

 http://dx.doi.org/10.22133/ijwr.2024.422357.1191
. B. Sefid-Dashti, J. Salimi Sartakhti, H. Daghigh, " BitML: A UML Profile for Bitcoin Blockchain", International Journal of Web Research,

vol.6, no.2,pp.1-18, 2023, doi: http://dx.doi.org/10.22133/ijwr.2024.422357.1191.

*Coressponding Author

Article History: Received:25 June 2023; Revised: 22 October 2023; Accepted: 29 October 2023

Copyright © 2022 University of Science and Culture. Published by University of Science and Culture. This work is licensed under a Creative Commons

Attribution-NonCommercial 4.0 International license(https://creativecommons.org/licenses/by-nc/4.0/). Noncommercial uses of the work are permitted,

provided the original work is properly cited.

BitML: A UML Profile for Bitcoin

Blockchain

Behrouz Sefid-Dashtia, Javad Salimi Sartakhtib*, Hasan Daghighc
a Electrical and computer engineering department, University of Kashan, Kashan, Iran,:

b.sefiddashti@grad.kashanu.ac.ir
b Electrical and computer engineering department, University of Kashan, Kashan, Iran; salimi@kashanu.ac.ir
c Faculty of Mathematical Science, University of Kashan, Kashan, Iran; hasan@kashanu.ac.ir

A B S T R A C T

Blockchain is a technology that enables distributed and secure data structures for various business domains.

Bitcoin is a notable blockchain application that is a decentralized digital currency with immense popularity

and value. Bitcoin involves many concepts and processes that require modelling for better comprehension and

development. Modelling is a technique that simplifies and abstracts a system at a certain level of detail and

accuracy. Software modelling is applied in Model-Driven Engineering (MDE), which automates the software

development process using models and transformations. Domain-specific languages (DSLs) are languages that

are customized for a specific domain and offer intuitive syntax for domain experts. To address the need for

specialized tools for Bitcoin blockchain modelling, we propose a novel Unified Modelling Language (UML)

profile that is specifically designed for this domain. UML is a standard general-purpose modelling language

that can be extended by profiles to support specific domains. A meta-model is a model that defines the syntax

and semantics of a modelling language. The proposed meta-model, which includes stereotypes, tagged values,

enumerations, and constraints defined by Object Constraint Language (OCL), is defined as a UML profile.

The proposed meta-model is implemented in the Sparx Enterprise Architect (Sparx EA) modelling tool, which

is a widely used tool for software modelling and design. To validate the practicality and effectiveness of the

proposed UML profile, we developed a real-world case study using the proposed meta-model and conducted

an evaluation using the Architecture Tradeoff Analysis Method (ATAM). The results showed the proposed

UML profile promising.

Keywords— Meta-model, UML profile, Bitcoin, Blockchain, OCL, Domain-specific language.

1. Introduction

Blockchain is a revolutionary technology that
offers enormous advantages for various business
domains. It enables the creation of decentralized
applications that run on a distributed network of
nodes, without the need for intermediaries or central
authorities. Blockchain applications can provide
transparency, trust, security, and efficiency for
various transactions and processes. One of the most
prominent and pioneering applications of blockchain
is Bitcoin, a digital currency that operates on a peer-
to-peer network and uses cryptographic techniques
to ensure its security and validity. Bitcoin has
attracted significant attention from researchers,
developers, investors, regulators, and the general
public. However, Bitcoin also involves many

complex concepts and processes that need to be
modeled for better understanding and development.

Modeling is a technique that is used in many
fields to share ideas, reduce complexity, align
different viewpoints, and provide abstractions of a
system at some level of precision and detail.
Modeling is also a prerequisite for developing
blockchain-specific software engineering best
practices [1] and modeling profiles, as well as
relevant methodologies and reference architectures
[2]. Models are used in model-driven engineering
(MDE), which is an approach that aims to provide
feedback on model’s correctness prior to
development [3], help reduce complexity, focus on
software development goals, and leave other aspects
aside. In addition, Domain-specific languages
(DSLs) are languages that provide domain-specific
primitives which not only ease model development

http://dx.doi.org/10.22133/ijwr.2024.422357.1191

 International Journal of Web Research, Vol. 6, No. 2, Summer- Autumn, 2023

2

but also present intuitive syntax for domain experts,
and the possibility of code generation for narrow
domains [4].

Moreover, complementary models might be used
to provide important insights into some complex
phenomena. Unified Modeling Language (UML) is
a graphical language standardized by the Object
Management Group (OMG) for modeling software-
intensive systems, and is executable, at least in part
[5]. While different UML diagrams are
complementary and appropriate for different aspects
of software systems, UML provides extensibility
mechanisms to define meta-models known as UML
profiles [6-7]. A profile is a lightweight mechanism
to extend the UML standard [6] and defines domain-
specific or platform-specific elements, connectors,
and diagrams which aim to facilitate the modeling of
applications for people interested in that domain or
platform.

Various studies have been carried out on
blockchain modeling, but few of them have focused
on Bitcoin-specific modeling. For example,
Bartoletti and Zunino [8] formalized the bitcoin
contract by defining a calculus; their work
introduces formalism to validate defined contracts
but its usage requires prior knowledge of formal
methods and underlying mathematical constructs.
Moreover, in contrast to our work, their work
concentrates on validation instead of abstraction and
simplification that can foster software development
in the bitcoin application domain. Rocha and
Ducasse [9] used a UML class diagram to model
smart contracts; they used a class with “chain” icon
to represent the smart contracts, but they used
neither stereotyping (i.e. stereotypes, tagged values,
and constraints) nor comprehensive combinations of
connectors (e.g., dependencies, composition, and
aggregation). Bollen [10] applied fact-based
modeling to provide conceptual model of
Hyperledger Fabric using fact definition and rule
validation, but his model requires a significant
cognitive load to cross through annotated diagrams
and the provided tables. The integration and
orchestration [11] of blockchain-specific services
with other organizational services have also been
studied [12]. Vingerhouts et al. [12] used i*
modeling notation and UML Use Case and
Sequence diagrams for requirement engineering and
modeled contract interactions in lieu of detailed
design. Despite these attempts at blockchain
modeling, most of them are modeling instead of
meta-modeling and to the best of our knowledge,
there is no bitcoin-specific meta-model supported by
tools, and this study is the first one to have aimed at
assisting application development using profiling.

The motivation for this study stems from the
observation that Bitcoin, as a prominent and
pioneering application of blockchain technology,

involves many complex concepts and processes that
need to be modeled for better understanding and
development. However, there is a lack of adequate
and effective modeling tools and techniques that can
capture the essence and specifics of Bitcoin
applications. Existing studies on blockchain
modeling have mostly focused on general aspects of
blockchain or other platforms, such as smart
contracts, Hyperledger Fabric, or Ethereum.
Moreover, most of these studies are modeling
instead of meta-modeling, and do not provide tool
support or automated conformance checking.
Therefore, there is a need for a domain-specific and
platform-specific meta-model that can facilitate the
modeling of Bitcoin applications, and that can be
implemented in a widely used modeling tool, such
as Sparx EA.

