
 http://dx.doi.org/10.22133/ijwr.2024.457539.1216

 D. Bahrepour, N. Evaznia, T. Khodabakhshi, "A New Resource Allocation Method Based on PSO in Cloud Computing", International Journal of

Web Research, vol.7, no.2,pp.13-21, 2024, doi: http://dx.doi.org/10.22133/ijwr.2024.457539.1216.

*Coressponding Author

Article History: Received: 14 December 2023; Revised: 25 February 2024; Accepted: 13 March 2024.

Copyright © 2022 University of Science and Culture. Published by University of Science and Culture. This work is licensed under a Creative Commons

Attribution-Noncommercial 4.0 International license(https://creativecommons.org/licenses/by-nc/4.0/). Noncommercial uses of the work are permitted,

provided the original work is properly cited.

A New Resource Allocation Method Based

on PSO in Cloud Computing
Davoud Bahrepoura, Nastaran Evazniab*, Tahereh Khodabakhshic
Department of Computer, Mashhad Branch, Islamic Azad University, Mashhad, Iran;

bahrepour@mshdiau.ac.ira, nastaran_avaznia@yahoo.comb, ta.khodabakhshi@gmail.comc

A B S T R A C T

Cloud computing has emerged as a pivotal technology for managing and processing data, with a primary

objective to offer efficient resource access while minimizing expenses. The allocation of resources is a critical

aspect that can significantly reduce costs. This process necessitates the continuous assessment of the current

status of each resource to design algorithms that optimize allocation and enhance overall system performance.

Numerous algorithms have been developed to address the challenge of resource allocation, yet many fail to

satisfy requirements of time efficiency and load balancing in cloud computing environments. This paper

introduces a novel approach that classifies tasks according to their resource demands, employs a modified

particle swarm optimization (PSO) algorithm, and incorporates load balancing strategies. The proposed method

initially clusters tasks based on their resource requirements, subsequently utilizes the PSO algorithm to

determine the best task-to-resource assignments, and finally implements a load balancing algorithm to reduce

costs through balanced load distribution. The validity of the proposed method is tested and simulated using the

Cloudsim tool. The simulation results indicate that the proposed method achieves lower average response time,

waiting times, and energy consumption than existing baseline methods.

Keywords— cloud computing, resource allocation, modified particle swarm optimization, response time, energy

consumption.

1. Introduction

The swift advancement of distributed computing
technology has facilitated inexpensive and robust
access to computational resources through the
Internet, surpassing the capabilities of previous eras
[1]. This advancement has culminated in the model
known as cloud computing, wherein users can lease
and subsequently release resources such as
processors and storage devices as a service through
simple Internet requests [1, 2]. Consequently, these
systems enable users to utilize resources over a
network. Cloud computing is a burgeoning
technology that has garnered the interest of
researchers across diverse fields due to its benefits [3,
4]. Within the cloud framework, proficiency in
optimally managing resources directly correlates with
effectiveness in cost reduction and productivity
enhancement [4]. Cloud computing platforms allow
users to access desired resources over the Internet [5].
This technology has been particularly beneficial for
numerous companies, as it allows them to procure
necessary resources at a low cost precisely when
needed [5, 6]. The advent of cloud computing has
spurred rapid growth in various research domains,

including virtualization, distributed systems,
clustering, and grid computing [7, 8]. Virtualization
technology within cloud data centers has enabled the
scheduling of user requests on a reduced number of
physical machines, thereby enhancing resource
efficiency in these data centers [9-11]. Upon
receiving requests from cloud users, service providers
employ scheduling algorithms to allocate these
incoming requests [10]. Nonetheless, a novel
challenge in this milieu pertains to the optimal
allocation of resources to requests and tasks [12, 13].
Indeed, task scheduling within a cloud environment
is a critical and pivotal concern, as end users expect
to access resources anytime and anywhere. Given the
diversity of resources offered by cloud data centers
and the real-time, demand-driven nature of the cloud
computing model, the issue of resource allocation is
paramount. The variability and frequency of requests
may lead to inefficiencies in resource allocation [13].
In essence, resource allocation can be economically
defined as mapping suitable processors, memory, and
bandwidth [12, 14]. This approach entails the
efficient mapping of tasks to available resources to
minimize costs and execution times [15-18].

http://dx.doi.org/10.22133/ijwr.2024.457539.1216
mailto:bahrepour@mshdiau.ac.ir
mailto:nastaran_avaznia@yahoo.com

International Journal of Web Research, Vol. 7, No. 2, Summer-Autumn, 2024

14

Consequently, focusing on the allocation process can
contribute to cost reduction.

