

 http://dx.doi.org/10.22133/10.22133/ijwr.2024.449772.1212
. A. Rezai, " Novel architecture for efficient implementation of modular exponentiation algorithm", International Journal of Web Research, vol.7,

no.1,pp.61-67, 2024, doi: http://dx.doi.org / 10.22133/ijwr.2024.449772.1212.

*Coressponding Author

Article History: Received: 24 August 2023; Revised: 18 December 2023; Accepted: 7 January 2024.

Copyright © 2022 University of Science and Culture. Published by University of Science and Culture. This work is licensed under a Creative Commons

Attribution-Noncommercial 4.0 International license(https://creativecommons.org/licenses/by-nc/4.0/). Noncommercial uses of the work are permitted,

provided the original work is properly cited.

Novel Architecture for Efficient

Implementation of Modular Exponentiation

Algorithm

Abdalhossein Rezai*

Department of Electronical Engineering, University of science and culture, Tehran, Iran;

rezai@usc.ac.ir

A B S T R A C T

One of the most difficult problems in web research is security. Cryptography is the fundamental technique

utilized in secure communication. One key element of cryptography is Public-Key Cryptography (PKC). In

many PKCs, the Modular Exponentiation (ME) with large modulus is a crucial process. Efficient architecture

design and hardware implementation of large integer Modular Exponentiation (ME) plays a vital role in

computer science such as public key cryptography. Therefore, many researchers have devoted special interest

to provide efficient architecture design and hardware implementation of large integer ME. This study presents

and evaluates a novel architecture for the hardware implementation of ME. To achieve the maximum

architectural and timing improvements, the critical path of the Left-to-Right (LtR) and Right-to-Left (RtL) ME

architectures is reorganized and reordered using a modified modular multiplication. The implementation

results on a Xilinx Virtex 5 FPGA demonstrate that the developed ME architectures have a better performance

in comparison with other well-known ME architectures so far in the literatures.

Keywords— Web Security, Public Key Cryptography, Modular Exponentiation Architecture, Modular

Multiplication.

1. Introduction

Nowadays, infrastructures and industries must
link to open access networks like the Internet. As
such, one of the difficult issues in web research is
security. Cryptography is the fundamental technique
utilized in secure communication. One crucial
element of cryptography is Public-Key Cryptography
(PKC). In many PKCs, the Modular Exponentiation
(ME) with large modulus is a crucial process. The
Efficient architecture design and hardware
implementation of large integer ME have received
high attention in recent years due to their applications
in computer science such as public key cryptography
[1-4]. This operation computes C= ME mod N, where
N and E denote modulus and exponent, respectively,
and 0≤M<N. The ME is basically performed by
repeating the Modular Multiplication (M2). Thus, the
efficiency, throughput rate, and quantity of M2s
needed determine the ME's performance completely
[2-6]. Without the use of hardware acceleration, it is
difficult to obtain the extremely efficient and high
throughput rate for big integer ME. Therefore, many

researchers [4, 5, 7-12] have devoted special interest
to provide efficient architecture design and hardware
implementation of large integer ME.

The Left-to-Right (LtR) and Right-to-Left (RtL)
ME algorithms are typical used M2 algorithms.
Several computational techniques such as common-
multiplicand-multiplication technique [1, 9, 13-15]
and sliding window technique [3, 8, 16] have been
developed to reduce the number of required M2, but
these techniques required extra area [3, 8]. So, these
techniques are suitable for software or
software/hardware implementation [4, 7, 9, 17].

On the other hand, Montgomery M2 (M3) [18] is
a widely used M2 in the modular exponentiation. It is
because in the M3, the trail division is replaced by
simple right shift and addition, which are simple for
hardware implementation [4, 5, 10]. To increase the
efficiency of the M3, several hardware
implementations have been developed that can be
classified into three categories: systolic array
architectures [19-22], high-radix architectures [4, 5,
7, 23-27], and scalable architectures [22, 26, 28-31].

http://dx.doi.org/10.22133/10.22133/ijwr.2024.449772.1212

International Journal of Web Research, Vol. 7, No. 1, Winter-Spring, 2024

62

A good review of hardware implementation for ME
algorithms can be found in. [32].

Among them, Rezai and Keshavarzi [5] have
proposed an efficient architecture for M2 and named
it Compact Signed-Digit M2 (CSDM2) in which
high-radix partial multiplication is replaced by one
multi-bit shift and only one binary
addition/subtraction.

