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A B S T R A C T

Cloud computing has emerged as a pivotal technology for managing and processing data, with a primary 

objective to offer efficient resource access while minimizing expenses. The allocation of resources is a critical 

aspect that can significantly reduce costs. This process necessitates the continuous assessment of the current 

status of each resource to design algorithms that optimize allocation and enhance overall system performance. 

Numerous algorithms have been developed to address the challenge of resource allocation, yet many fail to 

satisfy requirements of time efficiency and load balancing in cloud computing environments. This paper 

introduces a novel approach that classifies tasks according to their resource demands, employs a modified 

particle swarm optimization (PSO) algorithm, and incorporates load balancing strategies. The proposed method 

initially clusters tasks based on their resource requirements, subsequently utilizes the PSO algorithm to 

determine the best task-to-resource assignments, and finally implements a load balancing algorithm to reduce 

costs through balanced load distribution. The validity of the proposed method is tested and simulated using the 

Cloudsim tool. The simulation results indicate that the proposed method achieves lower average response time, 

waiting times, and energy consumption than existing baseline methods.  

Keywords— cloud computing, resource allocation, modified particle swarm optimization, response time, energy 

consumption. 

1. Introduction

The swift advancement of distributed computing
technology has facilitated inexpensive and robust 
access to computational resources through the 
Internet, surpassing the capabilities of previous eras 
[1]. This advancement has culminated in the model 
known as cloud computing, wherein users can lease 
and subsequently release resources such as 
processors and storage devices as a service through 
simple Internet requests [1, 2]. Consequently, these 
systems enable users to utilize resources over a 
network.  Cloud computing is a burgeoning 
technology that has garnered the interest of 
researchers across diverse fields due to its benefits [3, 
4]. Within the cloud framework, proficiency in 
optimally managing resources directly correlates with 
effectiveness in cost reduction and productivity 
enhancement [4]. Cloud computing platforms allow 
users to access desired resources over the Internet [5]. 
This technology has been particularly beneficial for 
numerous companies, as it allows them to procure 
necessary resources at a low cost precisely when 
needed [5, 6]. The advent of cloud computing has 
spurred rapid growth in various research domains, 

including virtualization, distributed systems, 
clustering, and grid computing [7, 8]. Virtualization 
technology within cloud data centers has enabled the 
scheduling of user requests on a reduced number of 
physical machines, thereby enhancing resource 
efficiency in these data centers [9-11].  Upon 
receiving requests from cloud users, service providers 
employ scheduling algorithms to allocate these 
incoming requests [10]. Nonetheless, a novel 
challenge in this milieu pertains to the optimal 
allocation of resources to requests and tasks [12, 13]. 
Indeed, task scheduling within a cloud environment 
is a critical and pivotal concern, as end users expect 
to access resources anytime and anywhere. Given the 
diversity of resources offered by cloud data centers 
and the real-time, demand-driven nature of the cloud 
computing model, the issue of resource allocation is 
paramount. The variability and frequency of requests 
may lead to inefficiencies in resource allocation [13]. 
In essence, resource allocation can be economically 
defined as mapping suitable processors, memory, and 
bandwidth [12, 14]. This approach entails the 
efficient mapping of tasks to available resources to 
minimize costs and execution times [15-18]. 
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Consequently, focusing on the allocation process can 
contribute to cost reduction. 

The primary contributions of this study are as 
follows: 

• We classify tasks according to CPU, 
memory, and I/O demands. 

• We employ a Modified Particle Swarm 
Optimization (MPSO) algorithm that 
takes into account a multi-criteria 
objective function. 

• We utilize a load balancing algorithm 
among hosts to prevent both overloading 
and underloading of resources, thereby 
aiming to reduce energy consumption.  

The paper is structured as follows: The second 
section provides a review of the relevant background 
literature. The third section offers an overview of the 
PSO algorithm. The proposed method is described in 
detail in the fourth section. The fifth section presents 
and discusses the simulation results, and the final 
section concludes the paper. 

