learning is
utilized to tackle this challenge. Reinforcement
learning (RL) is a category of machine learning
methods in which agents interact with their
environment, take actions, receive feedback (reward),
and learn based on the rewards associated with each
action. The goal of the proposed method is to learn
the appropriate selection among different

Deep Q-Learning Enhanced Variable Neighborhood Search for Influence Maximization
in Social Networks

25

neighborhood structures at each step of the search
algorithm execution, leading to finding a better final
solution in a shorter time.

Traditional RL algorithms often rely on state-
action-value tables. These tables store the expected
reward (value) for taking a specific action in a given
state. This approach allows the agent to learn an
optimal policy by selecting actions that maximize the
expected future reward. However, maintaining and
manipulating such tables becomes impractical in real-
world scenarios with many possible states (i.e., high-
dimensional state spaces). Deep learning offers a
powerful alternative to state-action-value tables. It is
possible for RL to learn value functions or policies
directly from data by applying neural networks as
function approximators.

Deep reinforcement learning (DRL)
combines reinforcement learning with deep learning.
In DRL, deep neural networks are integrated to
enable agents to make decisions directly from
unstructured input data without manual feature
engineering. The algorithms handle significant inputs
(such as video game screens) and optimize objectives
(e.g., maximizing game scores). DRL has many
applications in various fields, including robotics,
video games, natural language processing, computer
vision, education, transportation, finance, and
healthcare.

DRL often encounters challenges related to
learning efficiency and stability. An essential
technique to address these issues is experience replay.
Experience replay is a concept in Deep Q-Networks
(DQN) where past experiences, such as states,
actions, and rewards encountered during agent-
environment interactions, are stored in a replay
buffer. Experience replay does not discard data
collected during agent-environment interactions;
instead, it stores and utilizes this data for efficient
learning.

During training, the DRL agent benefits from
experience replay by sampling a diverse range of past
interactions stored in the replay buffer. These
experiences, encompassing state transitions, actions
taken, and received rewards, are used to update the
agent's decision-making strategy, represented by
either the value function (e.g., Q-values) or the policy
itself. The critical advantage of experience replay lies
in the random sampling mechanism. This approach
disrupts potential correlations that might exist within
consecutive observations during training.
Additionally, it smooths over any unexpected
changes in the data distribution encountered by the
agent. By learning from such a diverse array of
experiences, the agent achieves greater stability and
efficiency in its learning process.

The contributions of this paper can be
summarized as follows:

• Modeling the neighborhood structure
selection in VNS as a Markov Decision
Process (MDP).

• Employing reinforcement learning to
improve the process of neighborhood
selection in VNS.

• Using deep reinforcement learning models to
control the large state space of IM.

• Comparing the proposed method with other
widely used algorithms on real-world
network datasets.

The structure of the remainder of the paper is as
follows: Section 2 reviews related works. Section 3
models the problem as an MDP. Section 4 presents
the proposed method, called DQVNS. Section 5
evaluates the results on different datasets compared
to previous methods. Finally, Section 6 concludes the
paper.

2. Related Works

Kempe et al. [8] proved that IM is an NP-hard
problem. Therefore, it is not possible to provide an
exact polynomial-time algorithm for solving this
problem. As a result, alternative methods such as
approximation algorithms [5,9] and heuristic
algorithms [10-15] have been proposed for solving
this problem.

Also, various metaheuristic algorithms [16-19]
have also been proposed to solve this problem.
Among them, we can mention genetic algorithm
[16,17], simulated annealing algorithm [18], particle
swarm optimization algorithm [19], ant colony
optimization algorithm [20], and bee colony
algorithm [21]. Most of these algorithms are
evolutionary algorithms, in which a solution or a set
of initial solutions evolve over various iterations, and
eventually, after the algorithm stops, the best
generated solution is returned as the final solution.

One of the metaheuristic algorithms is the VNS
algorithm, which attempts to improve the final
solution for a problem based on selecting different
neighborhood structures. Despite its simplicity, this
algorithm produces excellent results and has been
used in various studies to solve multiple problems,
including facility location [22], finding the longest
common subsequence [23], routing [24], and
scheduling [25].

However, despite its usefulness, this algorithm
has some shortcomings. Like many other algorithms,
it does not utilize the data generated in previous
iterations to enhance its performance. Specifically, it
does not utilize the data generated in previous
iterations to determine the order of using
neighborhood structures in subsequent iterations.
This selection is done non-intelligently and
sequentially. However, considering the impact of
different neighborhood structures in previous

International Journal of Web Research, Vol. 7, No. 2, Summer-Autumn, 2024

26

iterations, it is possible to conduct the search process
more intelligently and prioritize the use of
neighborhood structures in each iteration of VNS
based on the performance of these neighborhood
structures in previous iterations.

To address this issue and improve this aspect of
the VNS algorithm, this paper proposes a
reinforcement learning-based approach using the
deep Q-network (DQN), which selects an appropriate
neighborhood structure in the current iteration that is
likely to create better improvement in the current
solution, based on the performance of different
neighborhood structures in previous iterations.

In this section, studies that have utilized
reinforcement learning to improve the neighborhood
selection process in VNS are investigated.
Additionally, only studies are referenced whose
proposed method is independent of the specific
problem, as the goal is to improve VNS as a problem-
independent metaheuristic algorithm.

The VNS algorithm was introduced in 1997, and
its main idea is to systematically change
neighborhoods to find an optimal solution and escape
local optima. Due to its simplicity, effectiveness, and
versatility, this algorithm has been used in various
fields such as network design [26], continuous
optimization [27], job scheduling [28,29], and vehicle
routing [30].

Dos Santos et al. [31] proposed one of the
pioneering works to employ the Q-learning algorithm
to enhance VNS. They proposed a method called
Reactive Search to select an appropriate local search
at each step of the search process. In this method, RL
was utilized in two stages: initial solution selection
and local search method selection. In their method,
the action space consists of the same number of
neighborhood structure, and the state at each step is
the type of neighborhood structure used in the
previous step.

Li et al. [32] presented a self-adaptive VNS
algorithm. For each type of neighborhood structure, a
probability is considered, and the algorithm, during
the learning phase, increases or decreases the
probability of selecting that type of neighborhood
structure based on its performance in improving or
not improving the current solution.

Todosijević et al. [33] assigned a score for each
sequence of different neighborhood structures. If
using that specific sequence of neighborhood
structures results in an improvement in the current
solution, the score of that sequence increases by a
constant value; otherwise, it decreases by the same
amount.

Shahrabi et al. [34] utilized the Q-learning
algorithm to select estimated parameters of the VNS
algorithm for solving the job shop scheduling

problem. In their proposed algorithm, the state space
is defined based on problem features (the number of
jobs and the average processing time of operations),
comprising 20 different states. Additionally, the
action space is based on VNS algorithm parameters
(the number of VNS iterations, the maximum number
of iterations in local search, and the improvement
threshold in local search), comprising 8 different
actions.