This study presents a comprehensive algorithmic
and architectural study on ME to utilize CSDM2 as
its building block in the RtL and LtR modular
exponentiation. The developed architectures are
implemented on a Xilinx Virtex 5 FPGA. The FPGA
implementation results indicate that the proposed
architectures have advantages in comparison with
other well-known modified ME architectures [4, 7, 9,
10].

The rest of this paper is as follows: section 2
briefly describes the preliminaries for the developed
algorithms/architectures. Section 3 presents the
proposed algorithms/architectures. Section 4
provides hardware implementation results and
discussion. Finally, section 5 concludes this paper.

2. Preliminaries

2.1. M2 Algorithm/Architecture

M3 [18] is a typical used M2 in computer
arithmetic. This operation speeds up the M2 by
utilizing the simple right shift instead of the trial
division [4, 5]. Algorithm 1 displays the binary
version of M3 algorithm.

In this algorithm, the inputs are n-bit integers X, Y
and N. The output is S (n) =X.Y.R mod N, where xi

denotes the ith bit of X, S(i) denotes S in the ith
iteration, and R=2-n . This method computes its
output in terms of n clock cycles. Thus, it is a time-
consuming process [5, 13, 33].

To increase the efficiency of the M3, several
hardware implementations have been developed [4,
5, 7, 19-21, 23, 24, 28-31]. Among them, Rezai and
Keshavarzi [5] have proposed the CSDM2 that is an
efficient M2 architecture. In the CSDM2, a multi-bit
shift and only one binary addition/subtraction is
utilized instead of high-radix partial multiplication.
They used a new integer representation for the
multiplier and named it CSD representation. In this
representation, each digit contains two parts (Typei,
Length(i)), where Typei indicate the nonzero digit and
Length(i) denotes the consecutive zero bits count.
They used the canonical recoding [34, 35] and
partitioning technique [3, 16] to increase the
applicability of this idea. Algorithm 2 shows the
CSDM2 algorithm.

The inputs of this algorithm are Y, N, and XCSD,
where Y, N and XCSD denote the multiplicand

modulus, and CSD representation of multiplier,
respectively. The output is S=XY2-(n+2) mod N. Using
the CSDM2, the computation of P:=S(i)+X(i)Y is
simplified to P:=S(i), P:=S(i)-Y, or P:=S(i)+Y based
on Length(i)=l+1, Length(i)≠l+1 and Typei=1, or
Length(i)≠l+1 and Typei=0, respectively in steps 5-8
[5]. Figure 1 shows the CSDM2 architecture [5].

This architecture contains a NAND gate, a
multiplexer (Mux), two modified Barrel shifters, a 3-
bit shift register, two CSAs, two XORs, three
registers, and a q(i).M generator [5].

2.2. ME algorithm

This operation is usually implemented by
utilizing the M3 and binary methods [1-4]. The LtR
and RtL ME algorithms are two well-known
algorithms in the binary methods [1-4].

Algorithm 3 shows the LtR ME algorithm utilized
for computing where N, E, and M<N indicates an n-
bit modulus, a ke-bit exponent, an n-bit massage.

The value of R in algorithm 3 is 2-(n+2) or 2-n based
on the M2 algorithm presented in [36]. In addition,
the multiplication and square operations depend on
the data, and the exponent bits are read from left to
right. The LtR ME algorithm performs ME algorithm

Cryptocurrencies and Risk-based Strategies Portfolio Diversification

63

Mux

CSA 1CSA 1

Reg.Reg.

CSA 2CSA 2

q
(i)

.M generatorq
(i)

.M generator

Modified Barrel ShifterModified Barrel Shifter

Modified Barrel ShifterModified Barrel Shifter
Typei

0

Y

Cin

P

FSel

S

q2M

S1

k

M

P(i) 2...0

q1M

S2

3 bits shift register3 bits shift register

XCSD

Length1

Reg. Reg.

0 1

k

Length0

Compact SD

converter

Compact SD

converter

X

Figure. 1. The CSDM2 architecture

by using 1.5ke+2 multiplication operations on
average [4, 7].

The RtL ME algorithm is also utilized to calculate
C= ME mod N. This algorithm scans the exponent bits
from right-to-left [4, 7]. Algorithm 4 shows the RtL
ME algorithm.

In this algorithm, the square and multiplication
operations can run concurrently. As a result, area
overhead is increased while the overall computation
time is decreased. The RtL ME algorithm performs
the ME algorithm by using ke+2 multiplication
operations [4, 7].