This study aims to build on extant research to
design and evaluate a new viable meta-model for
Bitcoin applications. Hence, in this study, we build
on UML, OCL, and bitcoin’s ontology to propose a
UML profile which aligns models with bitcoin’s
ontology and automates evaluation of conformance.
The former is achieved by defining relevant
stereotypes, tagged values, and enumeration inside
our profile, while the latter is achieved by defining
relevant OCL constraints. Our profile has been
implemented in the Sparx EA modeling tool.

We believe that our study contributes to the
advancement of knowledge and practice in the field
of blockchain and Bitcoin modeling, by providing a
novel and useful meta-model that can assist
developers and researchers in creating and analyzing
Bitcoin applications. We also hope that our study
inspires further research on the topic, such as
extending the profile to cover other aspects of
Bitcoin, or applying the profile to other blockchain
platforms or applications.

The remainder of this paper has been structured
as follows: Section 2 briefly introduces some
concepts upon which our approach is built. Our
proposed UML profile is presented in Section 3. In
the next section, a case study investigated and
modeled by the proposed UML profile is presented.
Section 5 elaborates the conducted evaluation.
Finally, the paper is summed up in Section 6, and
conclusions and future works are discussed.

2. Background

2.1. Bitcoin and Blockchain

Blockchain is a distributed ledger that does not
rely on a central node of control. It records
cryptographically signed, irrevocable, and auditable
events (i.e. transactions) that are shared across
participants who can independently store, verify,
and audit information over a peer-to-peer network.
`and each block contains some transactions and uses

BitML: A UML Profile for Bitcoin Blockchain

3

a hash value [13] to refer to a previous block. This
makes blockchain traceable and transparent. When
the majority of participants agree and append a
block of transactions to their local copy of
blockchain, the content of that block becomes
immutable [14].

There are different types of blockchain,
depending on the level of access and control. A
public blockchain allows anyone to join, and
participants are anonymous with equal rights to
access and validate transactions. A private
blockchain is controlled by a single organization that
decides on membership and assigns the roles that
each node can play in the blockchain. A consortium
blockchain, also known as federated blockchain, is
controlled by a group of organizations that
collaborate to find solutions. A hybrid blockchain is
a combination of a private and a public blockchain.
It is controlled by a single organization, and
transactions are made and stored privately, but they
can be made public and verified by public
blockchain members. Finally, emerging fourth and
fifth generation blockchains use microprocessors,
mobile devices, and Artificial Intelligence (AI) to
improve security and scalability, and assist mining
by features such as AI based consensus algorithms.
Bitcoin is powered by a public blockchain. The rest
of this sub-section explains the bitcoin blockchain in
more detail.

Bitcoin is secured by mining through significant
computational efforts and consensus through the
commitment of the majority of blockchain nodes.
Mining is a process that enhances the security of
bitcoin by introducing the computational effort
required for adding a new block to the blockchain
[15]. Miners are rewarded with new coins generated
in each new block, and they receive a transaction fee
from each transaction included in that new block.

To achieve these rewards, miners have to
compute a cryptographic hash function several
times, until they find a block hash value that is
smaller than a predefined threshold called Target
Value. The resulting solution is called hashcash,
which is a Proof-of-Work (PoW) system invented by
Adam Back in 1997 [16] that ensures that issued
coins are backed by significant computational
efforts. The computed hash and all contained
transactions are evaluated by all nodes of the bitcoin
network, and each node adds the confirmed block to
its local copy of the blockchain. When the majority
of nodes participating in the bitcoin network add the
new block to their local copy of blockchain,
consensus is achieved. Miners use Nonce to
compute hash values. Nonce is a random 32-bit (4-
byte) number stored in a bitcoin block header to
achieve a block hash that is smaller than Target
Value (i.e. a hash value that has enough leading
zeros). Target Value is used to adjust mining

difficulty. In addition to the 4-byte nonce, miners
can use 8 bytes of the coinbase transaction as an
extra nonce field [15].

There are different types of mining. A miner
may perform mining operations with no help (i.e.
solo mining), use cloud resources (i.e. cloud
mining), or join a mining pool composed of a large
number of miners (i.e. pooled mining). These types
of mining use different protocols that are included in
our proposed meta-model. Bitcoin blockchain stores
financial transactions and defines a coin as a chain
of digital signatures [17]. Each transaction encodes
the transfer of money between participants and
includes at least one input, at least one output, and a
transaction fee. An exception in this case is the first
transaction of each block, which is a special
transaction that generates a new coin and is called
coinbase transaction [15].

A transaction output specifies the number of
Satoshis to be transferred and provides a locking-
script that indicates the next owner of the coin(s). A
transaction output can be locked by any equation
defined by the Script language of bitcoin [15], but
most of them (i.e. Pay-to-Public-Key (P2PK), Pay-
to-Public-Key-Hash (P2PKH), Multi-Signature
(multisig), and Pay-to-Script-Hash (P2SH) [15]) use
an Elliptic Curve Digital Signature Algorithm
(ECDSA) as proof of ownership [18]. A transaction
input consists of two fields: the address of an
Unspent Transaction Output (UTXO) and an
unlocking-script, which is checked against the
locking-script of the referred transaction output. A
transaction fee is collected by mining nodes. The fee
is not explicitly stated in a transaction and is defined
as the difference between the sum of transaction
inputs and the sum of transaction outputs [15].

2.2. UML Profiling

Different notations and meta-modeling
frameworks [19, 20, 21] and extension of these
meta-models [4, 7, 22, 23, 24] exist. Meta Object
Facility (MOF) [20] is a well-accepted framework
developed by OMG, and approaches model
development in multiple levels of abstraction (e.g., a
four-layered metamodel architecture including meta-
meta-models, meta-models, models, and user
objects). Subsequent layers allow navigation from
an instance to its meta-object (its classifier) and vice
versa. UML itself has been defined by MOF.
Profiles are lightweight mechanisms to extend the
UML standard [6]. This section describes UML
profiling and related concepts which are used to
define our proposed profile for bitcoin.

A profile is a mechanism for customizing UML
to meet the needs of a particular context. A profile
can be defined for a platform that is being targeted
(e.g., Java EE or .NET) or a domain with which one
is working (e.g., financial or blockchain) [25]. UML

 International Journal of Web Research, Vol. 6, No. 2, Summer- Autumn, 2023

4

profiles define a concise dialect of UML for a
specific family of applications (e.g., UML profile for
wireless sensors [7], electronic and electrical waste
[22], big data [26], aerospace systems safety [27],
hazard mitigation [23], and publish/subscribe
paradigm [24]) and are composed of Stereotypes,
tags, and constraints [28].

Stereotypes explicitly specify that an element has a

special intent or role in a model [25, 28]. A

stereotype is shown using guillemots at either end

of the stereotype name, as in «stereotype_name».