The primary contributions of this study are as
follows:

• We classify tasks according to CPU,
memory, and I/O demands.

• We employ a Modified Particle Swarm
Optimization (MPSO) algorithm that
takes into account a multi-criteria
objective function.

• We utilize a load balancing algorithm
among hosts to prevent both overloading
and underloading of resources, thereby
aiming to reduce energy consumption.

The paper is structured as follows: The second
section provides a review of the relevant background
literature. The third section offers an overview of the
PSO algorithm. The proposed method is described in
detail in the fourth section. The fifth section presents
and discusses the simulation results, and the final
section concludes the paper.

2. Related Works

The principal challenge in cloud data centers is
the scarcity of resources, making the maximization of
resource utilization and the minimization of
execution time critical concerns. Various allocation
algorithms have been proposed to address this issue.
Asif et al. [19] applied the Whale Optimization
Algorithm (WOA) for task scheduling, utilizing an
Integer Linear Programming (ILP) model to compute
fitness. The Cloudsim simulation results indicate a
decrease in cost and execution time. Reference [20]
introduces an adaptive resource allocation technique
for load balancing in fog-cloud environments,
employing hybrid multi-criteria decision-making
methods such as the Fuzzy Analytic Hierarchy
Process (FAHP) and Fuzzy Technique for Order
Performance by Similarity to Ideal Solution
(FTOPSIS). This technique targets resource
allocation in fog-cloud environments, considering the
limited resources of fog devices and the need for low
latency and rapid response times. The findings
suggest that the proposed adaptive multi-criteria-
based load balancing technique effectively enhances
load balancing, response time, resource utilization,
and energy efficiency in fog-cloud environments.
Study [21] explores novel algorithms that use real-
time resource monitoring, predictive analytics, and
adaptive decision-making for intelligent workload
allocation in cloud computing. The primary objective
is to increase resource utilization, minimize response
time, and improve overall system performance.
Traditional load balancing methods often fall short of
addressing the dynamic and heterogeneous nature of
cloud environments. Consequently, this study
investigates new algorithms that utilize real-time

resource monitoring, predictive analytics, and
adaptive decision-making for intelligent workload
allocation. The research encompasses the design,
implementation, and evaluation of multiple load
balancing algorithms, examining their impact on
energy consumption and environmental
sustainability. Efficient load balancing algorithms
have been developed to align resource allocation with
energy consumption patterns, contributing to reduced
energy usage. Manikandan et al. [22] proposed a
hybrid whale optimization method for task
scheduling in cloud data centers, focusing on multiple
objectives to maximize host utilization and lifespan.
The algorithm results in a reduction in execution and
completion times. Mangalampalli et al. [23]
introduced a multi-objective confidence level
approach, using the whale algorithm to model the
scheduling problem. The results revealed
improvement in execution time, reliability, and
energy consumption. Aruna et al. [24] employed an
enhanced Firefly algorithm with a multi-criteria
objective function for cloud center scheduling,
aiming to achieve load balancing and reduce task
execution times. Li et al. [25] presented a PSO
approach for allocating hardware resources and
assigning real-time computing tasks to virtual
machines, to minimize system energy consumption.
This involves partitioning hardware resources into
equal parts and utilizing virtual machine technology
to create distinct virtual machines that consume a
portion of hardware resources. The PSO method
developed in this paper for resource allocation and
task assignment to virtual machines demonstrates
reduced energy consumption and improved
efficiency through simulation results. Beegom et al
[26] proposed a multi-objective Integer-PSO
algorithm that maintains the algorithm’s randomness
and eliminates duplicate assignments by modifying
the particle position update equation. The resulting
charts indicate improvements in the presented
method. Beegom et al. [27] introduced a scheduling
method according to non-dominated sorting and a
PSO approach, using a graph to represent task
relationships. This algorithm aims to reduce
completion time and cost, with simulation results
illustrating improvements in these metrics compared
to other algorithms. Saad et al. [28] proposed a hybrid
GA-PSO algorithm for optimizing multi-objective
tasks in fog computing, achieving notable
improvements in execution time, response time, and
completion time over traditional methods. The
combined approach leverages the strengths of GA
and PSO for effective exploration and exploitation of
the search space, with results indicating
improvements in execution time, response, and
completion. Manikandan et al. [29] presented a
solution with k-means clustering, black widow
algorithms, and fish swarm optimization for resource
scheduling , aiming to reduce costs and energy
consumption. Clustering is used to categorize

A New Resource Allocation Method Based on PSO in Cloud Computing

15

requests, while the black widow algorithm and fish
swarm optimization are employed for request-to-
resource assignment. The simulation results
demonstrate reductions in time, cost, and energy
consumption.