3. The proposed ME Algorithm/Architecture

In this section, a comprehensive algorithmic and
architectural study on the ME is presented to achieve
the maximum architectural and timing
improvements, the critical path of the LtR and RtL
ME architectures is reorganized and reordered using
the CSDM2. So, the reformulation of the LtR and RtL

ME algorithms are considered and then, the results
are mapped to derive efficient ME architectures.

3.1. The Proposed RtL CSDME

 Algorithm 5 shows the developed RtL CSDME
algorithm.

In the developed RtL CSDME algorithm, R=2-(n+2),
MCSD, and RCSD denote F and R in the CSD
representation, respectively. It should be noted that
the format conversion in the developed RtL CSDME

International Journal of Web Research, Vol. 7, No. 1, Winter-Spring, 2024

64

algorithm affects the calculation time. It is because
the format conversion of F in the developed RtL
CSDME algorithm is processed in parallel with
previous step. More specifically, steps 4 and 8 are
performed after one multiplication delay in
comparison with steps 3 and 7, respectively. Figure 2
shows the proposed RtL CSDME architecture.

In the proposed RtL CSDME architecture, both
multiplication operation and square operation are
performed in parallel. To control the process of step
3 and step 7 of algorithm 5, the signal Select1 is used
as follows: when Select1=0, step 7 is executed and
when Select1=1, step 3 is executed. To control the
performance of step 6 and step 10 of this algorithm,
the signal Select2 is used as follows: when Select2=0,
step 6 is performed, and when Select2=1, step 10 is
performed. The proposed RtL CSDME algorithm
performs ME algorithm by using ke+4 multiplication
operations.

3.2. The Proposed LtR CSDME

Algorithm 6 displays the developed LtR CSDME
algorithm.

In this algorithm, the format conversion
reasonably affects the computation time. Figure 3
shows the developed LtR CSDME architecture.

 In the proposed LtR CSDME architecture, only
one CSDM2 unit is used. To control the operand 1
and operand 2 in this architecture which executes
steps 3, 5, 8 and 12 of the CSDME algorithm, the
signal Select is used. The developed LtR CSDME
algorithm performs ME algorithm by using 1.5ke+4
multiplication operations on average.

4. Hardware Implementation and Performance

Comparison

In this section, the proposed RtL and LtR CSDME
architectures have been implemented using
synthesizable VHDL code, and synthesized, placed
and routed to Xilinx XC5VLX20T-2FF323 FPGA by
executing Xilinx ISE 14.1.

The implementation results of the proposed RtL
and LtR CSDME architectures compared to other
well-known modified RtL and LtR ME architectures
in [4, 7-10] for 1024-bit length modulus are displayed
in Table 1. In this table, Method denotes the used
method for performing modular exponentiation. fmax
denotes the maximum frequency in terms of MHz.
The total delay time (Time) denotes in terms of µs.
The number of occupied slices for FPGA design is
shown by Area. The A×D denotes the delay time by
area measurement in slice×milisecond. The
throughput rate is displayed in terms of Kb/s.

Based on the results that are indicated in Table 1,
the developed RtL CSDME architecture has the best
performance in terms of the throughput rate, and total

delay time in comparison with other well-known
modified ME architectures in [4, 7] for 1024-bit
modulus. In addition, the developed LtR CSDME
architecture has a better performance in terms of the
throughput rate, and total delay time compared to
other modified LtR ME architectures in [4, 7, 9, 10]
for 1024-bit modulus. Our developed LtR CSDME
architecture has also better performance in terms of
area×time complexity in comparison with LtR ME
architectures in [8, 10] for 1024 modulus. The
area×time complexity in our CSDME architecture is
improved by about 58% and 24% in comparison with
ME architecture in[10] and [8], respectively .The
only ME architecture that has slightly better
performance in terms of throughput and latency in
comparison with our CSDME architecture is the ME
architecture presented in [8]. Although the area and
area×time complexity in the ME architecture in [8]
are 2 and 1.33 times bigger than our CSDME
architecture.

5. Conclusion

Efficient hardware implementation of computer
arithmetic algorithms such ME algorithms has been
in the focal point of major research efforts for the last
decades. This paper presented a comprehensive
algorithmic and architectural study to improve the
performance of the hardware implementation of the
ME algorithm. The proposed RtL and LtR CSDME
architectures were implemented on Xilinx virtex 5
FPGA. The FPGA implementation results showed
that the developed ME architectures provided an
improvement performance in terms of throughput
rate and total delay time compared to other modified
exponentiation architectures in [4, 7, 9, 10].