2. Related Works 

The principal challenge in cloud data centers is 
the scarcity of resources, making the maximization of 
resource utilization and the minimization of 
execution time critical concerns. Various allocation 
algorithms have been proposed to address this issue. 
Asif et al. [19] applied the Whale Optimization 
Algorithm (WOA) for task scheduling, utilizing an 
Integer Linear Programming (ILP) model to compute 
fitness. The Cloudsim simulation results indicate a 
decrease in cost and execution time. Reference [20] 
introduces an adaptive resource allocation technique 
for load balancing in fog-cloud environments, 
employing hybrid multi-criteria decision-making 
methods such as the Fuzzy Analytic Hierarchy 
Process (FAHP) and Fuzzy Technique for Order 
Performance by Similarity to Ideal Solution 
(FTOPSIS). This technique targets resource 
allocation in fog-cloud environments, considering the 
limited resources of fog devices and the need for low 
latency and rapid response times. The findings 
suggest that the proposed adaptive multi-criteria-
based load balancing technique effectively enhances 
load balancing, response time, resource utilization, 
and energy efficiency in fog-cloud environments. 
Study [21] explores novel algorithms that use real-
time resource monitoring, predictive analytics, and 
adaptive decision-making for intelligent workload 
allocation in cloud computing. The primary objective 
is to increase resource utilization, minimize response 
time, and improve overall system performance. 
Traditional load balancing methods often fall short of 
addressing the dynamic and heterogeneous nature of 
cloud environments. Consequently, this study 
investigates new algorithms that utilize real-time 

resource monitoring, predictive analytics, and 
adaptive decision-making for intelligent workload 
allocation.  The research encompasses the design, 
implementation, and evaluation of multiple load 
balancing algorithms, examining their impact on 
energy consumption and environmental 
sustainability. Efficient load balancing algorithms 
have been developed to align resource allocation with 
energy consumption patterns, contributing to reduced 
energy usage. Manikandan et al. [22] proposed a 
hybrid whale optimization method for task 
scheduling in cloud data centers, focusing on multiple 
objectives to maximize host utilization and lifespan. 
The algorithm results in a reduction in execution and 
completion times. Mangalampalli et al. [23] 
introduced a multi-objective confidence level 
approach, using the whale algorithm to model the 
scheduling problem. The results revealed 
improvement in execution time, reliability, and 
energy consumption. Aruna et al. [24] employed an 
enhanced Firefly algorithm with a multi-criteria 
objective function for cloud center scheduling, 
aiming to achieve load balancing and reduce task 
execution times. Li et al. [25] presented a PSO 
approach for allocating hardware resources and 
assigning real-time computing tasks to virtual 
machines, to minimize system energy consumption. 
This involves partitioning hardware resources into 
equal parts and utilizing virtual machine technology 
to create distinct virtual machines that consume a 
portion of hardware resources. The PSO method 
developed in this paper for resource allocation and 
task assignment to virtual machines demonstrates 
reduced energy consumption and improved 
efficiency through simulation results. Beegom et al  
[26] proposed a multi-objective Integer-PSO 
algorithm that maintains the algorithm’s randomness 
and eliminates duplicate assignments by modifying 
the particle position update equation. The resulting 
charts indicate improvements in the presented 
method. Beegom et al. [27] introduced a scheduling 
method according to non-dominated sorting and a 
PSO approach, using a graph to represent task 
relationships. This algorithm aims to reduce 
completion time and cost, with simulation results 
illustrating improvements in these metrics compared 
to other algorithms. Saad et al. [28] proposed a hybrid 
GA-PSO algorithm for optimizing multi-objective 
tasks in fog computing, achieving notable 
improvements in execution time, response time, and 
completion time over traditional methods. The 
combined approach leverages the strengths of GA 
and PSO for effective exploration and exploitation of 
the search space, with results indicating 
improvements in execution time, response, and 
completion. Manikandan et al. [29] presented a 
solution with k-means clustering, black widow 
algorithms, and fish swarm optimization for resource 
scheduling , aiming to reduce costs and energy 
consumption. Clustering is used to categorize 
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requests, while the black widow algorithm and fish 
swarm optimization are employed for request-to-
resource assignment. The simulation results 
demonstrate reductions in time, cost, and energy 
consumption. 

