

Energy-Efficient and Reliable Deployment of IoT Applications in a Fog
Infrastructure Based on Enhanced Water Strider Algorithm

Huda Hasan Alsaabri

Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal
University, Hillah 51001, Babil, Iraq. E-mail: E-mail: huda.hasan.hatif@uomus.edu.iq

Hamza Mohammed Ridha Al-Khafaji *

*Corresponding author, Biomedical Engineering Department, College of Engineering and
Technologies, Al-Mustaqbal University, Hillah 51001, Babil, Iraq. E-mail:
hamza.alkhafaji@uomus.edu.iq

Abstract

Fog computing is considered a promising solution to minimize processing and networking
demands of the Internet of things (IoT) devices. In this work, a model based on the energy
consumption evaluation criteria is provided to address the deployment issue in fog computing.
Numerous factors, including processing loads, communication protocols, the distance
between each connection of fog nodes, and the amount of traffic that is exchanged, all have an
impact on the re-search system's overall energy consumption. The power consumption for
implementing each com-ponent on the fog node as well as the power consumption for
information exchange between the fog nodes are taken into account when calculating each fog
node's energy use. Each fog node's energy consumption is closely correlated to how its
resources are used, and as a result, to the average normalized resource utilization of a fog
node. When the dependent components are spread across two distinct fog nodes, the transfer
energy is taken into account in the computations. The sum of the energy used for transmission
and the energy used for computational resources is the entire amount of energy consumed by
a fog node. The goal is to reduce the energy consumption of the fog network while deploying
components using a novel metaheuristic method. Therefore, this work presents an enhanced
water strider algorithm (EWSA) to address the problem of deploying application components
with minimum energy consumption. Simulation experiments with two scenarios have been
conducted based on the proposed EWSA algorithm. The results show that the EWSA
algorithm achieved better performance with 0.01364 and 0.01004 optimal energy
consumption rates.

Energy-Efficient and Reliable Deployment of IoT Applications in a Fog… 180

Keywords: Internet of things; fog computing; energy-efficient; applications deployment;
courtship learning-based water strider algorithm; metaheuristic.

Journal of Information Technology Management, 2023, Vol. 15, Issue 4, pp. 179-204 Received: June 02, 2023
Published by University of Tehran, Faculty of Management Received in revised form: July 28, 2023
https://doi.org/ 10.22059/jitm.2023.94931 Accepted: September 20, 2023
Article Type: Research Paper Published online: November 15, 2023
© Authors

Introduction

Cloud computing provides smart systems with useful solutions for managing Internet of
things (IoT) devices (Stojmenovic, 2014; Al-Khafaji, 2022). Currently, a wide range of IoT
devices around the world, generate a significant amount of data. Processing this data is a
complex process, time-consuming and expensive. In this way, scientists introduced fog
computing. In contrast to cloud computing, fog computing accelerates data processing and
can send information more quickly. Along with the growth and penetration of IoT devices in
different sectors, the use of fog computing services also became more important.

In the fog infrastructure, any device having processing power, storage, and network
connectivity qualifies as a node and may be placed anywhere in the fog network. These nodes
may be placed in vehicles or in offices that serve as target locations (Al-Khafaji et. al, 2019).
Data generated by an IoT device may be received by one of these nodes, processed inside the
network, and then sent to cloud data centers. Fog computing facilitates the location of IoT
technology near the data source by supporting the integrated use of edge and cloud resources.
Deploying, managing and updating applications in such a layered environment creates new
challenges. The large-scale fog network includes a large number of heterogeneous nodes with
separate computing resources, such as processing, storing, and memory. Deploying the
components of an application on minimal nodes in the fog network leads to the reduction of
energy consumption and the optimal use of computing resources, as well as reducing the
delay between the application components, but this deployment plan leads to the
strengthening of the single-point failure phenomenon, in which failure of one node disrupts
communication through the whole system. Therefore, the single-point failure has a negative
effect on the reliability of the customer's use, and as a result, a solution must be adopted for
the proper deployment of components to provide reliable services.

This work focuses on one of the major fog computing challenges that is application
components placement in fog computing environments. Finding the best deployment strategy
is not a trivial task, due to the heterogeneous nature of fog nodes. In recent years, studies have
been done regarding the distribution of components in the fog infrastructure. Samani et al.
(2021) suggested a multilayer resource-aware partitioning mechanism. Using a multilayered

Journal of Information Technology Management, 2023, Vol. 15, Issue 4, 181

network graph, the approach represented the heterogeneous Fog components as subsets
depending on network topology and resource properties. The appropriate device partitions to
put an application in are then determined depending on its requirements; these partitions must
overlap in the same network topology partition. Simulations showed that the multilayer
resource-aware partition technique can put 2 times so many more operations, satisfy deadlines
for 3 times so many more operations requests, and minimize waste of material besides up to
15-32 times compared to two published availability-aware and resource-aware methods. To
find a cloud computing environment with fog an efficient scheduling method for connecting
application elements. Arshed et al. (2022) provided a genetic algorithm-based method. The
suggested approach bases its module scheduling on the implementation time as a fitness
function, taking into account the accessible fog devices. In terms of execution time, financial
cost, and bandwidth, the suggested technique was assessed and contrasted against baseline
algorithms. The suggested technique provides a superior scheduling strategy than the current
scheduler, according to extensive simulation data. To reduce network consumption and
latency, Hassan et al. (2022) created an optimization algorithm that dynamically allocates
suitable sensor equipment among fog nodes. The suggested method computed the volume of
information sensed by the edge device based on the speed of sensing frequency of the sensors
connected to the edge device. The recommended strategy took device heterogeneity and
computing power into account while joining the network nodes. For the evaluation of the
suggested method, many evaluations were carried out on various scales. The assessment
results demonstrated that the suggested technique is successful in reducing network usage and
end-to-end latency.