Cryptocurrencies and Risk-based Strategies Portfolio Diversification

65

 Shift Register

E

Update

Load

ei

Compact SD

modular

multiplication
Compact SD

representation

Register

0 1

MCSD

Next-MCSD

MCSD

R2
CSD

0 1

F M

Select1

F

Mux1 Mux2

N

Mux1

Select1

Compact SD

modular

multiplication

Register

Initially: R

0 1

MCSD
1CSD

C S

S

Select2

Mux 3

N

Figure. 2. The proposed RtL CSDME architecture

 compact SD modular multiplication
Compact SD

representation

Register

Initially: RCSD

Register

M SCSD
R

2
CSD S F 1

Select

Operand 2Operand 1

SCSD F

00 01 10 11

Mux1Mux2

00 01, 10,11

N

Shift Register

E

Update

Load

ei

C

Figure. 3. The proposed LtR CSDMEarchitecture

International Journal of Web Research, Vol. 7, No. 1, Winter-Spring, 2024

66

Table 1: Comparison of ME implementations for 1024- bit length of modulus in FPGA

Reference Method Device fmax (MHz) Time (ms) Area (Slice) A×D (Slice×ms) Throughput (kb/s)

[4] d=1 RtL Virtex 5 526 2.98 2982 8.88 343.2

[4] d=4 RtL Virtex 5 222 1.79 6217 11.13 572.5

[7] RtL Virtex 5 401 1.37 6776 9.28 747.4

This paper RtL Virtex 5 419 1.31 6757 8.85 783.2

[4] d=2 LtR Virtex 5 385 1.38 7303 10.08 744.6

[9] Work II LtR Virtex 5 345 3.18 3218 10.23 322

[9] Work IV LtR Virtex 5 290 1.95 5225 10.2 525.1

[10] LtR Virtex 5 274 3.83 7158 27.42 267.4

[7] LtR Virtex 5 401 0.92 12716 11.70 1113

[8] LtR Virtex 6 165 0.567 26489 15.02 1805.9

This paper LtR Virtex 5 419 0.88 12683 11.29 1165.9

Declarations

Authors' contributions

The author did not receive support from any
organization for the submitted work.

Conflict of interest

The author declares that he has no conflict of interest.

References

[1] A. Rezai and P. Keshavarzi, "Algorithm design and
theoretical analysis of a novel CMM modular
exponentiation algorithm for large integers," RAIRO-
theoretical informatics and applications, vol. 49, no. 3, pp.
255-268, 2015. https://doi.org/10.1051/ita/2015007.

[2] M. Issad, B. Boudraa, M. Anane and N. Anane,
"Software/hardware co-design of modular exponentiation
for efficient RSA cryptosystem," Journal of Circuits,
Systems, and Computers, vol. 23, no. 03, p. 1450032, 2014.
https://doi.org/10.1142/S0218126614500327.

[3] N. Nedjah and L. de Macedo Mourelle, "High-performance
hardware of the sliding-window method for parallel
computation of modular exponentiations," International
journal of parallel programming, vol. 37, pp. 537-555, 2009.
https://doi.org/10.1007/s10766-009-0108-7.

[4] G. D. Sutter, J. P. Deschamps and J. L. Imana, "Modular
multiplication and exponentiation architectures for fast RSA
cryptosystem based on digit serial computation," IEEE
Transactions on industrial electronics, vol. 58, no. 7, pp.
3101-3109, 2010.
https://doi.org/10.1109/TIE.2010.2080653

[5] A. Rezai and P. Keshavarzi, "Compact SD: A new encoding
algorithm and its application in multiplication,"
International journal of computer mathematics, vol. 94, no.
3, pp. 554-569, 2017.
https://doi.org/10.1080/00207160.2015.1119269.

[6] B. Zhang, Z. Cheng and M. Pedram, "Design of a High-
Performance Iterative Barrett Modular Multiplier for Crypto
Systems," in IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 32, no. 5, pp. 897-910,
2024. https://doi.org/10.1109/TVLSI.2024.3368002.

[7] A. Rezai and P. Keshavarzi, "High-throughput modular
multiplication and exponentiation algorithms using multibit-
scan–multibit-shift technique," in IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 23, no.

9, pp. 1710-1719, 2015.
https://doi.org/10.1109/TVLSI.2014.2355854.

[8] T. Wu, "High-Performance RNS Modular Exponentiation
by Sum-Residue Reduction," in IEEE Canadian Journal of
Electrical and Computer Engineering, vol. 46, no. 2, pp.
137-143, 2023,
https://doi.org/10.1109/ICJECE.2023.3243888.