3. Particle Swarm Optimization algorithm

Particle swarm optimization (PSO) is employed
as an optimization technique to identify suitable or
multiple solutions [30]. In this framework, particles
are initially assigned a velocity based on which they
navigate through the solution space, and results are
determined by a fitness function. Subsequently,
particles are directed towards the optimal point
characterized by a more suitable and superior fitness
function. This algorithm is inspired by the social
behavior of animals. Initially, the algorithm is
initiated with a randomly generated group of
particles, randomly, and then, which then update their
solution as better options are discovered. Within this
structure, each position updates its position using the
two values that represent the best solutions for that
particular parameter. The first value is the position
that the particle has reached so far, known as Pbest.
The second-best value is derived by the population of
particles and is denoted by Gbest. In this algorithm,
each particle has a velocity v, which is determined by
the velocity vector (Pbest, Gbest), and its position is
updated using Equ(1-2) [30].

𝑆𝑖(𝑡 + 1) = 𝑤𝑠𝑖 (𝑡) + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡 − 𝑦𝑖(𝑡))

+𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑦𝑖(𝑡)))

(1)

𝑦𝑖(𝑡 + 1) = 𝑦𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (2)

Equ(1) calculates the future velocity of a particle,
w is the inertia coefficient, an input weight that
influences the particle's previous velocity in the new
calculations. A higher value of this parameter
increases the global search, while a lower value
enhances the local search. Additionally, c1 and c2 are
constants greater than zero, with c1 representing the
best personal experience and c2 the best social
experience. r1 and r2 are random numbers within the
range [0, 1].

Equ(2) adds the current position of the particle to
its future velocity to determine its future position.

4. Proposed Method

 The solution proposed in this paper is a method
designed to reduce costs, including response time and
waiting time, while preventing an increase in energy
consumption through load balancing. This is
achieved by categorizing tasks based on their
resource requirements and assigning them to suitable
hosts using the Modified Particle Swarm
Optimization (MPSO) algorithm. Initially, tasks are
classified according to their need for processor,
memory, and I/O resources. Following this

categorization, the MPSO algorithm is applied with a
defined objective function, and then the results are
used as input for the subsequent step. The next step
involves load balancing to prevent energy
consumption from rising by balancing the load and
avoiding both overloading and underloading of
resources. Figure 1 illustrates the flowchart of the
proposed method.

Figure 1 outlines the flowchart and steps of the
method, considering multiple sources. In this method,
tasks are initially divided into three categories based
on their resource demands: processor-intensive,
memory-intensive, and I/O- intensive. Subsequently,
MPSO is employed to map tasks to virtual machines
following the objective function. The method for
determining task type is based on Equ(3) [31].

(3) 𝑇𝑖ℎ = max(𝐶. 𝑂. 𝑀) = (
𝐶𝑗

𝐶𝑠

.
𝑂𝑗

𝑂𝑆

.
𝑀𝑗

𝑀𝑠

)

According to Equ(3), Cj, Oj, and Mj represent
the resources required by the task, while Cs, Os, and
Ms denote the system capacity. If Tjh = C, the task is
categorized as processor-intensive; if Tjh = O, it is
I/O-intensive; and if Tjh=M, it is memory-intensive.
After tasks are categorized, resources are mapped
based on the MPSO and the specified objective
function. Figure 2 depicts the process of the proposed
solution.

Figure 2, categorized tasks are randomly assigned
to virtual machines. For instance, if there are 30 tasks,
a matrix with 30 columns is created for the position,
in which positions are randomly selected,
representing resources or virtual machines. A matrix
with 30 columns for velocity is then generated, filled
with random numbers between zero and one. The
fitness function is calculated and stored, with the best
value obtained for the objective function saved as the

Figure. 1. Flowchart of the proposed method.

International Journal of Web Research, Vol. 7, No. 2, Summer-Autumn, 2024

16

Figure. 2. Process of the proposed method.

best state, along with the location where the best state
is achieved. In each iteration, the velocity and
position of each particle are updated, and the value of
the objective function is calculated at the new
position. This value is compared with the particle's
best state, and if an improvement is detected, the best
state is updated. It is then compared with the overall
best state, and if it surpasses the current overall best,
the function value in the overall best state is also
updated. The algorithm repeats for a predetermined
number of iterations, and the best overall state is
returned as the solution. Subsequently, a load
balancing algorithm is used to prevent hosts from
becoming overloaded or underloaded, thereby
contributing to cost reduction, including energy
consumption.