However, they can be substituted by angle brackets,

as in <<stereotype_name>>. In Sparx EA,

stereotype definition and implementation are

denoted by specifying the name of the stereotype

between and before two angle brackets, as in

<<stereotype_name>> and stereotype_name <<>>,

respectively.
Tagged values define information needed by a

stereotype to perform its responsibilities [28]. They
are meta-attributes which show some properties of
model elements such as stereotypes [6]. To
encourage reuse, UML 2.0 restricted declaration of
stereotypes and tagged values to UML profiles [25].

Finally, constraints restrict model elements.
They are defined in the profile but evaluated in the
model. Constraints are defined by OCL, a formal yet
easy-to-understand expression language for
specifying constraints, which allows values to be
checked but not changed [25]. OCL is helpful in
creating the metamodel of a language, which is a
description of all the concepts that can be used in
that language and includes all meta-classes of that
language and the relationships between them [29].

Figures 1 and 2 show an example of stereotype
definition and usage, respectively. In the first figure
(Figure 1), an extension arrow with a solid
arrowhead pointing from ExampleStereotype
stereotype to Class meta-class depicts that the
ExampleStereotype stereotype which is tagged with
ExampleTaggedValue tagged value can be applied
to classes. Figure 2 depicts a stereotyped class
containing an attribute, an operation, and two tagged
values. This example also includes an OCL
constraint. The mentioned OCL invariant states that
the firstAttribute attribute of ExampleClass class
must be greater than zero.

In this paper, the stereotypes, tags, and
constraints are represented by UML standard
notation, and the proposed UML profile was
implemented using Model Driven Generation
(MDG) Technologies [30] feature of Sparx EA
modeling tool. We defined OCL constraints on our
proposed metamodel to allow greater integrity of
application models.

Figure. 1. Example of stereotype definition

Figure. 2. Example of stereotype usage

3. Proposed Meta-Model

This section describes our UML profile and its
implementation in Sparx EA modeling tool. The
proposed profile is called Bitcoin Modeling (BitML)
and is defined using UML notation. This notation is
common for profile definition with some exceptions
that are considered irrelevant.

3.1. Profiling Definition

BitML includes two types of diagrams, i.e. a
Transaction Processing diagram and a Network
diagram. As profiles extend UML, our proposed
diagrams are intended to be used along with UML
standard diagrams. For example, BitML stereotypes
can be used in both a Transaction Processing
diagram and a UML sequence diagram to show both
application structure and its runtime behavior.

A Transaction Processing diagram is defined as
an extension of UML class diagram and provides
stereotypes, tagged values, enumerations, and
constraints to model both on-chain and off-chain
transactions in a way consistent with bitcoin

BitML: A UML Profile for Bitcoin Blockchain

5

ontology. Network diagram is defined as an
extension of the UML deployment diagram and
provides stereotypes, tagged values, enumerations,
and constraints to model different bitcoin node types
and protocols. Figures 3 and 4 depict profile
elements (i.e. stereotypes, tagged values, and
enumerations) and an exemplar set of constraints on
the proposed UML profile, respectively.
Furthermore, Figures 5 and 6 depict how the
proposed connectors (i.e. Spend connector, Uplock
connector, PBKDF2KeyStretching connector,
HMAC-SHA512 connector, and
RIPEMD160HashOfSHA256Hash connector) are
defined and constrained, respectively.

As shown in Figures 3 and 5, the profile is
composed of 42 stereotypes (16 for classes, 14 for
attributes, eight for operations, and five for
connectors), 23 tagged values, six datatypes, and a
set of constraints. Proposed meta-model includes the
following enumerations:

ScriptType: This enumeration defines five values.

1. Pay-to-Public-Key (P2PK)

2. Pay-to-Public-Key-Hash (P2PKH)

3. Pay-to-Script-Hash (P2SH)

4. Pay-to-Witness-Public-Key-Hash (P2WPKH)

5. CustomScript.

The first four values correspond to the

most common script types in bitcoin, while

the last value reflects the custom script

development capability [15] which made

bitcoin an extendable and programmable

form of currency.

TransactionPosition: A transaction may be either

 on-chain or off-chain, which will be executed

on or out of the blockchain, respectively. An

off-chain transaction will be executed outside of

the blockchain, but its execution is bonded to

some blockchain data, and its results will be

saved on the blockchain too. This enumeration

includes two values for on-chain and off-chain

transactions.

PayToScriptHashType: Regarding Pay-to-Script

functionality, a mining node may support either

Pay-to-Script-Hash (P2SH) or

CheckHashVerify (CHV). P2SH or CHV

correspond to BIP-16 or BIP-17, respectively.

CommunicationProtocol: Bitcoin nodes communicate

 over the Bitcoin P2P protocol. In addition,

some miners and mobile wallets communicate

over the Stratum protocol. Finally, a pool miner

may communicate over a specialized mining

pool protocol. This enumeration defines these

three values.

HashCashFucnctionType and

HashCashVerificationFunctionType:

These enumerations correspond to

Hashcash. As mentioned, Hashcash is a

PoW system. Depending on the hash

function that is used, there are three

Hashcash variants (i.e. SHA-1, scrypt hash

function, and double SHA-256). Bitcoin

uses Hashcash with double SHA256 hash.

Depicted in Figure 3, our profile includes 42
stereotypes, 16 of which (BitcoinNode, Block,
BlockHeader, Transaction, TransactionOutput,
AbstractTransactionInput, TransactionInput,
CoinbaseTransactionInput, LockingScript,
UnlockingScript, EllipticCurveSignature,
MnemonicCodeWord, Seed, PrivateKey, PublicKey,
and PublicAddress) extend UML class. Two types
of transaction inputs are abstracted by the
AbstractTransactionInput abstract class. The UML
Composition relationship between
AbstractTransactionInput and Transaction
stereotypes indicates that each transaction requires at
least one transaction input. Depicted by UML
Generalization, TransactionInput and
CoinbaseTransactionInput stereotypes are
specializations of AbstractTransactionInput
stereotype. The former represents a normal
transaction input which includes three attributes that
point to a UTXO, which will be unlocked by an
instance of a class, which is stereotyped as
UnlockingScript. The latter represents a coinbase
input. Coinbase is the input of coinbase transaction
which is the first transaction of each block and
generates new coins as mining rewards. The
MinerPay2ScriptHashStandard tagged value of the
CoinbaseTransactionInput stereotype uses
PayToScriptHashType enumeration to specify either
P2SH or CHV, which is supported by the miner.
Coinbase transaction input stores a block height and
possibly an extra-nonce value which correspond to
BlockHeight and ExtraNonce stereotyped attributes.
Furthermore, the Spend connector, which is defined
in Figure 5 and constrained in Figure 6, applies to
instances of classes stereotyped as
TransactionOutput, AbstractTransactionInput,
TransactionInput, and CoinbaseTransactionInput,
showing that a transaction output may spend either a
coinbase transaction or a normal transaction. As
Figure 6 shows, a tool-level constraint is defined to
constrain classes stereotyped as
AbstractTransactionInput and TransactionOutput as
the allowed source and destination of the Spend
connector, respectively. Hence, the Spend
relationship can be drawn solely from classes
stereotyped as AbstractTransactionInput,
TransactionInput, or CoinbaseTransactionInput to
classes stereotyped as TransactionOutput. In the
same way, a constraint is defined to constrain
classes stereotyped as UnlockingScript and
LockingScript as the allowed source and destination
of the Unlock relationship, respectively. In the same