Thevenin et al. [35] introduced the LVNS
method, where efforts were made to learn features
that are often observed in good solutions during VNS
execution and employ them in generating new
neighbors.

Shahmardan et al. [36] used the Q-learning
method to select appropriate neighborhood structures
in different states in the simulated annealing
algorithm. In this method, the state is equivalent to
the number of times the current solution is not
improved, and the action is the type of neighborhood
structure selected by the agent.

Chen et al. [37] utilized a simple RL algorithm to
learn the probability of using each neighborhood
operator among 8 operators. In this algorithm, which
applied to vehicle routing problem, the state
represents the probability of selecting each
neighborhood, and the action is the reduction or
increase of these probabilities based on the
improvement or non-improvement of the objective
function.

Zhao et al. [38] used Q-learning-based for
balancing exploration and exploitation in VNS for
solving a scheduling problem. In this method, the
state represents the current solution status, and the
action represents the type of neighborhood structures.

Zhang et al. [39] employed DRL for learning a
suitable strategy in selecting neighborhood structures
in the facility location problem. In this approach, a
part of the solution is defined as the state, and the
selected neighborhood structures are considered as
actions.

Alicastro et al [40] used the presented in [33] to
improve the iterated local search metaheuristic. This
method was applied to solve an additive
manufacturing problem in 3D printers.

Gu et al. [41] utilized Q-learning for selecting
appropriate neighborhood structures in the taboo
search algorithm for solving the Max-mean
dispersion problem. In this approach, the state
represents the last element added to the current partial
solution, and the action includes a set of valid
elements that can be added to the current state.

Wang et al. [42] used Q-learning to enhance the
search process in the bee colony algorithm for solving
a scheduling problem. In their proposed method, the

Deep Q-Learning Enhanced Variable Neighborhood Search for Influence Maximization
in Social Networks

27

state is defined based on the current status, and
actions include various search and neighborhood
operators.

Alrashidi et al. [43] offered an efficient approach
combining VNS with RL to solve the Green Vehicle
Routing Problem (GVRP). The state space includes
route configurations and vehicle capacities, while the
action space comprises route modifications. The
reward signal reflects cost reduction.

Zhang et al. [44] addressed the distributed flow-
shop scheduling problem (DFSP), aiming to
minimize makespan and energy consumption. It
introduced a Q-learning-based multi-objective
particle swarm optimization (QL-MoPSO) algorithm.
Enhanced PSO divides particles into subgroups for
faster convergence, while Q-learning guides variable
neighborhood search (VNS) for balanced exploration
and exploitation.

Pugliese et al. [45] utilized Q-learning for the
local search within VNS. The agent selects actions
based on the current state and received rewards,
aiming to maximize the cumulative reward. To boost
exploration, a parameter 𝜖 determines whether the
next action is selected randomly or based on the
maximum value. This method allows dynamic
adaptation of neighborhood structures as actions and
states in the search process, promoting effective
problem-solving strategies.

Overall, the main difference between the
proposed method in this paper and the previous
methods can be summarized as follows:

• In most of the existing methods, due to the
limitation of the action space and state space,
tabular methods like Q-learning have been
utilized. In the proposed method, to improve the
solution, better generalization in the state space
and better learning, a deep reinforcement learning
method called DQN (Deep Q-Network) is
employed.

• In most of the existing methods, the similar and
limited number of neighborhood structures have
been used. To enhance the exploration of the
solution space, six different exploration operators
(equivalent to six different types of neighborhood
structures) have been used to generate diverse and
varied solutions.

• In most of the existing methods, the state is
defined based on a single previous action or on a
fixed sequence of neighborhood structures.
However, such definitions do not facilitate finding
an adaptive sequence of neighborhood structures
that leads to better solutions. In the proposed
method, to improve the learning of the effects of
neighborhood operators at each step of the VNS
algorithm, the state is considered as a sequence of
operators performed in previous stages of the
algorithm. This enables the selection of an

appropriate sequence of these neighborhood
structures during algorithm execution.

• This method has been employed to solve the IM
problem. This problem is inherently NP-hard, and
due to the fact that the solution size is a very small
subset of the network nodes, it has high
complexity. Many types of neighborhood
structures may not cause a change in the objective
function, which adds to the complexity of the
problem.

3. Formulating the problem as a Markov Decision
Process (MDP)

RL is a subset of machine learning methods in
which an agent attempts to learn a good policy
through trial and error and interaction with the
environment. The policy refers to the mapping of the
current state to an appropriate action. In other words,
the goal of the agent is to learn to map the current
state to the appropriate action at each time step,
maximizing the discounted sum of numerical rewards
received from the environment, as illustrated in
Figure 2.

In this approach, the agent is not told what action
to take, but rather how good the selected action was.
The selected actions not only affect instant rewards
but also impact future states. When an agent takes an
action 𝑎𝑡 in state 𝑠𝑡 at time 𝑡, it receives the outcome
of its action with reward 𝑟𝑡+1 at time 𝑡 + 1 and
transitions to state 𝑠𝑡+1.

Each problem in RL is defined using the Markov
Decision Process (MDP) model and is structured as a
quintuple 𝑀 = (𝒮, 𝒜, 𝒫, 𝑅, 𝛾), where 𝒮 represents a
finite state space, where 𝑠𝑡 ∈ 𝒮 indicates the state of
an agent at time 𝑡. 𝒜 is a set of available actions for
the agent, where 𝑎𝑡 ∈ 𝒜 denotes the action agent
takes at time 𝑡. Also, 𝒫(𝑠𝑡 , 𝑎𝑡; 𝑠𝑡+1): 𝒮 × 𝒜 ×
 𝒮 → [0,1] is a Markovian transition function
indicating the probability of the agent transitions
from state 𝑠𝑡 to state 𝑠𝑡+1 after taking an action 𝑎𝑡.
𝑅: 𝒮 × 𝒜 → 𝑅 is a reward function that returns the
immediate reward 𝑅(𝑠𝑡 , 𝑎𝑡) after taking an action 𝑎𝑡

Figure. 2. Main components of reinforcement learning

International Journal of Web Research, Vol. 7, No. 2, Summer-Autumn, 2024

28

in state 𝑠𝑡. Additionally, 𝛾 ∈ [0,1] is a discount factor
indicating the rate of reward reduction over time. In a
reinforcement learning problem, the goal is to
maximize the total discounted rewards received by
the agent (Eq. (1)).

𝑟1 + 𝛾𝑟2 + 𝛾2𝑟3 + ⋯ (1)

where 𝑟𝑖 is the reward received by the agent at time 𝑖.

The first step is to model the problem of selecting
appropriate sequence of neighborhood structures in
the VNS algorithm as an MDP model. In this
modeling, the problem is defined as follows:

• State: An array with a length of 𝑛𝒮
representing the previous actions used in the
previous 𝑛𝒮 iterations. In essence, the state
represents a history of selected actions
(neighborhood structures used) in previous
iterations. In the proposed algorithm, 𝑛𝒮 =
6.