4.1. Objective Function Calculation

In the MPSO, the movement of particles is
governed by the objective function, which dictates
how particles search for the optimal point. The value
of the objective function can be either minimized or
maximized based on the requirements; for instance, if
the function represents profit or efficiency,
maximization is the goal, whereas, for cost, time, or
error, minimization is sought. In the proposed
method, our main goal is to reduce the primary
objective is to minimize the average response time
and waiting time while preventing an increase in
energy consumption.

In this paper, the calculation of the objective
function considers several factors. Initially, a variable
d is defined and set to zero. For each task, the virtual

machine on which it is executed and its group
affiliation are determined. If the task belongs to the
processor-intensive group, d is calculated using
Equ(4).

(4) 𝑑 = 𝑑 +
𝑐𝑗

𝑐𝑖

Equ(4) defines 𝑐𝑗 as the processing requirement

of task𝑗 and 𝑐𝑖 as the processing powers of the host i

where the task is executed.

For tasks in the memory-intensive group, d is
computed using Equ(5), where m𝑗 is the memory

requirement of taskj and m𝑗 is the memory capacity

of host i.

(5) 𝑑 = 𝑑 +
𝑚𝑗

𝑚𝑖

If the task is I/O-intensive, d is calculated using
Equ(6), with oj representing the I/O requirement of
taskj and oi the I/O capacity of host i.

(6) 𝑑 = 𝑑 +
𝑜𝑗

𝑜𝑖

The expectation is that d will decrease; for
processor-intensive tasks, a lower d indicates
assignment to a host with greater processing power;
for memory-intensive tasks, a smaller d suggests
allocation to a host with more memory; and for I/O-
intensive tasks, a reduced d means assignment to a
machine with higher I/O capabilities.

A New Resource Allocation Method Based on PSO in Cloud Computing

17

Equ(7) computes the average d across all tasks,
where n is the number of tasks. The fitness function
is the sum of the average response time and average
d, aiming for a decrease in both. Equ(8) is used to
calculate the fitness function.

(7) 𝑧 =
𝑑

2 ∗ 𝑛

(8) 𝑓 = 𝑧 + 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒

Once the fitness function is established, the
MPSO algorithm is executed, yielding the best state
or the optimal arrangement. This optimal
arrangement is stored in a matrix called the mapping
matrix, whose dimensions correspond to the number
of tasks and components of those virtual machines.
For example, if there are five tasks and two resources,
the mapping matrix can be Table 1.

Table 1 indicates that tasks Task0 and Task 3 are
mapped to Vm0, while Task1, Task2, and Task4 are
mapped to Vm1.

4.2. Load Balancing

Following the objective function described in
Section 4.1, the particle optimization algorithm is
first executed, and the best mappings are stored in the
mapping matrix. The mapping matrix, which is the
output of the previous step, is then utilized as the
input for the current step. Using the information from
the mapping matrix, a separate matrix for virtual
machines (VMs) is constructed, with its elements
representing the percentage usage for each VM. To
calculate this value for each VM, the total processing
requirements of all tasks mapped to a particular VM
are summed and then divided by the processing
capacity of that VM. For instance, using the mapping
matrix in Table 1, to determine the processor usage
for virtual machine number zero, one would add the
processing requirements of tasks Task0 and Task 3
and divide the sum by the processor power of virtual
machine number zero.

To achieve load balancing across the VMs, the
VM with the highest load and the one with the lowest
load are identified. A task is then randomly selected
from the overloaded VM and transferred to the
underloaded VM. This process is repeated, with tasks
being moved randomly from overloaded to
underloaded VMs, until the mapping matrix
undergoes regular adjustments to reach a balanced
state.

5. Evaluation of the proposed method

To validate the proposed method against the
approaches presented in previous studies [24] and
[29] the Cloudsim simulator [32], a standard cloud
simulator, is employed. Cloudsim is a free tool and
library that offers various classes for simulating cloud
environments. It provides essential classes for
defining data centers, including physical machines,

virtual machines, tasks, and methods and policies for
managing different system components. Version
3.0.3 of the Cloudsim Tools is utilized to simulate the
proposed method and compare it with the methods
from earlier papers. The implementations are carried
out on a Windows 10 system equipped with a core i7
processor and 8 GB of memory.

The dataset consists of a set of randomly
generated tasks with varying specifications as
outlined in Table 2[31].

Table 2 details the task specifications based on
length (MIPS), file size (MB), and output size (MB).

The characteristics of virtual machines, including
memory, processor power, and bandwidth, are
randomly selected from Table 3 [24].

Table 3 presents the virtual machine
specifications based on bandwidth (gigabit per
second), memory (MB), and processor (MIPS).

The parameters of the particle optimization
algorithm used in the simulation are listed in Table 4.