 International Journal of Web Research, Vol. 6, No. 2, Summer- Autumn, 2023

6

F
ig

u
re 3

. P
ro

p
o

sed
 U

M
L

 p
ro

file (excluding connectors’
 m

eta
-m

o
d

el

BitML: A UML Profile for Bitcoin Blockchain

7

(a)

(b)

Figure. 4. (a) Example metamodel level OCL constraints; (b) Example application level constraints

 International Journal of Web Research, Vol. 6, No. 2, Summer- Autumn, 2023

8

Figure. 5. Connector definition meta-model

manner, the Unlock relationship can be drawn solely
from classes stereotyped as UnlockingScript to
classes stereotyped as LockingScript. As Figure 5
depicts, the Spend connector extends the UML
Association and shows that transaction inputs will
provide proof of ownership (i.e. unlocking script) of
the referenced UTXOs. The Unlock relationship

extends the UML Dependency and is self-
explanatory. In the same way, the remaining
connectors (i.e. PBKDF2KeyStretching, HMAC-
SHA512, and RIPEMD160HashOfSHA256Hash
connectors) are defined in Figure 5 and constrained
in Figure 6 and are used for bitcoin key management
capabilities that may be used by a wallet or an

BitML: A UML Profile for Bitcoin Blockchain

9

Figure. 6. Connector usage constraint definition

exchange to access bitcoin blockchain and/or
generate new transactions (here wallet term is used
to refer to Hierarchical Deterministic (HD) wallets
as the most common type of bitcoin wallets). The
PBKDF2KeyStretching connector can be used to
model generating seeds from mnemonic code words
that are presented by Seed and MnemonicCodeWord
stereotypes. Bitcoin uses 12-to-24-word mnemonic
phrases. A wallet may use a mnemonic code word to
generate a seed, and user private keys will be
derived from that seed. The HMAC-SHA512
connector models HMAC function which uses
SHA512 hash function and its usage in bitcoin
wallets is twofold: to derive a private key from a
seed and a child private/public key from a parent
private/public key. Finally, the
RIPEMD160HashOfSHA256Hash connector models
the double hashing process used by Bitcoin to
generate public addresses from public keys. Initially,
the SHA256 hash of the public key is computed, and
the result is then hashed using the RIPEMD160 hash
function. This double hashing is represented by the
RIPEMD160HashOfSHA256Hash connector and is
employed to calculate a public address:
PublicAddress = Ripmed160(SHA256(PublicKey)).

MnemonicCodeWord, Seed, PrivateKey, PublicKey,

and PublicAddress stereotypes along with the last

three described connectors (i.e.

PBKDF2KeyStretching, HMAC-SHA512, and

RIPEMD160HashOfSHA256Hash connectors),

provide key management capabilities from which

applications such as wallets and exchanges may

benefit.

In the bitcoin network, nodes play different
roles, including wallet, miner, full blockchain,
network routing, stratum node, stratum server, and
pool server [15]. Our profile introduces a
BitcoinNode stereotype, 12 tagged values, and a
CommunicationProtocol enumeration which may be
used in BitML Network diagrams to model
application deployment and communication over the
bitcoin network. These roles are specified as tagged
values for the BitcoinNode stereotype, representing
distinct functionalities. However, not all
combinations of these roles are allowed. For
example, no nodes are allowed to play stratum node
and stratum server roles at the same time as defined
by OCL constraint presented in Fig 4 (a).
Furthermore, common combinations of the
mentioned roles are defined as node types. For
example, a node that serves as a wallet, miner,
maintains the full blockchain, and handles network
routing is commonly referred to as a bitcoin core
node, or a reference client node. As another
example, a node that fulfills both wallet and network
routing roles is termed a lightweight wallet node.
The corresponding OCL constraints are illustrated in
Figure 4-a. In addition to BitcoinNode constraints,
two other meta-model level constraints are provided
in Figure 4-a. The first avoids empty block creation,
and the second mandates the use of exactly one
previous block hash attribute. Finally, application-

 International Journal of Web Research, Vol. 6, No. 2, Summer- Autumn, 2023

10

level constraints may be utilized, as illustrated by
two examples in Figure 4-b. The first constraint
ensures that the block hash of each valid block is
smaller than the network's difficulty target value,
while the second enforces a dust limit of 546
Satoshis.

3.2. Implementation

The proposed profile has been implemented in
the Sparx EA modeling tool. Figure 7 shows an
example snippet of XML generated by Sparx MDG
technology for the defined UML profile. It shows
that the Unlock relationship and the UnlockingScript
stereotype extend the UML Dependency and Class
meta-class, respectively. Furthermore, it
demonstrates the applicability of the Unlock
relationship on UnlockingScript stereotype and the
definition of the LockingScriptType tagged value
and its possible values.

As previously mentioned and illustrated in
Figure 8, the Transaction Processing diagram
extends the Logical diagram (i.e., UML class
diagram), while the Network diagram extends the
Deployment diagram. Figures 9 and 10 showcase the
definition and presentation of the toolbox designed
to provide access to BitML class stereotypes, BitML
enumerations, and BitML connectors.

In this context, a class stereotype refers to a
stereotype that extends the Class meta-class. Each
element (i.e., class stereotype, enumeration, or
connectors) is linked to the BitML toolbox by
defining a tagged value for the extended toolbox. As
depicted in Figure 8, the BitML toolbox is associated
with the Transaction Processing diagram and
Network diagram through the toolbox attribute of the
Diagram_Logical and Diagram_Deployment meta-
classes, respectively.

The appearance of the defined toolbox shown in
Figure 10 aims to ease access to defined stereotypes,
enumerations, and connectors. Users have the option
to utilize the provided toolbox interchangeably or
directly apply stereotypes to the base elements (i.e.,
class or node).

It's worth noting that attribute/operation
stereotypes have not been directly bound to the
toolbox because they are not utilized directly;
instead, they are accessed through their associated
class stereotypes. In this context, attribute and
operation stereotypes refer to stereotypes that extend
the Attribute and Operation meta-classes,
respectively.

4. Case Study

To validate its practical utility and efficacy of
proposed UML profile, we turn to a compelling case
study: the development of a fast payment system

powered by Bitcoin's robust infrastructure. This
study transcends mere demonstration; it acts as a
rigorous testing ground, revealing the strengths and
potential limitations of our profile in a real-world
context.