3. Particle Swarm Optimization algorithm 

Particle swarm optimization (PSO) is employed 
as an optimization technique to identify suitable or 
multiple solutions  [30]. In this framework, particles 
are initially assigned a velocity based on which they 
navigate through the solution space, and results are 
determined by a fitness function. Subsequently, 
particles are directed towards the optimal point 
characterized by a more suitable and superior fitness 
function. This algorithm is inspired by the social 
behavior of animals. Initially, the algorithm is 
initiated with a randomly generated group of 
particles, randomly, and then, which then update their 
solution as better options are discovered. Within this 
structure, each position updates its position using the 
two values that represent the best solutions for that 
particular parameter. The first value is the position 
that the particle has reached so far, known as Pbest. 
The second-best value is derived by the population of 
particles and is denoted by Gbest.  In this algorithm, 
each particle has a velocity v, which is determined by 
the velocity vector (Pbest, Gbest), and its position is 
updated using Equ(1-2) [30]. 

𝑆𝑖(𝑡 + 1) = 𝑤𝑠𝑖 (𝑡) + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡 − 𝑦𝑖(𝑡)) 

+𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑦𝑖(𝑡))) 

(1) 

𝑦𝑖(𝑡 + 1) = 𝑦𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (2) 

Equ(1) calculates the future velocity of a particle, 
w is the inertia coefficient, an input weight that 
influences the particle's previous velocity in the new 
calculations. A higher value of this parameter 
increases the global search, while a lower value 
enhances the local search. Additionally, c1 and c2 are 
constants greater than zero, with c1 representing the 
best personal experience and c2 the best social 
experience. r1 and r2 are random numbers within the 
range [0, 1]. 

Equ(2) adds the current position of the particle to 
its future velocity to determine its future position. 

4. Proposed Method 

 The solution proposed in this paper is a method 
designed to reduce costs, including response time and 
waiting time, while preventing an increase in energy 
consumption through load balancing. This is 
achieved by categorizing tasks based on their 
resource requirements and assigning them to suitable 
hosts using the Modified Particle Swarm 
Optimization (MPSO) algorithm. Initially, tasks are 
classified according to their need for processor, 
memory, and I/O resources. Following this 

categorization, the MPSO algorithm is applied with a 
defined objective function, and then the results are 
used as input for the subsequent step. The next step 
involves load balancing to prevent energy 
consumption from rising by balancing the load and 
avoiding both overloading and underloading of 
resources. Figure 1 illustrates the flowchart of the 
proposed method. 

Figure 1 outlines the flowchart and steps of the 
method, considering multiple sources. In this method, 
tasks are initially divided into three categories based 
on their resource demands: processor-intensive, 
memory-intensive, and I/O- intensive. Subsequently, 
MPSO is employed to map tasks to virtual machines 
following the objective function. The method for 
determining task type is based on Equ(3) [31]. 

(3) 𝑇𝑖ℎ = max(𝐶. 𝑂. 𝑀) = (
𝐶𝑗

𝐶𝑠

.
𝑂𝑗

𝑂𝑆

.
𝑀𝑗

𝑀𝑠

) 

According to Equ(3), Cj, Oj, and Mj represent 
the resources required by the task, while Cs, Os, and 
Ms denote the system capacity. If Tjh = C, the task is 
categorized as processor-intensive; if Tjh = O, it is 
I/O-intensive; and if Tjh=M, it is memory-intensive. 
After tasks are categorized, resources are mapped 
based on the MPSO and the specified objective 
function. Figure 2 depicts the process of the proposed 
solution. 

Figure 2, categorized tasks are randomly assigned 
to virtual machines. For instance, if there are 30 tasks, 
a matrix with 30 columns is created for the position, 
in which positions are randomly selected, 
representing resources or virtual machines. A matrix 
with 30 columns for velocity is then generated, filled 
with random numbers between zero and one. The 
fitness function is calculated and stored, with the best 
value obtained for the objective function saved as the  

 

Figure. 1. Flowchart of the proposed method.
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Figure. 2. Process of the proposed method. 

best state, along with the location where the best state 
is achieved. In each iteration, the velocity and 
position of each particle are updated, and the value of 
the objective function is calculated at the new 
position. This value is compared with the particle's 
best state, and if an improvement is detected, the best 
state is updated. It is then compared with the overall 
best state, and if it surpasses the current overall best, 
the function value in the overall best state is also 
updated. The algorithm repeats for a predetermined 
number of iterations, and the best overall state is 
returned as the solution. Subsequently, a load 
balancing algorithm is used to prevent hosts from 
becoming overloaded or underloaded, thereby 
contributing to cost reduction, including energy 
consumption. 