5.1. Test metrics

Three evaluation indicators are used to assess
tests. The first is the average response time, or
completion time, which is a key metric for evaluating
the proposed approach. The second criterion is the
waiting time, and the third is energy consumption,

Table 1. Mapping Matrix

Task0 Task 1 Task 2 Task 3 Task 4

Vm0 Vm1 Vm1 Vm0 Vm1

Table 2. Task specifications

Parameter Value

Length (CPU) (500-1000) MIPS

File size (300-1000) MB

Output size (20-50) MB

Table 3. Virtual machine specifications

CPU (MIPS) RAM (MB)
Bandwidth

(Gbit/s)

512 128 1

1024 256 1

2048 512 1

4096 1024 1

8192 2048 1

International Journal of Web Research, Vol. 7, No. 2, Summer-Autumn, 2024

18

Table 4. Particle swarm algorithm parameters

Value Parameter

9 W

2 C1

2 C2

50 Number of repetitions

100 Number of particles

which verifies the load balance of resources.
Effective load balancing, by preventing overloading
and underloading of hosts, contributes to reducing
energy consumption.

• Response time
The purpose of the proposed method is to

minimize costs, including response time and waiting
time, while also preventing an increase in energy
consumption through load balancing.

Response time is defined as the interval from
when a task is submitted to when the result is
returned. This time is formulated in Equ(9) [31].

(9) 𝑅𝑇 =
∑(𝑤𝑡𝑗 + 𝑐𝑡𝑗)

𝑁

Equ(9) defines the response time (RT) as the sum
of the the waiting time for task j (𝑤𝑡𝑗) and the

completion time (𝑐𝑡𝑗). The average response time is

calculated using Equ(9), where 𝑁 is the number of
tasks.

• Energy consumption
 Reducing energy consumption can be effective in

cost reduction. Balancing the load among hosts
through optimal allocation and preventing
overloading and underloading can lead to energy
savings. The energy metric is described by Equ(10)
[29].

(10) E= ∫ 𝑃(𝑢(𝑡))𝑑𝑡
𝑒𝑡𝑖𝑚𝑒

𝑠𝑡𝑖𝑚𝑒

Equ(10) calculates energy consumption based on
the efficiency of the host processor, which varies over
time. The energy consumed is represented as an
integral between the start time (stime) and the end
time (etime), with processor efficiency as a function
of time, denoted as u(t).

5.2. Results

We conducted a comparative analysis of the
proposed method with the approaches described in
papers [24] and [29], as depicted in the tested graphs.
The methods under study did not emphasize task
classification for enhanced mapping through a multi-
criteria objective function. Additionally, they did not
address the establishment of load balancing to
prevent host overloading and underloading, which
could lead to better performance in energy
consumption reduction.

In the first test, the number of resources was set to
a constant value of 10, while the number of tasks
varied from 200 to 350 in increments of 25. In the
graphs, the term BWFSO (Black-widow and Fish
Swarm optimization) is used to represent paper [29],
and FA (Firefly Algorithm) is used for [24]. The
response time was calculated, and the evaluation
results are presented in Figure 3.

As illustrated in Figure 3, as the number of tasks
increases, the average response time also increases.
However, the proposed method demonstrates a
reduction in average response time by 27% compared
to the FA [24] and by 22% compared to the BWFSO
[29]. In the second evaluation, the number of tasks is
held constant at 300, while the number of virtual
machines varies from 5 to 11 in increments of 1. This
improvement is attributed to the consideration of the
objective function and the load balancing parameter.
Figure 4 shows a graph comparing the average
response time with an increasing number of
resources.

According to Figure 4, as resources increase, the
response time decreases. In this scenario, the
proposed method achieves a 36% decrease in the
average response time compared to the FA [24] and a
25% decrease compared to the BWFSO [29]. By
utilizing the defined objective function and
implementing load balancing, we were able to
effectively reduce and improve the response time.
Next, we examined the average waiting time for
tasks, is examined, with the results illustrated in
Figure 5 and 6.

As shown in Figure 5, the waiting time in the
proposed method decreases relative to basic papers as
the number of resources increases. The proposed
method performs 34% better than the FA [24] and
23% better than the BWFSO [29]. In the subsequent
analysis, the number of tasks was increased while the
number of resources remained constant. The results
are depicted in Figure 6.

In Figure 6, the proposed method exhibits a
decrease in average response time by 29% compared
to the FA [24] and by 24% compared to the BWFSO
[29]. Finally, Figure 7 and Figure. 8Figure 8, examine
the energy consumption.

A New Resource Allocation Method Based on PSO in Cloud Computing

19

Figure. 3. Comparison graph of average response time with

increasing tasks.