[9] T. Wu, S. Li and L. Liu, "Fast, compact and symmetric
modular exponentiation architecture by common-
multiplicand Montgomery modular multiplications,"
Integration, vol. 46, no. 4, pp. 323-332, 2013.
https://doi.org/10.1016/j.vlsi.2012.09.002.

[10] A. P. Fournaris, "Fault and simple power attack resistant
RSA using Montgomery modular multiplication," in
Proceedings of 2010 IEEE International Symposium on
Circuits and Systems, 2010: IEEE, pp. 1875-1878.
https://doi.org/10.1109/ISCAS.2010.5537879.

[11] S. Vollala, "Energy efficient triple-modular exponential
techniques for batch verification schemes," Journal of
Cryptographic Engineering, vol. 14, pp. 295–309, 2024,
https://doi.org/10.1007/s13389-024-00348-2.

[12] U. Tiwari, S. N. R. Vollala and S. Begum, "Improving the
performance of authentication protocols using efficient
modular multi exponential technique," Multimedia Tools
and Applications, vol. 83, no. 4, pp. 11061-11076, 2024,
https://doi.org/10.1007/s11042-023-15726-x.

[13] A. Rezai and P. Keshavarzi, "A new CMM-NAF modular
exponentiation algorithm by using a new modular
multiplication algorithm," Trends in applied sciences
research, vol. 7, no. 3, p. 240-247, 2012.
https://scialert.net/abstract/?doi=tasr.2012.240.247.

[14] C. L. Wu, "An efficient common-multiplicand-
multiplication method to the Montgomery algorithm for
speeding up exponentiation," Information Sciences, vol.
179, no. 4, pp. 410-421, 2009.
https://doi.org/10.1016/j.ins.2008.10.004.

[15] J. C. Ha and S. J. Moon, "A common-multiplicand method
to the Montgomery algorithm for speeding up
exponentiation," Information processing letters, vol. 66, no.
2, pp. 105-107, 1998. https://doi.org/10.1016/S0020-
0190(98)00031-3

[16] N. Nedjah and L. D. M. Mourelle, "A hardware/software co-
design versus hardware-only implementation of modular
exponentiation using the sliding-window method," Journal
of Circuits, Systems, and Computers, vol. 18, no. 02, pp.
295-310, 2009.
https://doi.org/10.1142/S0218126609005071.

[17] A. Rezai, M. Abbasi, and A. Karimi, "Algorithm Design and
Theoretical Analysis of a New Bit Forwarding Large Integer

Cryptocurrencies and Risk-based Strategies Portfolio Diversification

67

Modular Exponentiation Algorithm," Computational
Sciences and Engineering, vol. 2, no. 2, pp. 227-238, 2022.
https://doi.org/10.22124/cse.2023.23755.1041.

[18] P. L. Montgomery, "Modular multiplication without trial
division," Mathematics of computation, vol. 44, no. 170, pp.
519-521, 1985.

[19] C. D. Walter, "Systolic modular multiplication," in IEEE
transactions on computers, vol. 42, no. 3, pp. 376-378, 1993.
https://doi.org/10.1109/12.210181.

[20] J. Xie, J. jun He, and P. K. Meher, "Low latency systolic
Montgomery multiplier for finite field $ GF (2^{m}) $ based
on pentanomials," IEEE transactions on very large scale
integration (VLSI) systems, vol. 21, no. 2, pp. 385-389,
2012. https://doi.org/10.1109/TVLSI.2012.2185257.

[21] A. P. Fournaris and O. Koufopavlou, "A new RSA
encryption architecture and hardware implementation based
on optimized Montgomery multiplication," in 2005 IEEE
International Symposium on Circuits and Systems, IEEE,
2005, pp. 4645-4648.
https://doi.org/10.1109/ISCAS.2005.1465668.

[22] L. Noyez, N. E. Mrabet, O. Potin and P. Veron,
"Montgomery Multiplication Scalable Systolic Designs
Optimized for DSP48E2," ACM Transactions on
Reconfigurable Technology and Systems, vol. 17, no. 1, pp.
1-31, 2024. https://doi.org/10.1145/3624571.

[23] T. Blum and C. Paar, "High-radix Montgomery modular
exponentiation on reconfigurable hardware," IEEE
transactions on computers, vol. 50, no. 7, pp. 759-764, 2001.
https://doi.org/10.1109/12.936241.