• Action: The set of actions in the problem
corresponds to the number of neighborhood
structure defined in the VNS algorithm. In
each iteration, depending on its current state,
the agent selects one of the available
neighborhood structures. The number of
defined actions in this algorithm is set to
𝑛𝒜 = 6.

• Transition Function: By selecting an action
in each iteration, an attempt is made to
produce better neighbors (solutions) for the
current solution using the corresponding
neighborhood structure. If this attempt is
successful, the current solution is changed to
the improved solution; otherwise, the current
solution remains unchanged.

• Reward: The reward for each action is
determined based on the difference between
the value of the new solution generated by
that action and the value of the current
solution. If the new solution is better, the
amount of this improvement is returned as a
reward in the objective function; otherwise, a
fixed value of -5 is returned as the reward.

• Discount Factor: The discount factor value
is 𝛾 = 0.95.

4. Proposed Method

In this section, the proposed method (DQVNS)
for solving IM using DRL-based VNS is presented.
Each solution is represented as an array of length 𝑛
(the number of graph vertices), where 𝑙 elements (the
number of influential nodes) take the value 1, and the
remaining elements take the value 0.

The DQVNS has the following six types of
neighborhood structures:

• Crossover: performs a crossover operation
between the current solution and a random
solution.

• Mutation: applies a mutation operation to the
current solution.

• PairSwap: swaps the values of two elements in
the current solution.

• Inversion: reverses the elements between two
random positions in the array.

• Insertion: randomly inserts an element into the
array and shifts the remaining elements to the
right.

• Displace: selects a random subarray of the
current solution, insert it at a random index, and
shifts the remaining array to the right.

In selecting these six types of neighborhood
structures, efforts have been made to choose
operators that produce distinct and diverse solutions
relative to each other. We will use the DQN algorithm
[46], which is a combination of the Q-learning and
deep neural networks. In the Q-learning algorithm
[47], after performing each action, receiving a reward
from the environment, and changing the state, the Q-
value (the value of action 𝑎𝑡 in state 𝑠𝑡) is updated
according to Eq. (2):

𝑄(𝑠𝑡, 𝑎𝑡) = 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡+1 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)] (2)

where 𝛼 is the learning rate. In fact, 𝑄(𝑠𝑡 , 𝑎𝑡) is
the average sum of rewards that the agent will receive
from this state onwards and determines its value. In
the DQN network, a deep neural network is used to
approximate the value function Q. The architecture of
this network for the proposed method is shown in
Figure 3.

As shown in the Figure 3, an array with a length
of 𝑛𝒮, representing the selected neighborhood
structures in the previous 𝑛𝒮 iterations, is provided as
input to the network. The network consists of three
fully connected hidden layers with a size of 24 and
ReLU activation function. The output layer has a size
of 𝑛𝒜 , indicating the total number of neighborhood
structures in the VNS algorithm, and has a Sigmoid
activation function. The output layer returns the value
of each neighborhood structures. The higher the value
of a neighborhood structure, the more likely it will be
selected for applying to the current solution. After
this stage, an 𝜖-greedy algorithm is used for action
selection. This means that with a probability of 1 −
𝜖, an action (neighborhood structure) with a higher
value will be selected, and with a probability of ϵ, one
of the other actions will be randomly selected.

After determining the action, the corresponding
neighborhood structure is applied to the current
solution, and the reward corresponding to the change
in the objective function for this action is determined.
Additionally, the current state is updated based on the
selected action. The loss function for this network is

Deep Q-Learning Enhanced Variable Neighborhood Search for Influence Maximization
in Social Networks

29

the difference between the objective value (𝑟𝑡+1 +
𝛾 max

𝑎
𝑄(𝑠𝑡+1, 𝑎)) and the estimated value by the

network (𝑄(𝑠𝑡 , 𝑎𝑡)). Based on this loss function, the
parameters of the network will be updated.

The proposed algorithm, as shown in Figure 4, is
as follows. Here 𝜖, 𝛼, and 𝛾 are parameters of the RL
algorithm as introduced before, and 𝑚𝑎𝑥_𝑖𝑡 is the
maximum number of iterations in the VNS algorithm,
set to 100. Specifically, the innovation of this
algorithm lies in line 4 (where DQN is used instead
of Q-learning to control the large state space and
better generalization), in line 6 (where the
neighborhood structure is dynamically selected based
on the current state of the algorithm), and in lines 14-
15 (where the algorithm's state and DQN’s state are
adaptively updated to capture the performance of the
algorithm in the current step). For a better
understanding of the algorithm, its flowchart is
presented in Figure 5. The novelty of the algorithm.

5. Results and Discussion

In this section, we compare the results of the
proposed method (DQVNS) on a number of real-
world networks with previous methods. The dataset

and their characteristics are shown in Table 1. In this
implementation, the Independent Cascade (IC) model
is used, where the probability of propagation in each
network is specified in column 𝑝.

The 𝜖-greedy algorithm used starts with an initial
value of 1 for 𝜖, which decreases during the algorithm
execution by a factor of 0.99 until it reaches a
minimum value of 0.1. The learning rate is set to 𝛼 =
0.05, and the discount factor is 𝛾 = 0.95. The results
of the proposed algorithm on these six datasets are
compared with well-known algorithms, which can be
categorized as follows:

• VNS: The basic VNS algorithm.
• Well-known metaheuristics which have

been applied on IM before including:
o GWO: Grey Wolf Optimization

Algorithm [51]
o GA: Genetic Algorithm [52]
o PSO: Particle Swarm Optimization

Algorithm [53]
o ABC: Artificial Bee Colony Algorithm

[54]
o FF: Firefly Optimization Algorithm [55]
o CS: Cuckoo Search Algorithm [56]

Figure. 3. DQVNS Neural Network Architecture

Figure. 4. DQVNS Pseudo-code

International Journal of Web Research, Vol. 7, No. 2, Summer-Autumn, 2024

30

Figure. 5. DQVNS Flowchart

Table 1. Datasets Characteristics

dataset p #nodes #edges reference

1 HAM 0.03 2426 16631 [48]

2
EGO-

Facebook
0.01 4039 88234 [48]

3 Wiki-votes 0.01 7115 103689 [49]

4 PGP 0.06 10680 24316 [50]

5 Hepph 0.1 12008 118521 [50]

6 NetHept 0.1 15223 31376 [50]

• Centrality measures including:
o Degree: Degree centrality is a

fundamental concept in network
analysis. It measures the importance of a
node within a network by counting the
number of connections the node has to
other nodes.

o Eigenvector: This is another network
analysis measure used to assess the
influence or importance of a node within
a network. Unlike degree centrality,
which counts the number of connections,
eigenvector centrality considers the
quality of those connections. By
considering not just the number of
connections but also their influence,
eigenvector centrality provides a more
nuanced view of a node's importance
within a network.