Figure. 4. Comparison graph of average response time with

increasing resources.

Figure. 5. Comparison chart of average waiting time with

increasing resources.

In Figure 7 and 8, the energy consumption of the
proposed method is lower than that of the two
comparison methods. This reduction is due to the
addition of a load balancing step, which creates
balanced loads on the hosts and prevents overloading
and underloading. The proposed method shows a
decrease of 19% compared to the first paper in
Figure. 7 and 13% compared to the second paper. In

Figure. 6. Comparison graph of average waiting time with

increasing tasks.

Figure. 7. Comparison graphs of energy consumption with

increasing resources.

Figure. 8. Comparison graphs of energy consumption with

increasing tasks.

Figure 8, the improvements are 17% and 9%,
respectively.

6. Conclusion

The vast and dynamic nature of the cloud
infrastructure, coupled with the ever-changing
demands of user requests, makes effective resource
management and scheduling critical in this domain.
Allocation and scheduling methods must be

International Journal of Web Research, Vol. 7, No. 2, Summer-Autumn, 2024

20

adaptable and swift, responding to changes or
increased workloads to sustain system efficiency.
This paper introduced a new method for task
allocation in cloud environments. The method is
comprised of three steps: initially, tasks are
categorized according to their resource requirements.
Subsequently, the MPSO algorithm is employed with
a multi-criteria objective function to assign each task
to a suitable host. Finally, load balancing is achieved
by migrating tasks away from overloaded and
underloaded hosts, ensuring a balanced system load
that helps curb energy consumption. Simulation
results obtained using the Cloudsim simulator and
comparisons with related studies demonstrate that the
proposed method significantly reduces average
response and waiting times, both with an increasing
number of tasks and resources, while also minimizing
energy consumption.

Future research will explore the integration of
quality of service parameters and cost factors, which
were not addressed in this study. Additionally, the
proposed method will be combined with other meta-
heuristic algorithms, and the potential of fog
computing to reduce latency for users will be
investigated.

Declarations

Funding

The authors did not receive support from any
organization for the submitted work.

Conflict of interest

The authors have no conflict of interest.

References

[1] M. M. E. Mahmoud, J. J. P. C. Rodrigues, K. Saleem, J. Al-
Muhtadi, N. Kumar, and V. Korotaev, “Towards energy-
aware fog-enabled cloud of things for healthcare,” Comput.
Electr. Eng., vol. 67, pp.58–69, 2018.
https://doi.org/10.1016/j.compeleceng.2018.02.047.

[2] M. S. A. Khan and R. Santhosh, “Task scheduling in cloud
computing using hybrid optimization algorithm,” Soft
Comput., vol. 26, no. 23, pp. 13069–13079, 2022.
https://doi.org/10.1007/s00500-021-06488-5.

[3] N. S. S. Fatemi, M. T. Zahmatkesh, and D. Bahrepour,
“Energy Efficiency and Establishing Service Level
Agreement using Fuzzification of Virtual Machine Selection
Policies for Migrating in Cloud Computing,” 2023 9th
International Conference on Web Research (ICWR),
Tehran, Iran, Islamic Republic of, pp. 201-207, 2023.
https://doi.org/10.1109/ICWR57742.2023.10138982.

[4] N. Evaznia and R. Ebrahimi, “Providing a Solution for
Optimal Management of Resources using the Multi-
objective Crow Search Algorithm in Cloud Data Centers,”
in 2023 9th International Conference on Web Research
(ICWR), IEEE, pp. 179–184, 2023.
https://doi.org/10.1109/ICWR57742.2023.10139192.

[5] P. Neelima and A. R. M. Reddy, “An efficient load
balancing system using adaptive dragonfly algorithm in
cloud computing,” Cluster Comput., vol. 23, no. 4, pp.
2891–2899, 2020. https://doi.org/10.1007/s10586-020-
03054-w.

[6] Y. Sun, J. Li, X. Fu, H. Wang, and H. Li, “Application

research based on improved genetic algorithm in cloud task
scheduling,” J. Intell. Fuzzy Syst., vol. 38, no. 1, pp. 239–
246, 2020. https://doi.org/10.3233/JIFS-179398

[7] D. Yu, Z. Ma, and R. Wang, “Efficient smart grid load
balancing via fog and cloud computing,” Math. Probl. Eng.,
vol. 2022, no. 1, p. 3151249, 2022.
https://doi.org/10.1155/2022/3151249.

[8] S. A. Hashmi, C. F. Ali, and S. Zafar, “Internet of things and
cloud computing‐based energy management system for
demand side management in smart grid,” Int. J. Energy Res.,
vol. 45, no. 1, pp. 1007–1022, 2021.
https://doi.org/10.1002/er.6141.