Through the lens of meticulously crafted
diagrams, we delve into the heart of the fast payment
system. These diagrams, crafted using our UML
profile, serve as a testament to its capabilities. They
reveal:

• Precise representation of Bitcoin
transactions: Witness how our profile
seamlessly captures the intricate dance of
data within the Bitcoin network, from
transaction initiation to confirmation.

• Clear communication between system
components: Observe how our profile
facilitates efficient interaction between
diverse system elements, ensuring smooth
processing and rapid transaction finalization.

• Enhanced developer clarity and
understanding: Designed to empower
developers with a profound understanding of
the system's inner workings.

By dissecting these diagrams, we not only
showcased the practical application of our profile
but also embarked on a critical appraisal of its
effectiveness. We meticulously analyzed its ability
to:

• Handle the nuances of fast payment
protocols: Discover how our profile adapts to
the unique demands of high-speed
transactions within the Bitcoin network.

• Maintain transparency and traceability:
Explore how our profile ensures clarity and
integrity throughout the transaction lifecycle,
fostering trust and security within the system.

• Identify potential areas for improvement:
Through this rigorous analysis, we uncover
valuable insights that can further refine and
strengthen our profile, paving the way for
even more powerful applications in the
future.

Let's delve into the case study: Since a secure
bitcoin payment requires at least 6 block
confirmations, bitcoin is not suitable for payments
that rely on quick transaction confirmation. Bitcoin
fast payment algorithms [31, 32] aim to expedite the
payment process while mitigating the risk of double
spending. A sub-set of these algorithms facilitate a
large number of off-chain transactions recorded by a
small number of on-chain transactions. Therefore,
the challenge is to either reuse, combine, or devise a
new blockchain consensus algorithm to expedite

BitML: A UML Profile for Bitcoin Blockchain

11

Figure. 7. An example of generated XML snippets

Figur 8. Diagram definition meta-model

primary blockchain payments. In a companion
research project, we designed a fast payment
application, implemented it using the NBitcoin
library1 and tested it on the Bitcoin Testnet2.
Presented UML profile has been applied to model
this application. This section presents one of these
models along with defined constraints to illustrate
how BitML can be used to model applications
belonging to bitcoin application domain.

To this end, we utilized a bond transaction to
create a specific UTXO, which can be employed for
off-chain payments and is resistant to double
spending. A refund transaction, spending that
UTXO in its entirety after a specified period, was
defined with a transaction-level lock time.
Additionally, the fast payment application has the

1 https://github.com/MetacoSA/NBitcoin
2 https://en.bitcoin.it/wiki/Testnet

capability to generate settlement transactions,
facilitating the transfer of funds from the fast
payment account to merchants’ accounts. A
settlement transaction can yield one or two outputs:
one for transferring bitcoins to the intended recipient
and optionally, another output for returning the
remaining bitcoins in change back to the user's
wallet. Each settlement transaction spends the
UTXO of either a bond transaction or a change-back
settlement transaction.

 We modeled this application using the UML
profile proposed in this paper. Our algorithms were
depicted using BitML Transaction Processing
diagrams and corresponding UML sequence
diagrams. The on-chain transactions of our fast
payment application are shown in Figure 11. In
addition to profile-defined constraints, Figure 11
introduces two application-level constraints. The
first constraint, titled “Lock Time Validation,”

https://github.com/MetacoSA/NBitcoin
https://en.bitcoin.it/wiki/Testnet

 International Journal of Web Research, Vol. 6, No. 2, Summer- Autumn, 2023

12

Figure. 9. Toolbox definition meta-model

Figure. 10. Layout of the defined toolbox in Sparx EA

specifies that bond transactions must use zero
transaction-level lock times, while refund
transactions should use non-zero lock times. The
second constraint, titled “Subsequent Transaction
Constraint,” ensures that each settlement transaction
spends the UTXO of either a bond transaction or a
change-back settlement transaction, and has either a
transaction-level lock time of zero or a smaller
transaction-level lock time than the lock time of the
referenced transaction. This constraint ensures that
the referenced UTXO cannot be spent beforehand.
This model, exemplifying a BitML Transaction
Processing diagram, was employed alongside other
models in the analysis and design of the developed
bitcoin fast payment application. It played a crucial
role in helping us formulate and communicate a
mathematically proven and algorithmically
sophisticated solution, eliminating any potential
ambiguity.

5. Evaluation

We utilized the ATAM framework [33] to assess
the proposed UML profile for bitcoin application
development. With its emphasis on tradeoffs,
scenario-driven analysis, stakeholder collaboration,
and a structured process, the ATAM framework

BitML: A UML Profile for Bitcoin Blockchain

13

Figure. 11. An Example BitML Transaction Processing diagram for On-chain transactions of a bitcoin fast payment application

aligns well with comprehensiveness, usability, and
domain relevance goals of the proposed profile.
Three individuals with expertise in software
architecture and four in the bitcoin blockchain
actively participated in the evaluation. This section
aims to provide a thorough assessment of the
effectiveness of BitML UML profile for supporting
bitcoin application development.

5.1. Architectural Drivers

To ensure our UML profile effectively addresses
the multifaceted requirements of bitcoin blockchain
modeling, we identified the following list of
architectural drivers:

1) Domain Complexity and Conceptual
Clarity: Addressing the inherent complexity
of bitcoin and ease the development of clear
conceptual models.

2) Modeling Precision and Detail: Ensuring
precise and detailed representation of

classifiers present in the processes and
concepts of applications belonging to the
targeted application domain.

3) Decentralization and Distributed Systems:
Effectively supporting the decentralized
nature and distributed architecture of the
blockchain.

4) Security and Cryptographic Techniques:
Accurately modeling and incorporating
bitcoin's reliance on cryptography for both
security measures and transaction
validation.

5) Software Engineering Best Practices:
Aligning with and contributing to
blockchain-specific software engineering
best practices, methodologies, and reference
architectures.

6) Automation in Model-Driven Engineering
(MDE): Facilitating automated model

 International Journal of Web Research, Vol. 6, No. 2, Summer- Autumn, 2023

14

transformations and potential for code
generation (in future).

7) Correctness and Validation Prior to
Development: Supporting pre-development
model validation, in accordance with bitcoin
operational principles (through the use of
defined OCL constraints).

8) Intuitive Syntax for Domain Experts:
Offering intuitive syntax in the form of a
domain-specific language.

9) Simplification and Focus on Development
Goals: Capable of reducing complexity and
concentrating on key development goals by
providing clear abstractions within the
targeted application domain.

10) Extension and Domain-Specific Modeling:
Extending UML to define domain-specific
elements, connectors, and diagrams.

11) Tool Compatibility and Integration:
Ensuring compatibility and effective
implementation in popular modeling tools
such as Sparx Enterprise Architect.

12) Alignment with Bitcoin’s Ontology and
Automated Conformance Evaluation:
Aligning models with bitcoin's ontology and
automating conformance evaluation using
OCL constraints.