• IM Methods: IM-specific algorithms which
have been applied on this problem including:
o GWIM [57]
o TOPSIS [58]

o ID [59]
o TI-SC [48]
o PMC [50]

5.1. Influence Comparison

The results of comparing the proposed method
with the mentioned algorithms are shown in Table 2.
As evident in this table, The DQVNS algorithm
demonstrated superior performance by achieving the
highest influence scores in all six datasets.

Traditional metaheuristics often struggle to
maintain an optimal balance between exploration and
exploitation. DQVNS dynamically adjusts this
balance through RL. This ensures that the algorithm
effectively explores the search space while efficiently
exploiting known-good solutions. Traditional
metaheuristics rely on pre-defined heuristics and lack
adaptive learning capabilities. These algorithms can
become computationally expensive due to their
reliance on population-based search strategies.

Unlike population-based algorithms, DQVNS
maintains a low computational overhead by focusing
on a single solution and enhancing it through
intelligent learning mechanisms. This efficiency is
crucial for large-scale datasets, where computational
resources are a limiting factor. The proposed method
integrates Deep Q-Learning, enabling it to adaptively
refine its search strategy based on real-time feedback,
thus improving performance over time. The
consistent performance of DQVNS across diverse
datasets highlights its robustness and generalizability.
Whether dealing with small or large networks,
DQVNS effectively maximizes influence, proving its
applicability across different scenarios.

For the HAM dataset, DQVNS achieved an influence

of 426, which is the best result among all algorithms.

The second-best result was provided by GWO. The

DQVNS algorithm outperforms all other algorithms

by approximately at least 20%, which indicates its

Deep Q-Learning Enhanced Variable Neighborhood Search for Influence Maximization
in Social Networks

31

superior efficiency. In the EGO-Facebook dataset,

DQVNS achieved the highest influence score of 481,

outperforming other algorithms, including GWO

with a score of 464 and PSO with a score of 451.

For the Wiki-Votes dataset, DQVNS
demonstrated a significant improvement in influence,
achieving a score of 272. This score is notably higher
than those of GA, which scored 161, and GWO,
which scored 240. DQVNS also showed a 50%
improvement over other population-based
algorithms. The Eigenvector algorithm scored the
lowest with a score of 50. The data in Table 2 indicate
that all algorithms demonstrated generally poor
performance when applied to the Wiki-Votes dataset,
with a broad decrease in effectiveness. However,
DQVNS exhibited relatively consistent performance
across datasets, showing less sensitivity to the Wiki-
Votes data compared to the other algorithms
evaluated. For the PGP and NetHept datasets,
DQVNS outperforms population-based algorithms
by 25% and achieves a 50% improvement over PSO.
In Hepph dataset, DQVNS achieved the highest
influence score of 4789, while FF recorded the lowest
score of 3991. In this case, our algorithm provided the
best result.

Centrality measures for influence maximization,
such as Degree and Eigenvector centrality, were also
evaluated. These methods leverage graph-theoretic
metrics to identify influential nodes in a
network. These methods consistently scored lower
than DQVNS because they are inherently static and
do not adapt to the specific characteristics of the
network during the influence maximization process.
These rely on global graph properties that might not
capture the nuanced interactions and dynamics of the
network. These methods do not optimize, and nodes
are ranked based on predefined metrics. Unlike
DQVNS, these measures overlook more complex
influence patterns that can be captured through
optimization techniques. While these methods are
simple and scalable, their simplicity limits their
effectiveness in complex networks. DQVNS, on the
other hand, employs sophisticated learning and

optimization techniques that can better handle the
complexities of real-world networks.

The comparative analysis demonstrates the
superiority of the DQVNS algorithm over traditional
metaheuristics and statistical methods in influence
maximization tasks. By integrating DQN with VNS,
DQVNS effectively leverages adaptive learning,
maintains computational efficiency, and achieves a
balanced exploration-exploitation trade-off. By
utilizing these capabilities, DQVNS consistently
produces better results when applied to a variety of
datasets, highlighting its effectiveness and robustness
when applied to influence maximization in complex
networks.

5.2. Running Time Comparison

To compare the running time of the algorithm
with other methods, the population size in all methods
is set to 100. Additionally, the running time is
calculated for 100 iterations. As evident from the
results presented in Table 3Error! Reference source
not found., the proposed algorithm demonstrates
significantly lower execution time compared to other
algorithms, except VSN. This notable reduction in
execution time can be attributed to the fact that,
unlike other algorithms, the proposed method is not
population-based. Population-based algorithms
typically require considerable computational
resources to manage and update multiple solutions
simultaneously. In contrast, our algorithm focuses on
a single solution, thus streamlining the computational
process and reducing overhead.

The purpose of this comparison is to illustrate
those intelligent mechanisms, when integrated into
single-solution metaheuristics like VNS, can
effectively enhance performance while preserving
low running time. By leveraging these intelligent
mechanisms, it is possible to achieve a balance where
the algorithm operates efficiently and yields
substantial results. This is particularly important in
scenarios where computational efficiency is critical,
such as real-time applications or large-scale
optimization problems. Given the significant

Table 2. Influence Results

Algorithm

/dataset
VNS Degree Eigenvector IM Methods CS FF ABC PSO GA GWO DQVNS

HAM 414 286 281 359 (ref. [58]) 406 353 353 333 353 416 426

EGO-
Facebook

460 370 251 383 (ref. [48]) 455 449 438 451 324 464 481

Wiki-votes 252 246 50 250 (ref. [59]) 208 186 174 122 161 240 272

PGP 605 429 331 530(ref. [57]) 586 524 492 418 465 624 634

Hepph 4662 3986 3954 4410 (ref. [50]) 4113 3991 4103 4118 3995 4499 4789

NetHept 1080 800 736 980 (ref. [50]) 1020 885 939 702 840 1080 1119

International Journal of Web Research, Vol. 7, No. 2, Summer-Autumn, 2024

32

reduction in running time without compromising on
solution quality, it is reasonable to conclude that
single- solution approaches provide a viable and
efficient alternative to traditional population-based
methods when augmented with adaptive and dynamic
enhancements. This makes them highly suitable for
practical applications in influence maximization and
other complex optimization problems.

5.3. Scalability Comparision

Also, to compare the scalability of this algorithm
with other algorithms, the growth of running time
based on the dataset size (number of nodes) is shown
in Figure 6. However, since besides the number of
nodes, other network characteristics (such as the
number of edges, network topology, etc.) also affect
the running time of algorithms, the running time may
not necessarily increase proportionally with the
increase in the number of nodes. However, as shown,
the DQVNS algorithm has better scalability
compared to other algorithms (comparable to VSN),
meaning that with an increase in the size of the input
network, its running time increases with less slope.

5.4. VNS and DQVNS comparison

IM is crucial for optimizing strategies in
networked systems such as social networks. The
results are compared against various traditional
metaheuristic algorithms, demonstrating the
superiority of VNS and the further optimization

achieved by DQVNS. VNS and DQVNS
outperformed traditional metaheuristics across most
datasets. As a result of leveraging the strengths of
VNS and enhancing them through RL, DQVNS
achieved the highest influence scores. The VNS
employs a multi-neighborhood search strategy in
order to explore diverse regions of the search space
effectively. This capability helps escape local optima
and find better solutions, making it superior to single-
neighborhood or less adaptive metaheuristics. By
integrating Deep Q-Learning, DQVNS further
enhances VNS performance. RL enables the
algorithm to learn optimal strategies dynamically,
improving the search process and resulting in better
influence scores. For example, DQVNS improved the
score from 460 (VNS) to 481 on the EGO-Facebook
dataset.