[9] K. Perumal, S. Mohan, J. Frnda, and P. B. Divakarachari,
“Dynamic resource provisioning and secured file sharing
using virtualization in cloud azure,” J. cloud Comput., vol.
11, no. 1, p. 46, 2022. https://doi.org/10.1186/s13677-022-
00326-1.

[10] N. Almurisi and S. Tadisetty, “Cloud-based virtualization
environment for iot-based wsn: solutions, approaches and
challenges,” J. Ambient Intell. Humaniz. Comput., vol. 13,
no. 10, pp. 4681–4703, 2022.
https://doi.org/10.1007/s12652-021-03515-z.

[11] A. Hameed et al., “A survey and taxonomy on energy
efficient resource allocation techniques for cloud computing
systems,” Computing, vol. 98, pp. 751–774, 2016.
https://doi.org/10.1007/s00607-014-0407-8.

[12] A. Belgacem, “Dynamic resource allocation in cloud
computing: analysis and taxonomies,” Computing, vol. 104,
no. 3, pp. 681–710, 2022. https://doi.org/10.1007/s00607-
021-01045-2.

[13] A. Abid, M. F. Manzoor, M. S. Farooq, U. Farooq, and M.
Hussain, “Challenges and Issues of Resource Allocation
Techniques in Cloud Computing.,” KSII Trans. Internet Inf.
Syst., vol. 14, no. 7, pp. 2815-2839, 2020.
http://doi.org/10.3837/tiis.2020.07.005.

[14] Z. Amini, M. Maeen, and M. R. Jahangir, “Providing a load
balancing method based on dragonfly optimization
algorithm for resource allocation in cloud computing,” Int.
J. Networked Distrib. Comput., vol. 6, no. 1, pp. 35–42,
2018. https://doi.org/10.2991/ijndc.2018.6.1.4.

[15] H. Attaran, N. Kheibari, and D. Bahrepour, “Toward
integrated smart city: A new model for implementation and
design challenges,” GeoJournal, vol. 87, no. Suppl 4, pp.
511–526, 2022. https://doi.org/10.1007/s10708-021-10560-
w.

[16] H. F. Farimani, D. Bahrepour, and S. R. K. Tabbakh,
“Reallocation of virtual machines to cloud data centers to
reduce service level agreement violation and energy
consumption using the FMT method,” J. Inf. Syst.
Telecommun., vol. 4, no. 28, p. 316, 2020.
https://doi.org/10.7508/jist.2019.04.007.

[17] L. M. Haji, S. Zeebaree, O. M. Ahmed, A. B. Sallow, K.
Jacksi, and R. R. Zeabri, “Dynamic resource allocation for
distributed systems and cloud computing,” TEST Eng.
Manag., vol. 83, no. May/June 2020, pp. 22417–22426,
2020.

[18] J. Chen, T. Du, and G. Xiao, “A multi-objective
optimization for resource allocation of emergent demands in
cloud computing,” J. Cloud Comput., vol. 10, pp. 1–17,
2021. https://doi.org/10.1186/s13677-021-00237-7.

[19] R. Asif, K. A. Alam, K. M. Ko, and S. U. R. Khan, “Task
scheduling in a cloud computing environment using a whale
optimization algorithm,” in Proceedings of the First
International Workshop on Intelligent Software Automation:
ISEA 2020, Springer, 2021, pp. 37–52.
https://doi.org/10.1007/978-981-16-1045-5_4.

[20] A. A. A. Gad-Elrab, A. S. Alsharkawy, M. E. Embabi, A.
Sobhi, and F. A. Emara, “Adaptive multi-criteria-based load
balancing technique for resource allocation in fog-cloud
environments,” arXiv Prepr. arXiv2402.01326, 2024.
https://doi.org/10.48550/arXiv.2402.01326

[21] A. Nandwal and R. Jain, “Optimizing of resource allocation
in cloud computing with advanced load balancing

https://doi.org/10.1016/j.compeleceng.2018.02.047
https://doi.org/10.1002/er.6141
https://doi.org/10.7508/jist.2019.04.007

A New Resource Allocation Method Based on PSO in Cloud Computing

21

algorithm,” Int. J. Eng. Sci. Math., vol. 12, no. 7, pp. 82–90,
2023.

[22] N. Manikandan, N. Gobalakrishnan, and K. Pradeep, “Bee
optimization based random double adaptive whale
optimization model for task scheduling in cloud computing
environment,” Comput. Commun., vol. 187, pp. 35–44,
2022. https://doi.org/10.1016/j.comcom.2022.01.016.