13) Practical Applicability and Utility:
Demonstrating usefulness in real-world
application development contexts.

14) Standardization and Extensibility (UML
Profiles): Adhering to UML standards while
providing extensibility to address domain-
specific needs.

5.2. Utility Tree

We utilized the following quality attributes and
sub-attributes to conduct evaluation:

1) Correctness and Consistency: Ensures

models accurately represent bitcoin's

ontology and maintain consistency in

conformance to relevant rules.

a) Transaction validity:

i) Conformance to transaction

format and signature

requirements.

ii) Accurate representation of valid

transaction types and fees.

iii) Handling of edge cases and

invalid transactions.

b) Compliance with bitcoin protocols:

i) Alignment with consensus

mechanisms and rules.

ii) Accurate modeling of network

communication and message

exchanges.

iii) Adherence to relevant Bitcoin

Improvement Proposals (BIPs).

c) Internal consistency:

i) Absence of contradictions or

inconsistencies within the model.

ii) Logical relationships between

elements and constraints.

iii) Traceability between model

elements and Bitcoin concepts.

To maintain brevity, the remaining quality
attributes are described more succinctly.

2) Understandability and Clarity: Models

should be clear and easy to comprehend for

both domain experts and developers,

facilitating communication and

collaboration.

a) Syntax and notation:

i) Familiarity and ease of use for

target audience.

ii) Conciseness and avoidance of

ambiguity.

iii) Alignment with established UML

conventions.

b) Documentation and examples

c) Visual representation:

i) Readability and intuitiveness of

diagrams and model elements.

3) Completeness and Expressiveness: Ensures

the profile includes sufficient elements and

relationships to capture all critical aspects

of the targeted application domain.

a) Coverage of core bitcoin entities

b) Modeling of decentralized aspects

c) Extensibility and customization:

i) Capability to extend the profile

with additional elements for

domain-specific needs.

4) Tool Integration and Support: Evaluates the

compatibility of the profile with existing

modeling tools and its effectiveness within

those tools.

a) Feature support:

i) Availability of tools that fully

implement the profile's features

and constraints.

BitML: A UML Profile for Bitcoin Blockchain

15

ii) Ability to utilize tool-specific

functionalities for validation,

simulation, or code generation.

b) Usability and performance:

i) Intuitiveness and ease of use of

profile features within the chosen

tool.

ii) Availability of error messages for

validation issues.

Other quality attributes and sub-attributes, such
as automated code generation and automated secure
code generation, are beyond the scope of this paper
and are dedicated to the future work of the authors.

5.3. Analysis

Table 1 presents evaluation scenarios, risks, and
countermeasures. This sub-section highlights
sensitivity points and tradeoffs identified in the
ATAM evaluation. To maintain brevity of this
section, descriptions are provided solely for the first
sensitivity point and the first trade-off point.
Sensitivity points are critical elements with
significant impact on quality attributes, while
tradeoff points require balancing competing
attributes.

Exemplars of identified sensitivity points are
provided below:

1) Cryptographic Modeling:

• Sensitivity: Small changes or inaccuracies

in modeling cryptographic processes can

significantly impact the security aspect of

the UML profile.

• Impact: A minor error or oversight could

lead to a substantial misunderstanding of

bitcoin’s security mechanisms.
2) Scalability Representation (application

scalability)

3) Tool Compatibility (tool update

adjustments)

Furthermore, the following are exemplars of

tradeoff points identified in the conducted

evaluation:

1) Complexity vs. Understandability:

• Tradeoff: Balancing the need for detailed,

accurate modeling of bitcoin processes

against the need for the model to be

understandable to non-technical users.

• Decision: Classifier with different level of

abstraction are provided in the proposed

UML profile.

2) Model Flexibility vs. Standardization

(domain-specific adaptations)

3) Security Detailing vs. General Usability

(being both accurate and accessible to a

broader audience)

In ATAM, pinpointing sensitivity and tradeoff
points provides foresight into the ramifications of
changes and design choices. This ensures that our
UML profile is adaptable and effective for its
intended use in blockchain application development.

Regarding the addressed risks, and the identified
tradeoffs and sensitivity points, the evaluation
showed that the proposed profile is promising.
Furthermore, it has led us to implement
improvements mentioned in Section 6 to foster
further adoption by application development
communities.

6. Conclusions and Future Works

Blockchain technology has become a
cornerstone in various industries, featuring diverse
blockchains such as public, private, consortium,
hybrid, fourth generation, and fifth generation.
Among these, Bitcoin, powered by its public
blockchain, has gained prominence as a highly
valued and widely used digital currency, spurring
the development of applications on its blockchain.
However, the intricacies of bitcoin application
development present challenges, demanding
specialized software engineering best practices.

In response to these challenges, our paper
introduces a UML profile meticulously crafted for
the bitcoin blockchain. This profile encompasses
Transaction Processing and Network diagrams, 42
stereotypes, 23 tagged values, six datatypes, and a
set of OCL constraints for automatic conformance
evaluation. As bitcoin emerged at the convergence
of distributed computing and mathematical
cryptography, we advocate developing a UML
profile as a pragmatic approach. This leverages both
existing UML diagramming elements and profile-
specific features to adeptly model the intricate
nature of bitcoin application development.

The practical implementation of the proposed
profile in Sparx EA not only confirms its
applicability but also demonstrates its real-world
effectiveness. The focal point of our case study was
the development and modeling of a bitcoin fast
payment application, showcasing the profile's
capabilities in a tangible and applied context.
Specifically designed for secure and rapid bitcoin
payments, this application served as a robust testbed
for evaluating the proposed UML profile.

A rigorous evaluation of the UML profile was
conducted using the ATAM, providing valuable
insights into its strengths and areas for enhancement.
This evaluation, focused on the profile itself, offered
a comprehensive understanding of its architectural

 International Journal of Web Research, Vol. 6, No. 2, Summer- Autumn, 2023

16

Table 1. Examples of Evaluation Scenarios, Identified Risks, and Countermeasures

Scenario No. 1 2 3

Scenario Name Simple Bitcoin Wallet App
Decentralized Exchange (DEX)

Platform
Bitcoin Integration with

Enterprise System

Stimulus

Developer models a basic bitcoin

wallet app with sending/receiving
and key management

functionalities

Team models a complex DEX

platform with smart contracts,
liquidity pools, order matching,

and so on.

Team integrates bitcoin payment

functionalities into an existing

ERP system

Environment

- Development environment

(chosen tool)

 - Target users (developers &
domain experts)

- Development environment

(chosen tool)
 - Target users (DEX development

team)

- Security requirements

- Development environment

(ERP)

 - Target users (integration

specialists)
- ERP data structures and

functionalities

Response

-Complete and clear model with

sufficient detail for basic
transactions

. - Intuitive syntax for developers

and domain experts.
- Efficient implementation within

the chosen tool.