4.1. Objective Function Calculation 

In the MPSO, the movement of particles is 
governed by the objective function, which dictates 
how particles search for the optimal point. The value 
of the objective function can be either minimized or 
maximized based on the requirements; for instance, if 
the function represents profit or efficiency, 
maximization is the goal, whereas, for cost, time, or 
error, minimization is sought. In the proposed 
method, our main goal is to reduce the primary 
objective is to minimize the average response time 
and waiting time while preventing an increase in 
energy consumption.  

In this paper, the calculation of the objective 
function considers several factors. Initially, a variable 
d is defined and set to zero. For each task, the virtual 

machine on which it is executed and its group 
affiliation are determined. If the task belongs to the 
processor-intensive group, d is calculated using 
Equ(4). 

(4) 𝑑 = 𝑑 +
𝑐𝑗

𝑐𝑖

 

Equ(4) defines 𝑐𝑗  as the processing requirement 

of task𝑗 and 𝑐𝑖 as the processing powers of the host i 

where the task is executed.  

For tasks in the memory-intensive group, d is 
computed using Equ(5), where m𝑗  is the memory 

requirement of taskj and m𝑗  is the memory capacity 

of host i.  

(5) 𝑑 = 𝑑 +
𝑚𝑗

𝑚𝑖

 

If the task is I/O-intensive, d is calculated using 
Equ(6), with oj representing the I/O requirement of 
taskj and oi the I/O capacity of host i.  

(6) 𝑑 = 𝑑 +
𝑜𝑗

𝑜𝑖

 

The expectation is that d will decrease; for 
processor-intensive tasks, a lower d indicates 
assignment to a host with greater processing power; 
for memory-intensive tasks, a smaller d suggests 
allocation to a host with more memory; and for I/O-
intensive tasks, a reduced d means assignment to a 
machine with higher I/O capabilities. 
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Equ(7) computes the average d across all tasks, 
where n is the number of tasks. The fitness function 
is the sum of the average response time and average 
d, aiming for a decrease in both. Equ(8) is used to 
calculate the fitness function. 

(7) 𝑧 =
𝑑

2 ∗ 𝑛
 

(8) 𝑓 = 𝑧 + 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒 

Once the fitness function is established, the 
MPSO algorithm is executed, yielding the best state 
or the optimal arrangement. This optimal 
arrangement is stored in a matrix called the mapping 
matrix, whose dimensions correspond to the number 
of tasks and components of those virtual machines. 
For example, if there are five tasks and two resources, 
the mapping matrix can be Table 1. 

Table 1 indicates that tasks Task0 and Task 3 are 
mapped to Vm0, while Task1, Task2, and Task4 are 
mapped to Vm1. 

4.2. Load Balancing 

Following the objective function described in 
Section 4.1, the particle optimization algorithm is 
first executed, and the best mappings are stored in the 
mapping matrix. The mapping matrix, which is the 
output of the previous step, is then utilized as the 
input for the current step. Using the information from 
the mapping matrix, a separate matrix for virtual 
machines (VMs) is constructed, with its elements 
representing the percentage usage for each VM. To 
calculate this value for each VM, the total processing 
requirements of all tasks mapped to a particular VM 
are summed and then divided by the processing 
capacity of that VM. For instance, using the mapping 
matrix in Table 1, to determine the processor usage 
for virtual machine number zero, one would add the 
processing requirements of tasks Task0 and Task 3 
and divide the sum by the processor power of virtual 
machine number zero.  