DQVNS benefits from intelligent neighborhood
selection guided by RL. This strategic selection helps
focus the search on promising areas, enhancing the
algorithm's efficiency and effectiveness. The
comparative analysis highlights the effectiveness of
VNS in influence maximization due to its multi-
neighborhood search strategy, making it superior to
other traditional metaheuristic algorithms. Further
optimization through Deep Q-Learning significantly
enhances VNS performance, leveraging
reinforcement learning to select optimal
neighborhoods and refine search strategies. This

Table 3. Running Time Results

Algorithm

/dataset
VNS CS FF ABC PSO GA GWO DQVNS

HAM 179 2004 7417 1512 1551 1545 910 323

EGO-Facebook 371 3218 13221 2619 2785 2411 2200 605

Wiki-votes 667 5412 23440 5296 5305 4690 4419 869

PGP 1085 8012 37500 7053 7032 6200 6032 1463

Hepph 1313 10561 50500 10204 10134 9353 9003 1913

NetHept 1429 11087 53500 10976 10929 8890 8835 2112

Figure. 6. Scalability Results

Deep Q-Learning Enhanced Variable Neighborhood Search for Influence Maximization
in Social Networks

33

combination not only outperforms traditional and
population-based metaheuristics but also maintains
computational efficiency, demonstrating the
robustness and superiority of DQVNS for influence
maximization tasks in complex networks.

In this section, the running times of the VNS
algorithm are compared with its enhanced version,
DQVNS, against traditional population-based
metaheuristics. The results demonstrate how DQVNS
retains the low running time of single-solution
methods while offering significant performance
improvements. Population-based algorithms are
typically chosen for influence maximization tasks
because they explore a broader solution space by
maintaining multiple solutions simultaneously. This
can be advantageous for finding influential nodes and
maximizing the spread of influence but at the cost of
higher running times. Our proposed
method intelligently selects the most promising
neighborhoods to explore. This adaptive
enhancement improves the quality of the solutions
while maintaining low computational costs. Despite
the increase in running time compared to VNS,
DQVNS's running time is still substantially lower
than that of population-based methods. The DQVNS
algorithm balances the efficiency of single-solution
approaches and the comprehensive search
capabilities of population-based methods. This makes
it a viable influence maximization alternative,
offering high performance and low computational
overhead.

6. Conclusion and Future Work

The paper introduces a deep reinforcement
learning-based method to enhance neighborhood
structure selection in the VNS metaheuristic
algorithm, which calculates the probability of
selecting each neighborhood structure for the current
iteration based on the performance of different
neighborhood structures in previous iterations of the
algorithm.

To evaluate the proposed algorithm, it was
applied to the complex combinatorial problem of IM
in social networks. The results obtained from this
algorithm on various datasets of different sizes and
the comparison of these results with various
commonly used methods demonstrate the satisfactory
performance of the proposed method in terms of
accuracy and runtime.

The DQVNS algorithm demonstrates significant
improvements in solving the IM problem; however,
there are limitations to consider. Firstly, the algorithm
was applied only to specific datasets, which may not
fully capture the complexity of real-world social
networks. As a result, generalizing these findings to
networks with different structures remains uncertain.

Furthermore, integrating DRL with VNS
introduces computational complexity. Although the
algorithm’s running time was manageable on the
tested datasets and was even less than other
population-based algorithms, the time complexity
may increase when applied to datasets with different
structures.

Another important consideration is that, although
the proposed method was applied to the VNS
algorithm in this paper, the underlying idea of
intelligent neighborhood structure selection has
broader applicability. This concept could be extended
to other metaheuristic and state-space search
methods, potentially enhancing their performance as
well.

For future research, several suggestions are
proposed. The first suggestion is to use RL to
improve the performance of other metaheuristic
algorithms. The second suggestion is to utilize RL to
enhance other aspects besides neighborhood structure
selection in metaheuristic algorithms. Additionally,
the last suggestion is to employ multi-agent RL to
enhance population-based search algorithms.

Declarations

Funding
This research did not receive any grant from
funding agencies in the public, commercial, or
non-profit sectors.

Authors' contributions
A. M. Ghalghachi: Study design, interpretation
of the results, statistical analysis, drafting the
manuscript;

M. R.: Study design, Conceptualization,
interpretation of the results, statistical analysis,
revision of the manuscript.

Conflict of interest
The authors declare that no conflicts of interest
exist.

References

[1] B. Razaghi, M. Roayaei, and N. M. Charkari, “On the
Group-Fairness-Aware Influence Maximization in Social
Networks,” IEEE Trans Comput Soc Syst, vol. 10, no. 6, pp.
3406–3414, Dec. 2023,
https://doi.org/10.1109/TCSS.2022.3198096.

[2] H. Li, S. S. Bhowmick, A. Sun, and J. Cui, “Conformity-
aware influence maximization in online social networks,”
The VLDB Journal, vol. 24, no. 1, pp. 117–141, Feb. 2015,
https://doi.org/10.1007/s00778-014-0366-x.

[3] H. Huang, H. Shen, Z. Meng, H. Chang, and H. He,
“Community-based influence maximization for viral
marketing,” Applied Intelligence, vol. 49, no. 6, pp. 2137–
2150, Jun. 2019, https://doi.org/10.1007/s10489-018-1387-
8.

[4] F. Coró, G. D’angelo, and Y. Velaj, “Link Recommendation
for Social Influence Maximization,” ACM Trans Knowl
Discov Data, vol. 15, no. 6, pp. 1–23, Jun. 2021,
https://doi.org/10.1145/3449023.

https://doi.org/10.1109/TCSS.2022.3198096
https://doi.org/10.1007/s00778-014-0366-x
https://doi.org/10.1007/s10489-018-1387-8
https://doi.org/10.1007/s10489-018-1387-8
https://doi.org/10.1145/3449023

International Journal of Web Research, Vol. 7, No. 2, Summer-Autumn, 2024

34

[5] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the
spread of influence through a social network,” in
Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining -KDD
’03, 2003, p. 137-146.
https://doi.org/10.1145/956750.956769.

[6] P. Hansen, N. Mladenović, J. Brimberg, and J. A. M. Pérez,
“Variable neighborhood search,” in International Series in
Operations Research and Management Science, vol. 272,
Springer New York LLC, 2019, pp. 57–97.
https://doi.org/10.1007/978-3-319-91086-4_3.

[7] N. Mladenović, A. Alkandari, J. Pei, R. Todosijević, and P.
M. Pardalos, “Less is more approach: basic variable
neighborhood search for the obnoxious p-median problem,”
International Transactions in Operational Research, vol.
27, no. 1, pp. 480–493, Jan. 2020,
https://doi.org/10.1111/itor.12646.