Detailed and accurate model of
the DEX architecture, including

smart contracts, security

protocols, and distributed
communication

- OCL constraints effectively

validate model correctness and
adherence to DEX principles

- Clear model of the integration
with delineated responsibilities

and data flows

- Simplified abstraction level
suitable for integration

development and validation.

- Demonstrated practical usage in
a real-world enterprise scenario.

Architectural

Decisions

- Level of detail in profile
elements. - Syntax complexity for

different user groups. –

 Tool compatibility and support.

- Profile capabilities for capturing
DEX mechanics and smart

contracts.

- Automation support for DEX-
specific aspects.

 - Validation mechanisms for

complex interactions.

- Domain-specific modeling

capabilities for bridging bitcoin

and ERP systems.
 - Abstraction level

appropriateness for integration

context.
- Practical utility and effectiveness

in real-world scenarios.

Quality Attribute

Impact

- Clarity and comprehensibility.

 - Developer productivity and ease
of use.

- Tool effectiveness and

integration.

- Correctness and consistency.

- Development efficiency and

automation.
- Security and reliability.

- Maintainability and ease of
integration.

- Development effort and resource

optimization.
 - Practical applicability and value

proposition.

Risk Rating Medium High Medium-High

Mitigation Strategies

- Refine profile elements to

provide appropriate detail for

basic bitcoin concepts.

 - Offer alternative syntax options

for varying user expertise.

- Model the system with the

profile.
- Enhance code generation

capabilities.

 - Develop OCL constraints to
validate complex DEX

interactions and security

protocols.

- Develop domain-specific model

tailored to integration needs.
- Provide adjustable abstraction

levels to cater to different

integration complexities.
 - Showcase successful case

studies of real-world

implementations.

tradeoffs, sensitivity points and addressed risks, and
highlighted key considerations for further
refinement. The results from the ATAM assessment
was promising and contribute to the ongoing
evolution of the UML profile, ensuring its
continuous improvement and adaptability for diverse
blockchain applications.

Further research can facilitate side-chain
development, and we aim to extend this work to
support side-chain modeling. The authors expect
that this extension, along with the other mentioned
benefits, will increase the number of rational
incentives for the wider adoption of the proposed

UML profile and will encourage researchers,
practitioners, and decision-makers to conduct
experiments. In addition, applications such as
Colored Coin and fast payment algorithms broaden
the use of bitcoin for non-fungible tokens (asset
management) [34] and daily shopping [31, 32]
respectively. While these applications can be
modelled by the proposed meta-model, the proposed
meta-model can be extended to define specific
classifier to further assist modelling in these sub-
domains. Finally, the authors aim to enrich the
proposed UML profile by adding model
transformation and automated code generation
which are two important outcome of MDE.

BitML: A UML Profile for Bitcoin Blockchain

17

Declarations

Funding
This research did not receive any grant from
funding agencies in the public, commercial, or
non-profit sectors.

Authors' contributions
BSD: Study design, software design and
implementation, interpretation of the results,
drafting the manuscript, revision of the
manuscript;

JSS: Study design, supervision, interpretation of
the results, drafting the manuscript, revision of
the manuscript;

HD: Study design, supervision, interpretation of
the results, drafting the manuscript, revision of
the manuscript.

Conflict of interest
The authors declare that no conflicts of interest
exist.

References

[1] S. Porru, A. Pinna, M. Marchesi, and R. Tonelli,
“Blockchain-oriented software engineering: challenges and
new directions”, In 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-
C), 2017, pp. 169-171, 10.1109/ICSE-C.2017.142.

[2] B. Sefid-Dashti, and J. Habibi, “A reference architecture
for mobile SOA”, Systems Engineering, vol. 17, no. 4, pp.
407-425, 2014, https://doi.org/10.1111/sys.21279.

[3] J. J. López-Fernández, A. Garmendia, E. Guerra, and J. de
Lara, “An example is worth a thousand words: Creating
graphical modelling environments by example”, Software
and Systems Modeling, vol. 18, no. 2, pp. 961-993, 2019,
https://doi.org/10.1007/s10270-017-0632-7.

[4] J. Serna, N. A. Day, S. Esmaeilsabzali, “Dash: declarative
behavioural modelling in Alloy with control state
hierarchy”, Software and Systems Modeling, vol. 22, no. 2,
pp. 733-749, 2023, https://doi.org/10.1007/s10270-022-
01012-1.

[5] F. Ciccozzi, I. Malavolta, and B. Selic, “Execution of UML
models: a systematic review of research and practice”,
Software and Systems Modeling, vol. 18, no. 3, pp. 2313-
2360, 2019, https://doi.org/10.1007/s10270-018-0675-4.

[6] B. M. Duc, "Uml superstructure: language definition and
diagrams”, In Real-time object uniform design
methodology with UML, 2007, pp. 77-190,
https://doi.org/10.1007/978-1-4020-5977-3_4.

[7] J. E. Plazas, S. Bimonte, G. D. Sousa, and J. C. Corrales,
“Data-centric UML profile for wireless sensors:
Application to smart farming”, International Journal of
Agricultural and Environmental Information Systems
(IJAEIS), vol. 10, no. 2, pp. 21-48, 2019,
https://doi.org/10.4018/IJAEIS.2019040102.

[8] M. Bartoletti, and R. Zunino, “BitML: a calculus for
Bitcoin smart contracts”, in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications
Security, 2018, pp. 83-100,
https://doi.org/10.1145/3243734.3243795.

[9] H. Rocha, and S. Ducasse, “Preliminary steps towards
modeling blockchain oriented software”, In 2018
IEEE/ACM 1st International Workshop on Emerging

Trends in Software Engineering for Blockchain (WETSEB),
2018, pp. 52-57, https://doi.org/10.1145/3194113.3194123.

[10] P. Bollen, “A Conceptual Model of the Blockchain”, In
OTM Confederated International Conferences On the
Move to Meaningful Internet Systems, 2019, pp. 117-126,
https://doi.org/10.1007/978-3-030-40907-4_12.

[11] M. Anvari, M. D. Takht-Fooladi, and B. Sefid-Dashti,
“Thrift service composition: toward extending BPEL”, In
Proceedings of the international conference on smart cities
and internet of things, 2018, pp. 1-5.,
https://doi.org/10.1145/3269961.3269973.

[12] A. S. Vingerhouts, S. Heng, Y. Wautelet, “Organizational
modeling for blockchain oriented software engineering
with extended-i* and uml”, In CEUR Workshop
Proceedings, vol. 2749, pp. 23-34, 2020,

[13] B. Sefid-Dashti, S. J. Sartakhti, and H. Daghigh, “Brand
New Categories of Cryptographic Hash Functions: A
Survey”, Journal of Electrical and Computer Engineering
Innovations, vol. 11, no. 2, pp. 335-354, 2023,
https://doi.org/10.22061/JECEI.2023.9271.598.

[14] H. Sheth, and J. Dattani, “Overview of blockchain
technology”, Asian Journal For Convergence In
Technology (AJCT), 2019, vol. 5, no. 1, pp. 1-3, 2019,
https://asianssr.org/index.php/ajct/article/view/728.