To achieve load balancing across the VMs, the 
VM with the highest load and the one with the lowest 
load are identified. A task is then randomly selected 
from the overloaded VM and transferred to the 
underloaded VM. This process is repeated, with tasks 
being moved randomly from overloaded to 
underloaded VMs, until the mapping matrix 
undergoes regular adjustments to reach a balanced 
state.  

5. Evaluation of the proposed method 

To validate the proposed method against the 
approaches presented in previous studies [24] and 
[29] the Cloudsim simulator [32], a standard cloud 
simulator, is employed. Cloudsim is a free tool and 
library that offers various classes for simulating cloud 
environments. It provides essential classes for 
defining data centers, including physical machines, 

virtual machines, tasks, and methods and policies for 
managing different system components. Version 
3.0.3 of the Cloudsim Tools is utilized to simulate the 
proposed method and compare it with the methods 
from earlier papers. The implementations are carried 
out on a Windows 10 system equipped with a core i7 
processor and 8 GB of memory. 

The dataset consists of a set of randomly 
generated tasks with varying specifications as 
outlined in Table 2[31].  

Table 2 details the task specifications based on 
length (MIPS), file size (MB), and output size (MB).  

The characteristics of virtual machines, including 
memory, processor power, and bandwidth, are 
randomly selected from Table 3 [24]. 

Table 3 presents the virtual machine 
specifications based on bandwidth (gigabit per 
second), memory (MB), and processor (MIPS). 

The parameters of the particle optimization 
algorithm used in the simulation are listed in Table 4.  

5.1. Test metrics 

Three evaluation indicators are used to assess 
tests. The first is the average response time, or 
completion time, which is a key metric for evaluating 
the proposed approach. The second criterion is the 
waiting time, and the third is energy consumption,  

Table 1. Mapping Matrix  

Task0 Task 1 Task 2 Task 3 Task 4 

Vm0 Vm1 Vm1 Vm0 Vm1 

Table 2. Task specifications 

Parameter Value 

Length (CPU) (500-1000) MIPS 

File size (300-1000) MB 

Output size (20-50) MB 

Table 3. Virtual machine specifications  

CPU (MIPS)  RAM (MB) 
Bandwidth 

(Gbit/s) 

512 128 1 

1024 256 1 

2048 512 1 

4096 1024 1 

8192 2048 1 
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Table 4. Particle swarm algorithm parameters  

Value Parameter  

9 W 

2 C1 

2 C2 

50 Number of repetitions 

100 Number of particles 

which verifies the load balance of resources. 
Effective load balancing, by preventing overloading 
and underloading of hosts, contributes to reducing 
energy consumption. 

• Response time 
The purpose of the proposed method is to 

minimize costs, including response time and waiting 
time, while also preventing an increase in energy 
consumption through load balancing.  

Response time is defined as the interval from 
when a task is submitted to when the result is 
returned. This time is formulated in Equ(9) [31]. 

(9) 𝑅𝑇 =
∑(𝑤𝑡𝑗 + 𝑐𝑡𝑗)

𝑁
 

Equ(9) defines the response time (RT) as the sum 
of the the waiting time for task j ( 𝑤𝑡𝑗) and the 

completion time (𝑐𝑡𝑗). The average response time is 

calculated using Equ(9), where 𝑁 is the number of 
tasks.  

• Energy consumption 
 Reducing energy consumption can be effective in 

cost reduction. Balancing the load among hosts 
through optimal allocation and preventing 
overloading and underloading can lead to energy 
savings. The energy metric is described by Equ(10) 
[29]. 

(10) E= ∫ 𝑃(𝑢(𝑡))𝑑𝑡
𝑒𝑡𝑖𝑚𝑒

𝑠𝑡𝑖𝑚𝑒
 

Equ(10) calculates energy consumption based on 
the efficiency of the host processor, which varies over 
time. The energy consumed is represented as an 
integral between the start time (stime) and the end 
time (etime), with processor efficiency as a function 
of time, denoted as u(t). 

5.2. Results  

We conducted a comparative analysis of the 
proposed method with the approaches described in 
papers [24] and [29], as depicted in the tested graphs. 
The methods under study did not emphasize task 
classification for enhanced mapping through a multi-
criteria objective function. Additionally, they did not 
address the establishment of load balancing to 
prevent host overloading and underloading, which 
could lead to better performance in energy 
consumption reduction.  