[8] D. Kempe, J. Kleinberg, and É. Tardos, “Influential Nodes
in a Diffusion Model for Social Networks,” In Automata,
Languages and Programming: 32nd International
Colloquium, ICALP 2005, Berlin Heidelberg, Springer,
2005, pp. 1127–1138.
https://doi.org/10.1007/11523468_91.

[9] H. Nguyen and R. Zheng, “On Budgeted Influence
Maximization in Social Networks,” IEEE Journal on
Selected Areas in Communications, vol. 31, no. 6, pp. 1084–
1094, Jun. 2013,
https://doi.org/10.1109/JSAC.2013.130610.

[10] C. Wilson, A. Sala, K. P. N. Puttaswamy, and B. Y. Zhao,
“Beyond Social Graphs,” ACM Transactions on the Web,
vol. 6, no. 4, pp. 1–31, Nov. 2012,
https://doi.org/10.1145/2382616.2382620.

[11] B. M. Tabak, M. Takami, J. M. C. Rocha, D. O. Cajueiro,
and S. R. S. Souza, “Directed clustering coefficient as a
measure of systemic risk in complex banking networks,”
Physica A: Statistical Mechanics and its Applications, vol.
394, pp. 211–216, Jan. 2014,
https://doi.org/10.1016/j.physa.2013.09.010.

[12] S. Brin and L. Page, “Reprint of: The anatomy of a large-
scale hypertextual web search engine,” Computer Networks,
vol. 56, no. 18, pp. 3825–3833, Dec. 2012,
https://doi.org/10.1016/j.comnet.2012.10.007.

[13] W. Chen, Y. Wang, and S. Yang, “Efficient influence
maximization in social networks,” in Proceedings of the
15th ACM SIGKDD international conference on Knowledge
discovery and data mining, New York, NY, USA: ACM,
Jun. 2009, pp. 199–208.
https://doi.org/10.1145/1557019.1557047.

[14] A. Goyal, W. Lu, and L. V. S. Lakshmanan, “SIMPATH:
An Efficient Algorithm for Influence Maximization under
the Linear Threshold Model,” in 2011 IEEE 11th
International Conference on Data Mining, Vancouver, BC,
Canada, IEEE, Dec. 2011, pp. 211–220.
https://doi.org/10.1109/ICDM.2011.132.

[15] R. Narayanam and Y. Narahari, “A Shapley Value-Based
Approach to Discover Influential Nodes in Social
Networks,” IEEE Transactions on Automation Science and
Engineering, vol. 8, no. 1, pp. 130–147, Jan. 2011,
https://doi.org/10.1109/TASE.2010.2052042.

[16] D. Bucur and G. Iacca, “Influence Maximization in Social
Networks with Genetic Algorithms,” 2016, pp. 379–392.
https://doi.org/10.1007/978-3-319-31204-0_25.

[17] C.-W. Tsai, Y.-C. Yang, and M.-C. Chiang, “A Genetic
NewGreedy Algorithm for Influence Maximization in
Social Network,” in 2015 IEEE International Conference on
Systems, Man, and Cybernetics, Hong Kong, China, IEEE,
Oct. 2015, pp. 2549–2554.
https://doi.org/10.1109/SMC.2015.446.

[18] D. Li, C. Wang, S. Zhang, G. Zhou, D. Chu, and C. Wu,
“Positive influence maximization in signed social networks
based on simulated annealing,” Neurocomputing, vol. 260,
pp. 69–78, Oct. 2017,
https://doi.org/10.1016/j.neucom.2017.03.003.

[19] M. Gong, J. Yan, B. Shen, L. Ma, and Q. Cai, “Influence
maximization in social networks based on discrete particle
swarm optimization,” Inf Sci (N Y), vol. 367–368, pp. 600–
614, Nov. 2016, https://doi.org/10.1016/j.ins.2016.07.012.

[20] S. S. Singh, K. Singh, A. Kumar, and B. Biswas, “ACO-IM:
maximizing influence in social networks using ant colony
optimization,” Soft comput, vol. 24, no. 13, pp. 10181–
10203, Jul. 2020, https://doi.org/10.1007/s00500-019-
04533-y.

[21] R. Cantini, F. Marozzo, S. Mazza, D. Talia, and P. Trunfio,
“A Weighted Artificial Bee Colony algorithm for influence
maximization,” Online Soc Netw Media, vol. 26, p. 100167,
Nov. 2021, https://doi.org/10.1016/j.osnem.2021.100167.

[22] S. Rahdar, R. Ghanbari, and K. Ghorbani-Moghadam,
“Tabu search and variable neighborhood search algorithms
for solving interval bus terminal location problem,” Appl
Soft Comput, vol. 116, p. 108367, Feb. 2022,
https://doi.org/10.1016/j.asoc.2021.108367.

[23] M. Djukanović, A. Kartelj, D. Matić, M. Grbić, C. Blum,
and G. R. Raidl, “Graph search and variable neighborhood
search for finding constrained longest common
subsequences in artificial and real gene sequences,” Appl
Soft Comput, vol. 122, p. 108844, Jun. 2022,
https://doi.org/10.1016/j.asoc.2022.108844.

[24] P. Kalatzantonakis, A. Sifaleras, and N. Samaras, “A
reinforcement learning-Variable neighborhood search
method for the capacitated Vehicle Routing Problem,”
Expert Syst Appl, vol. 213, p. 118812, Mar. 2023,
https://doi.org/10.1016/j.eswa.2022.118812.

[25] X. Zhang and L. Chen, “A general variable neighborhood
search algorithm for a parallel-machine scheduling problem
considering machine health conditions and preventive
maintenance,” Comput Oper Res, vol. 143, p. 105738, Jul.
2022, https://doi.org/10.1016/j.cor.2022.105738.

[26] H. Amrani, A. Martel, N. Zufferey, and P. Makeeva, “A
variable neighborhood search heuristic for the design of
multicommodity production–distribution networks with
alternative facility configurations,” OR Spectrum, vol. 33,
no. 4, pp. 989–1007, Oct. 2011,
https://doi.org/10.1007/s00291-009-0182-7.

[27] M. Bierlaire, M. Thémans, and N. Zufferey, “A Heuristic for
Nonlinear Global Optimization,” INFORMS J Comput, vol.
22, no. 1, pp. 59–70, Feb. 2010,
https://doi.org/10.1287/ijoc.1090.0343.

[28] B. F. Rosa, M. J. F. Souza, S. R. de Souza, M. F. de França
Filho, Z. Ales, and P. Y. P. Michelon, “Algorithms for job
scheduling problems with distinct time windows and general
earliness/tardiness penalties,” Comput Oper Res, vol. 81, pp.
203–215, May 2017,
https://doi.org/10.1016/j.cor.2016.12.024.