[15] A. M. Antonopoulos, Mastering bitcoin: programming the
open blockchain, O'Reilly Media, Inc, 2017.

[16] A. Back, “Hashcash-a denial of service counter-measure”,
2002, available at:
http://www.hashcash.org/papers/hashcash.pdf, last
accessed October. 25, 2023

[17] S. Nakamoto, “Bitcoin: a peer-to-peer electronic cash
system”, Decentralized Business Review, 2008,
http://dx.doi.org/10.2139/ssrn.3440802

[18] Z. Wang, H. Yu, Z. Zhang, J. Piao, and J. Liu, “ECDSA
weak randomness in Bitcoin, ” Future Generation
Computer Systems, vol. 102, pp. 507-513, 2020,
https://doi.org/10.1016/j.future.2019.08.034.

[19] D. Jackson, “Alloy: a lightweight object modelling
notation”, ACM Transactions on Software Engineering and
Methodology, vol. 11, no. 2, pp. 256-290, 2002,
https://doi.org/10.1145/505145.505149.

[20] Object Management Group, “OMG Meta Object Facility
(MOF) Core Specification”, OMG specification, 2019, Ver.
2.5.1, available at:
https://www.omg.org/spec/MOF/2.5.1/PDF, last accessed
October. 25, 2023.

[21] D. Varró, and A. Pataricza, “VPM: A visual, precise and
multilevel metamodeling framework for describing
mathematical domains and UML (The Mathematics of
Metamodeling is Metamodeling Mathematics)”, Software
and Systems Modeling, vol. 2, no. 3, pp. 187-210, 2003,
https://doi.org/10.1007/s10270-003-0028-8.

[22] A. Herrera, P. Lara, M. Sánchez, and J. Villalobos,
“Metamodeling the e-waste domain to support decision-
making”, The International Journal of Logistics
Management, vol. 32, no. 10, pp. 262-283, 2020,
https://doi.org/10.1108/IJLM-01-2020-0070.

[23] B. Tenbergen, and T. Weyer, “Generation of hazard
relation diagrams: Formalization and tool support”,
Software and Systems Modeling, vol. 20, no. 1, pp. 175-
210, 2021, https://doi.org/10.1007/s10270-020-00799-1.

[24] A. Gómez, R. J. Rodríguez, M. E. Cambronero, and V.
Valero, “Profiling the publish/subscribe paradigm for
automated analysis using colored Petri nets”, Software and
Systems Modeling, vol. 18, no. 5, pp. 2973-3003, 2019,
https://doi.org/10.1007/s10270-019-00716-1.

[25] R. Miles and K. Hamilton, Learning UML 2.0: a pragmatic
introduction to UML, O'Reilly, 2006.

 International Journal of Web Research, Vol. 6, No. 2, Summer- Autumn, 2023

18

[26] D. Perez-Palacin, J. Merseguer, J. I. Requeno, M.
Guerriero, E. Di Nitto, and D. A. Tamburri, “A UML
profile for the design, quality assessment and deployment
of data-intensive applications”, Software and Systems
Modeling, vol. 18, no. 6, pp. 3577-3614, 2019,
https://doi.org/10.1007/s10270-019-00730-3.

[27] G. Zoughbi, L. Briand, and Y. Labiche, “Modeling safety
and airworthiness (RTCA DO-178B) information:
conceptual model and UML profile”, Software and Systems
Modeling, vol. 10, no. 3, pp. 337-367, 2011,
https://doi.org/10.1007/s10270-010-0164-x.

[28] D. Pilone, and N. Pitman, UML 2.0 in a Nutshell, O'Reilly
Media, 2005.

[29] J. Warmer, and A. Kleppe, Object Constraint Language:
Getting Your Models Ready for MDA, Addison Wisely
Professional, 2003.

[30] Sparx Systems, “User Guide - MDG Technologies”,
Enterprise Architect User Guide Series, Ver. 1.0, 2017,
available at:
https://www.sparxsystems.com/resources/user-
guides/modeling/mdg-technologies.pdf, last accessed
October. 25, 2023.

[31] S. Bartolucci, F. Caccioli, and P. Vivo, “A percolation
model for the emergence of the Bitcoin Lightning
Network”, Scientific reports, Vol 10, No. 1, p. 4488, 2020,
https://doi.org/10.1038/s41598-020-61137-5.

[32] C. Pérez-Solà, S. Delgado-Segura, G. Navarro-Arribas, and
J. Herrera-Joancomartí, “Double-spending prevention for
bitcoin zero-confirmation transactions”, International
Journal of Information Security, vol. 18, no. 4, pp. 451-
463, 2019, https://doi.org/10.1007/s10207-018-0422-4.

[33] L. Bass, P. Clements, and R. Kazman, Software
architecture in practice, 4th edn., Addison-Wesley
Professional, 2021.

[34] S. M. H. Bamakan, N. Nezhadsistani, , O. Bodaghi, , and
Q. Qu, (). “Patents and intellectual property assets as non-
fungible tokens; key technologies and challenges”,
Scientific Reports, vol. 12, no. 1, pp. 1-13, 2022,
https://doi.org/10.1038/s41598-022-05920-6.

Behrouz Sefid-Dashti

received his B.S. and M.S.

degrees in computer

engineering from the Iran

Information Technology

Development and Islamic

Azad University (Tehran

North Branch), respectively.

He has over 18+ years of

experience in the field of software development, and

is currently a PhD candidate of software engineering

at the University of Kashan. His career and

experience include software analysis, design and

architecture, and blockchain development. His

research interests include blockchain, software

architecture, model development, and cryptography.

Javad Salimi Sartakhti is an

assistant professor of artificial

intelligence in the department

of computer engineering at the

University of Kashan, Iran. He

obtained his B.Sc. degree in

computer engineering from the

University of Kashan and his

M.Sc. degree in software

engineering from the Tarbiat

Modares University, Tehran, Iran, in 2008 and 2013,

respectively. In January 2017, he obtained his Ph.D.

degree in artificial intelligence at the Isfahan

University of Technology. He ranked first among

students of computer engineering in all three

degrees. His main research interests are mechanism

design and game theory, blockchain, machine

learning, and Deep learning.

Hassan Daghigh is an

associate professor of

mathematics at the

University of Kashan, Iran.

He received his M.Sc. in

mathematics (Commutative

Algebra) at the University of

Tarbiat Modarres, Iran. He

got his Ph.D degree in

mathematics (elliptic curves)

at McGill university, Canada in 1998, under the

direction of Henri Darmon. His research activities

are now focused on number theory (elliptic curves,

algebraic number theory) and applications in

cryptography in particular lattice and isogeny based

cryptography.

https://www.sparxsystems.com/resources/user-guides/modeling/mdg-technologies.pdf
https://www.sparxsystems.com/resources/user-guides/modeling/mdg-technologies.pdf