[23] S. Mangalampalli, G. R. Karri, and U. Kose, “Multi
Objective Trust aware task scheduling algorithm in cloud
computing using Whale Optimization,” J. King Saud Univ.
Inf. Sci., vol. 35, no. 2, pp. 791–809, 2023.
https://doi.org/10.1016/j.jksuci.2023.01.016.

[24] M. Aruna, D. Bhanu, and S. Karthik, “An improved load
balanced metaheuristic scheduling in cloud,” Cluster
Comput., vol. 22, no. Suppl 5, pp. 10873–10881, 2019.
https://doi.org/10.1007/s10586-017-1213-9.

[25] S. Li, Z. Yan, and B. Hu, “A PSO-based Resource
Allocation and Task Assignment Approach for Real-Time
Cloud Computing-based Robotic Systems,” in 2022 IEEE
International Conference on Robotics and Biomimetics
(ROBIO), Jinghong, China, IEEE, pp. 2305–2310,2022.
https://doi.org/10.1109/ROBIO55434.2022.10011855.

[26] A. S. A. Beegom and M. S. Rajasree, “Integer-pso: a discrete
pso algorithm for task scheduling in cloud computing
systems,” Evol. Intell., vol. 12, pp. 227–239, 2019.
https://doi.org/10.1007/s12065-019-00216-7.

[27] A. S. Ajeena Beegom and M. S. Rajasree, “Non-dominated
sorting based PSO algorithm for workflow task scheduling
in cloud computing systems,” J. Intell. Fuzzy Syst., vol. 37,
no. 5, pp. 6801–6813, 2019. https://doi.org/10.3233/JIFS-
190355.

[28] M. Saad, R. N. Enam, and R. Qureshi, “Optimizing multi-
objective task scheduling in fog computing with GA-PSO
algorithm for big data application,” Front. big Data, vol. 7,
p. 1358486, 2024.
https://doi.org/10.3389/fdata.2024.1358486.

[29] N. Manikandan, P. Divya, and S. Janani, “BWFSO: hybrid
Black-widow and Fish swarm optimization Algorithm for
resource allocation and task scheduling in cloud
computing,” Mater. Today Proc., vol. 62, pp. 4903–4908,
2022. https://doi.org/10.1016/j.matpr.2022.03.535.

[30] M. A. El-Shorbagy and A. E. Hassanien, “Particle swarm
optimization from theory to applications,” Int. J. Rough Sets
Data Anal., vol. 5, no. 2, pp. 1–24, 2018.
https://doi.org/10.4018/IJRSDA.2018040101.

[31] L. Zuo, S. Dong, L. Shu, C. Zhu, and G. Han, “A multiqueue
interlacing peak scheduling method based on tasks’
classification in cloud computing,” IEEE Syst. J., vol. 12,
no. 2, pp. 1518–1530, 2016.
https://doi.org/10.1109/JSYST.2016.2542251.

[32] N. Mansouri, R. Ghafari, and B. M. H. Zade, “Cloud
computing simulators: A comprehensive review,” Simul.
Model. Pract. Theory, vol. 104, p. 102144, 2020.
https://doi.org/10.1016/j.simpat.2020.102144.

Davoud Bahrepour was born in

Mashhad, Iran, in 1982. He

received the M.S. and Ph.D.

degrees in computer engineering

from Science and Research

Branch, Islamic Azad University,

Tehran, Iran, in 2007 and 2012,

respectively. Since 2013, he has

been an Assistant Professor with the Computer

Engineering Department, Islamic Azad University of

Mashhad, Mashhad. His current research interests

include cloud computing, IoT, and smart city.

Nastaran Evaznia received the

M.S. degree in Computer

Engineering from Azad

University, Mashhad, Iran. Since

2013, she has been a university

lecturer at Azad University of

Mashhad, with several years of

experience in the IT industry. She

has developed expertise in cloud computing, IoT, fog

computing, and blockchain. Her research interests

include cloud computing, fog computing, IoT, and

blockchain technologies.

Tahereh Khodabakhshi was

born in Neyshabur, Iran, in 1986.

She earned her M.S. degree in

Information Technology

Engineering from Islamic Azad

University in Mashhad, Iran, in

2020. Since 2021, she has been a

Computer Teacher in the

computer department at Rashed Institute. Her current

research interests include cloud computing,

blockchain, and fog computing.

https://doi.org/10.1016/j.comcom.2022.01.016
https://doi.org/10.1016/j.jksuci.2023.01.016
https://doi.org/10.1016/j.matpr.2022.03.535
https://doi.org/10.1016/j.simpat.2020.102144