In the first test, the number of resources was set to 
a constant value of 10, while the number of tasks 
varied from 200 to 350 in increments of 25. In the 
graphs, the term BWFSO (Black-widow and Fish 
Swarm optimization) is used to represent paper [29], 
and FA (Firefly Algorithm) is used for [24]. The 
response time was calculated, and the evaluation 
results are presented in Figure 3. 

As illustrated in Figure 3, as the number of tasks 
increases, the average response time also increases. 
However, the proposed method demonstrates a 
reduction in average response time by 27% compared 
to the FA [24] and by 22% compared to the BWFSO 
[29].  In the second evaluation, the number of tasks is 
held constant at 300, while the number of virtual 
machines varies from 5 to 11 in increments of 1. This 
improvement is attributed to the consideration of the 
objective function and the load balancing parameter. 
Figure 4 shows a graph comparing the average 
response time with an increasing number of 
resources.   

According to Figure 4, as resources increase, the 
response time decreases. In this scenario, the 
proposed method achieves a 36% decrease in the 
average response time compared to the FA [24] and a 
25% decrease compared to the BWFSO [29]. By 
utilizing the defined objective function and 
implementing load balancing, we were able to 
effectively reduce and improve the response time. 
Next, we examined the average waiting time for 
tasks, is examined, with the results illustrated in 
Figure 5 and 6. 

As shown in Figure 5, the waiting time in the 
proposed method decreases relative to basic papers as 
the number of resources increases. The proposed 
method performs 34% better than the FA [24] and 
23% better than the BWFSO [29]. In the subsequent 
analysis, the number of tasks was increased while the 
number of resources remained constant. The results 
are depicted in Figure 6. 

In Figure 6, the proposed method exhibits a 
decrease in average response time by 29% compared 
to the FA [24] and by 24% compared to the BWFSO 
[29]. Finally, Figure 7 and Figure. 8Figure 8, examine 
the energy consumption. 
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Figure. 3. Comparison graph of average response time with 

increasing tasks. 

 

Figure. 4. Comparison graph of average response time with 

increasing resources. 

 

Figure. 5. Comparison chart of average waiting time with 

increasing resources. 

In Figure 7 and 8, the energy consumption of the 
proposed method is lower than that of the two 
comparison methods. This reduction is due to the 
addition of a load balancing step, which creates 
balanced loads on the hosts and prevents overloading 
and underloading. The proposed method shows a 
decrease of 19% compared to the first paper in 
Figure. 7 and 13% compared to the second paper. In 

 

Figure. 6. Comparison graph of average waiting time with 

increasing tasks. 

 

Figure. 7. Comparison graphs of energy consumption with 

increasing resources. 

 

Figure. 8. Comparison graphs of energy consumption with 

increasing tasks. 

Figure 8, the improvements are 17% and 9%, 
respectively. 

6. Conclusion 

The vast and dynamic nature of the cloud 
infrastructure, coupled with the ever-changing 
demands of user requests, makes effective resource 
management and scheduling critical in this domain. 
Allocation and scheduling methods must be 
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adaptable and swift, responding to changes or 
increased workloads to sustain system efficiency. 
This paper introduced a new method for task 
allocation in cloud environments. The method is 
comprised of three steps: initially, tasks are 
categorized according to their resource requirements. 
Subsequently, the MPSO algorithm is employed with 
a multi-criteria objective function to assign each task 
to a suitable host. Finally, load balancing is achieved 
by migrating tasks away from overloaded and 
underloaded hosts, ensuring a balanced system load 
that helps curb energy consumption. Simulation 
results obtained using the Cloudsim simulator and 
comparisons with related studies demonstrate that the 
proposed method significantly reduces average 
response and waiting times, both with an increasing 
number of tasks and resources, while also minimizing 
energy consumption.  

Future research will explore the integration of 
quality of service parameters and cost factors, which 
were not addressed in this study. Additionally, the 
proposed method will be combined with other meta-
heuristic algorithms, and the potential of fog 
computing to reduce latency for users will be 
investigated. 
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