[29] C.-J. Liao and C.-C. Cheng, “A variable neighborhood
search for minimizing single machine weighted earliness
and tardiness with common due date,” Comput Ind Eng, vol.
52, no. 4, pp. 404–413, May 2007,
https://doi.org/10.1016/j.cie.2007.01.004.

[30] A. Stenger, D. Vigo, S. Enz, and M. Schwind, “An Adaptive
Variable Neighborhood Search Algorithm for a Vehicle
Routing Problem Arising in Small Package Shipping,”
Transportation Science, vol. 47, no. 1, pp. 64–80, Feb. 2013,
https://doi.org/10.1287/trsc.1110.0396.

[31] J. P. Queiroz dos Santos, J. D. de Melo, A. D. Duarte Neto,
and D. Aloise, “Reactive Search strategies using
Reinforcement Learning, local search algorithms and
Variable Neighborhood Search,” Expert Syst Appl, vol. 41,

https://doi.org/10.1145/956750.956769
https://doi.org/10.1007/978-3-319-91086-4_3
https://doi.org/10.1111/itor.12646
https://doi.org/10.1007/11523468_91
https://doi.org/10.1109/JSAC.2013.130610
https://doi.org/10.1145/2382616.2382620
https://doi.org/10.1016/j.physa.2013.09.010
https://doi.org/10.1016/j.comnet.2012.10.007
https://doi.org/10.1145/1557019.1557047
https://doi.org/10.1109/ICDM.2011.132
https://doi.org/10.1109/TASE.2010.2052042
https://doi.org/10.1007/978-3-319-31204-0_25
https://doi.org/10.1109/SMC.2015.446
https://doi.org/10.1016/j.neucom.2017.03.003
https://doi.org/10.1016/j.ins.2016.07.012
https://doi.org/10.1007/s00500-019-04533-y
https://doi.org/10.1007/s00500-019-04533-y
https://doi.org/10.1016/j.osnem.2021.100167
https://doi.org/10.1016/j.asoc.2021.108367
https://doi.org/10.1016/j.asoc.2022.108844
https://doi.org/10.1016/j.eswa.2022.118812
https://doi.org/10.1016/j.cor.2022.105738
https://doi.org/10.1007/s00291-009-0182-7
https://doi.org/10.1287/ijoc.1090.0343
https://doi.org/10.1016/j.cor.2016.12.024
https://doi.org/10.1016/j.cie.2007.01.004
https://doi.org/10.1287/trsc.1110.0396

Deep Q-Learning Enhanced Variable Neighborhood Search for Influence Maximization
in Social Networks

35

no. 10, pp. 4939–4949, Aug. 2014,
https://doi.org/10.1016/j.eswa.2014.01.040.

[32] K. Li and H. Tian, “A two-level self-adaptive variable
neighborhood search algorithm for the prize-collecting
vehicle routing problem,” Appl Soft Comput, vol. 43, pp.
469–479, Jun. 2016,
https://doi.org/10.1016/j.asoc.2016.02.040.

[33] R. Todosijević, M. Mladenović, S. Hanafi, N. Mladenović,
and I. Crévits, “Adaptive general variable neighborhood
search heuristics for solving the unit commitment problem,”
International Journal of Electrical Power & Energy
Systems, vol. 78, pp. 873–883, Jun. 2016,
https://doi.org/10.1016/j.ijepes.2015.12.031.

[34] J. Shahrabi, M. A. Adibi, and M. Mahootchi, “A
reinforcement learning approach to parameter estimation in
dynamic job shop scheduling,” Comput Ind Eng, vol. 110,
pp. 75–82, Aug. 2017,
https://doi.org/10.1016/j.cie.2017.05.026.

[35] S. Thevenin and N. Zufferey, “Learning Variable
Neighborhood Search for a scheduling problem with time
windows and rejections,” Discrete Appl Math (1979), vol.
261, pp. 344–353, May 2019,
https://doi.org/10.1016/j.dam.2018.03.019.

[36] A. Shahmardan and M. S. Sajadieh, “Truck scheduling in a
multi-door cross-docking center with partial unloading –
Reinforcement learning-based simulated annealing
approaches,” Comput Ind Eng, vol. 139, p. 106134, Jan.
2020, https://doi.org/10.1016/j.cie.2019.106134.

[37] B. Chen, R. Qu, R. Bai, and W. Laesanklang, “A variable
neighborhood search algorithm with reinforcement learning
for a real-life periodic vehicle routing problem with time
windows and open routes,” RAIRO - Operations Research,
vol. 54, no. 5, pp. 1467–1494, Sep. 2020,
https://doi.org/10.1051/ro/2019080.

[38] F. Zhao, L. Zhang, J. Cao, and J. Tang, “A cooperative water
wave optimization algorithm with reinforcement learning
for the distributed assembly no-idle flowshop scheduling
problem,” Comput Ind Eng, vol. 153, p. 107082, Mar. 2021,
https://doi.org/10.1016/j.cie.2020.107082.

[39] Z. Zhang, Z. Huang, and L. Zou, “Neighborhood Search
Acceleration Based on Deep Reinforcement Learning for
SSCFLP,” In Artificial Intelligence: First CAAI
International Conference, CICAI 2021, Hangzhou, China,
Springer International Publishing, June 5–6, 2021, pp. 202–
212. https://doi.org/10.1007/978-3-030-93046-2_18.

[40] M. Alicastro, D. Ferone, P. Festa, S. Fugaro, and T. Pastore,
“A reinforcement learning iterated local search for
makespan minimization in additive manufacturing machine
scheduling problems,” Comput Oper Res, vol. 131, p.
105272, Jul. 2021,
https://doi.org/10.1016/j.cor.2021.105272.

[41] X. Gu, S. Zhao, and Y. Wang, “Reinforcement learning
enhanced multi-neighborhood tabu search for the max-mean
dispersion problem,” Discrete Optimization, vol. 44, p.
100625, May 2022,
https://doi.org/10.1016/j.disopt.2021.100625.

[42] J. Wang, D. Lei, and J. Cai, “An adaptive artificial bee
colony with reinforcement learning for distributed three-
stage assembly scheduling with maintenance,” Appl Soft
Comput, vol. 117, p. 108371, Mar. 2022,
https://doi.org/10.1016/j.asoc.2021.108371.

[43] M. Alrashidi and M. A. Ghamdi, “Variable Neighborhood
Search Based on Reinforcement Learning for Green Vehicle
Routing Problem,” 2024 International Conference on
Artificial Intelligence in Information and Communication
(ICAIIC), Osaka, Japan, 2024, pp. 530-537,
https://doi.org/10.1109/ICAIIC60209.2024.10463347

[44] W. Zhang, H. Geng, C. Li, M. Gen, G. Zhang, and M. Deng,
“Q-learning-based multi-objective particle swarm

optimization with local search within factories for energy-
efficient distributed flow-shop scheduling problem,”
Journal of Intelligent Manufacturing, Oct. 2023.
https://doi.org/10.1007/s10845-023-02227-9.