[24] G. Sassaw, C. J. Jimenez and M. Valencia, "High radix
implementation of Montgomery multipliers with CSA," in
2010 International Conference on Microelectronics, IEEE,
2010, pp. 315-318.
https://doi.org/10.1109/ICM.2010.5696148.

[25] S. Immareddy, A. Sundaramoorthy and A. Alagarsamy,
"Design and implementation of hybrid (radix-8 Booth and
TRAM) approximate multiplier using 15-4 approximate
compressors for image processing application," Journal of
Real-Time Image Processing, vol. 21, no. 2, p. 50, 2024,
https://doi.org/10.1007/s11554-024-01427-7.

[26] B. Zhang, Z. Cheng and M. Pedram, "High-radix design of
a scalable montgomery modular multiplier with low
latency," IEEE Transactions on Computers, vol. 71, no. 2,
pp. 436-449, 2022.
https://doi.org/10.1109/TC.2021.3052999.

[27] A. Arunachalamani, V. Venkatasubramani, V. V.
Thyagarajan and S. Rajaram, "High Radix Design for
Montgomery Multiplier in FPGA platform," in 2023
International Conference on Recent Advances in Electrical,
Electronics, Ubiquitous Communication, and
Computational Intelligence (RAEEUCCI), IEEE, 2023, pp.
1-5.
https://doi.org/10.1109/RAEEUCCI57140.2023.10134351.

[28] A. F. Tenca, G. Todorov and C. K. Koç, "High-radix design
of a scalable modular multiplier," in Cryptographic
Hardware and Embedded Systems—CHES 2001: Third

International Workshop Paris, France, May 14–16, 2001
Proceedings 3, Springer, 2001, pp. 185-201.
https://doi.org/10.1007/3-540-44709-1_17.

[29] A. Ibrahim, H. Elsimary and F. Gebali, "Low-power, high-
speed unified and scalable word-based radix 8 architecture
for montgomery modular multiplication in GF (p) and GF (2
n)," Arabian Journal for Science and Engineering, vol. 39,
pp. 7847-7863, 2014. https://doi.org/10.1007/s13369-014-
1363-5.

[30] A. F. Tenca and Ç. K. Koç, "A scalable architecture for
modular multiplication based on Montgomery's algorithm,"
IEEE Transactions on computers, vol. 52, no. 9, pp. 1215-
1221, 2003. https://doi.org/10.1109/TC.2003.1228516.

[31] J. H. Ye, T. W. Hung and M. D. Shieh, "Energy-efficient
architecture for word-based Montgomery modular
multiplication algorithm," in 2013 International Symposium
onVLSI Design, Automation, and Test (VLSI-DAT), IEEE,
2013, pp. 1-4. https://doi.org/10.1109/VLDI-
DAT.2013.6533882.

[32] A. E. Cohen and K. K. Parhi, "Architecture optimizations
for the RSA public key cryptosystem: A tutorial," IEEE
Circuits and Systems Magazine, vol. 11, no. 4, pp. 24-34,
2011. https://doi.org/10.1109/MCAS.2011.942747

[33] H. R. Ahmadi and A. Afzali-Kusha, "A low-power and low-
energy flexible GF (p) elliptic-curve cryptography
processor," Journal of Zhejiang University SCIENCE C,
vol. 11, no. 9, pp. 724-736, 2010.
https://doi.org/10.1631/jzus.C0910660

[34] G. W. Reitwiesner, "Binary arithmetic," in Advances in
computers, vol. 1, pp. 231-308.
https://doi.org/10.1016/S0065-2458(08)60610-5

[35] G. A. Ruiz and M. Granda, "Efficient canonic signed digit
recoding," Microelectronics journal, vol. 42, no. 9, pp. 1090-
1097, 2011. https://doi.org/10.1016/j.mejo.2011.06.006.

[36] C. D. Walter, "Montgomery exponentiation needs no final
subtractions," Electronics letters, vol. 35, no. 21, pp. 1831-
1832, 1999. https://doi.org/10.1049/el:19991230.

 Abdalhossein Rezai is an

Associate professor in

University of science and

culture, Tehran, Iran. He

received Ph.D. degree in

electrical engineering from

Semnan University, Semnan,

Iran in 2013, M.S. and B.S.

degree in electrical

engineering from Isfahan

University of technology, Isfahan, Iran in 1999, and

2001, respectively. His research interests include

VLSI design, nanoelectronics, computer arithmetic,

cryptography engineering and WBAN.

https://doi.org/10.1049/el:19991230