[45] L. D. P. Pugliese, D. Ferone, P. Festa, F. Guerriero, and G.
Macrina, "Combining variable neighborhood search and
machine learning to solve the vehicle routing problem with
crowd-shipping," Optim. Lett., vol. 17, no. 9, pp. 1981-2003,
Dec. 2023, https://doi.org/10.1007/s11590-021-01833-x.

[46] V. Mnih et al., “Human-level control through deep
reinforcement learning,” Nature, vol. 518, no. 7540, pp.
529–533, Feb. 2015, https://doi.org/10.1038/nature14236.

[47] J. Clifton and E. Laber, “Q-Learning: Theory and
Applications,” Annu Rev Stat Appl, vol. 7, no. 1, pp. 279–
301, Mar. 2020, https://doi.org/10.1146/annurev-statistics-
031219-041220.

[48] H. A. Beni and A. Bouyer, “TI-SC: top-k influential nodes
selection based on community detection and scoring criteria
in social networks,” J Ambient Intell Humaniz Comput, vol.
11, no. 11, pp. 4889–4908, Nov. 2020,
https://doi.org/10.1007/s12652-020-01760-2.

[49] D. Bucur and G. Iacca, “Influence Maximization in Social
Networks with Genetic Algorithms,” In Applications of
Evolutionary Computation: 19th European Conference,
EvoApplications 2016, Porto, Portugal, Springer
International Publishing, 2016, pp. 379–392.
https://doi.org/10.1007/978-3-319-31204-0_25.

[50] A. Arora, S. Galhotra, and S. Ranu, “Debunking the Myths
of Influence Maximization,” in Proceedings of the 2017
ACM International Conference on Management of Data,
New York, NY, USA: ACM, May 2017, pp. 651–666.
https://doi.org/10.1145/3035918.3035924.

[51] M. Roayaei, “On the binarization of Grey Wolf optimizer: a
novel binary optimizer algorithm,” Soft comput, vol. 25, no.
23, pp. 14715–14728, Dec. 2021,
https://doi.org/10.1007/s00500-021-06282-3.

[52] Md. M. Kabir, Md. Shahjahan, and K. Murase, “A new local
search based hybrid genetic algorithm for feature selection,”
Neurocomputing, vol. 74, no. 17, pp. 2914–2928, Oct. 2011,
https://doi.org/10.1016/j.neucom.2011.03.034.

[53] R. Bello, Y. Gomez, A. Nowe, and M. M. Garcia, “Two-
Step Particle Swarm Optimization to Solve the Feature
Selection Problem,” in Seventh International Conference on
Intelligent Systems Design and Applications (ISDA 2007),
IEEE, Oct. 2007, pp. 691–696.
https://doi.org/10.1109/ISDA.2007.101.

[54] C. J. Santana, M. Macedo, H. Siqueira, A. Gokhale, and C.
J. A. Bastos-Filho, “A novel binary artificial bee colony
algorithm,” Future Generation Computer Systems, vol. 98,
pp. 180–196, Sep. 2019,
https://doi.org/10.1016/j.future.2019.03.032.

[55] K. K. Bhattacharjee and S. P. Sarmah, “A binary firefly
algorithm for knapsack problems,” in 2015 IEEE
International Conference on Industrial Engineering and
Engineering Management (IEEM), IEEE, Dec. 2015, pp.
73–77. https://doi.org/10.1109/IEEM.2015.7385611.

[56] Y. Kaya, “Feature selection using binary cuckoo search
algorithm,” in 2018 26th Signal Processing and
Communications Applications Conference (SIU), Izmir,
Turkey, IEEE, May 2018, pp. 1–4.
https://doi.org/10.1109/SIU.2018.8404843.

[57] A. Zareie, A. Sheikhahmadi, and M. Jalili, “Identification of
influential users in social network using gray wolf
optimization algorithm,” Expert Syst Appl, vol. 142, p.
112971, Mar. 2020,
https://doi.org/10.1016/j.eswa.2019.112971.

[58] A. Zareie, A. Sheikhahmadi, and K. Khamforoosh,
“Influence maximization in social networks based on

https://doi.org/10.1016/j.eswa.2014.01.040
https://doi.org/10.1016/j.asoc.2016.02.040
https://doi.org/10.1016/j.ijepes.2015.12.031
https://doi.org/10.1016/j.cie.2017.05.026
https://doi.org/10.1016/j.dam.2018.03.019
https://doi.org/10.1016/j.cie.2019.106134
https://doi.org/10.1051/ro/2019080
https://doi.org/10.1016/j.cie.2020.107082
https://doi.org/10.1007/978-3-030-93046-2_18
https://doi.org/10.1016/j.cor.2021.105272
https://doi.org/10.1016/j.disopt.2021.100625
https://doi.org/10.1016/j.asoc.2021.108371
https://doi.org/10.1109/ICAIIC60209.2024.10463347
https://doi.org/10.1007/s10845-023-02227-9
https://doi.org/10.1007/s11590-021-01833-x
https://doi.org/10.1038/nature14236
https://doi.org/10.1146/annurev-statistics-031219-041220
https://doi.org/10.1146/annurev-statistics-031219-041220
https://doi.org/10.1007/s12652-020-01760-2
https://doi.org/10.1007/978-3-319-31204-0_25
https://doi.org/10.1145/3035918.3035924
https://doi.org/10.1007/s00500-021-06282-3
https://doi.org/10.1016/j.neucom.2011.03.034
https://doi.org/10.1109/ISDA.2007.101
https://doi.org/10.1016/j.future.2019.03.032
https://doi.org/10.1109/IEEM.2015.7385611
https://doi.org/10.1109/SIU.2018.8404843
https://doi.org/10.1016/j.eswa.2019.112971

International Journal of Web Research, Vol. 7, No. 2, Summer-Autumn, 2024

36

TOPSIS,” Expert Syst Appl, vol. 108, pp. 96–107, Oct. 2018,
https://doi.org/10.1016/j.eswa.2018.05.001.

[59] A.-S. T. Olanrewaju, R. Ahmad, and M. Mahmudin,
“Influence Maximization Towards Target Users on Social
Networks for Information Diffusion,” In Recent Trends in
Information and Communication Technology: Proceedings
of the 2nd International Conference of Reliable Information
and Communication Technology (IRICT 2017), Springer
International Publishing, 2018, pp. 842–850.
https://doi.org/10.1007/978-3-319-59427-9_87.

Mehdy Roayaei received his B.S.,

M.S., and Ph.D. in Computer

Engineering from Amirkabir

University of Technology (AUT) in

2008, 2010, 2016. He is currently an

Assistant Professor of Computer

Engineering at Tarbiat Modares

University. He is interested in using

reinforcement learning approaches for handling

complex problems in real-world environments.

Afifeh Maleki Ghalghachi is a

Master's student at Tarbiat Modares

University. Her research focuses on

using reinforcement learning to

enhance metaheuristic algorithms.

https://doi.org/10.1016/j.eswa.2018.05.001
https://doi.org/10.1007/978-3-319-59427-9_87