In general, the component placement optimization problem is an NP-hard problem that
cannot be solved in polynomial time. The metaheuristic method has been widely used to solve
NP-hard problems, due to its ability to achieve a feasible solution in a reasonable time.
Furthermore, a metaheuristic method can be used to solve a variety of optimization problems
with less modification. Examples of such metaheuristics include arithmetic optimization (AO)
(Abualigah et al., 2021a), aquila optimizer (Abualigah et al., 2021b), world cup optimization
(WCO) (Razmjooy et al., 2018) and cat swarm optimization (Ahmed et al., 2020).

The water strider algorithm (WSA) is one of the recently proposed metaheuristics
(Kaveh and Eslamlou, 2020). This algorithm has shown competitive performance in solving
several optimization problems. However, based on the no-free-lunch theorem, no algorithm
guarantee success in solving all optimization problems. Furthermore, the searchability of the
WSA algorithm is weak, and it is difficult to jump out of the local optimum when optimizing
complex problems. For this reason, in this study, an enhanced WSA (EWSA) has been
proposed. The proposed EWSA is used for the reliable distribution of application components
in fog networks with different scenarios such as theft alarm systems, elderly care, and fire
extinguishing system. In these scenarios, reliability and reliance on the system is very
important for the customer. For optimal energy consumption, full mesh subnets are extracted

Energy-Efficient and Reliable Deployment of IoT Applications in a Fog… 182

from the fog network. Among them, the most appropriate sub-network is selected, and the
application components are distributed on the nodes of the selected sub-network according to
the resources of the nodes and communication traffic between the components. The proposed
EWSA presents an efficient balance between exploration and exploitation strategies that
Yielded good results in terms of reducing energy consumption for running applications in fog
landscape as well as fast convergence.

System Modeling

This section presents a fog-based approach for the deployment of application components and
also suggests a framework for component management. The issue with installing the
application components on the fog node is finally described. The application components
management framework is presented in Figure 1 and according to the figure, an organizer is
utilized on the highest of the fog. One of the responsibilities of the organizer is to extract
complete mesh subnets from fog nodes.

Figure 1. Application components management framework

The communication architecture of nodes in each subnet is similar to the architecture of
a wireless mesh network. The computing model in each full mesh network is different from
the traditional mesh network. The mesh network of fog nodes (switches and fog servers) is
used for distributed operations inside the network. After extracting the complete meshes, a

Journal of Information Technology Management, 2023, Vol. 15, Issue 4, 183

suitable subnet is selected from among them and the organizer decides to deploy them in the
selected complete mesh according to the characteristics of the application components. This
planner is technically centralized and may be deployed for fault tolerance and the central
point of component failures. The main priority in the suggested framework is the extraction of
the deployment plan according to the selected complete meshes and the distribution of
components based on the plan. In the distribution of components, only those that are not
sensitive to delay are transferred to the cloud infrastructure for deployment and are
communicated with them in rounds for information processing.

To properly manage and deploy the application components in the fog nodes according
to the system efficiency, a deployment planning framework is used in the fog organizer. As
shown in Figure 1, the programming part includes the application component manager and
also modules that help in component management. Next to the deployment scheduler, there
are modules for storing and retrieving network information and other resources of full mesh
subnets. The collected information is used by the deployment planner module to manage the
application components and provide an optimal deployment plan. In the following, the details
related to these components are explained in the proposed framework.

The first component is the application element administrator. This component is crucial
because it leverages other framework modules to determine how to distribute application
element in fog or cloud networks. In a multi-component application, due to the dependence of
the components on each other, the decision to deploy is made based on several factors such as
the network structure, availability of resources, load distribution, and service quality
requirements for the application. Component placement might be based on objectives like
lowering energy usage, cutting down on network connections, and also lowering the total
delay in use.

The second element is component resource data, which is used to determine how to
deploy application components by extracting from user requests the processing and memory
needs of the application components. The third component is communication information of
components that has a major contribution in consuming the resources of fog nodes used in the
IoT. Fog node handling of application modules comprises a memory, processing, and
communication optimization. This module extracts the communication information of the
application components from the request sent by the users and makes it available to the
application components manager.

The fourth component is to discover the resources of full mesh subnets that are based on
the information received from the application components manager, the information
repository monitors the complete mesh subnets and sends the desired full mesh information
for component deployment to the application components manager. The last component is the
full mesh subnet manager. According to the information received from the fog, this

Energy-Efficient and Reliable Deployment of IoT Applications in a Fog… 184

component extracts the complete mesh subnets from the fog nodes and stores the information
of these subnets in the information repository. It also validates the status of complete meshes
in the tank by periodically monitoring the fog infrastructure.

Application Components

The architecture of apps that handle user data on a wide scale has altered recently in response
to demand and now has a multi-component structure to accommodate shifting users' needs
and new expectations from Internet-based services. These components are interdependent and
work together to satisfy the customer's needs. For example, consider a simple elderly care IoT
application provided by a smart health service provider to its customers. This use of three
components of control center (cmp1) for interpretation of collected data and manual control of
the system, condition manager (cmp3) to monitor the condition of elderly and disabled people
and provide immediate information to the nearest medical center in case of physical and
mental problems and the learning machine (cmp2) was created to record the history of
people's information and estimate their future health status.

The cmp2 component is not sensitive to delay and can be deployed in the cloud or data
centers in fog infrastructure. The hardware resources and software capabilities needed by each
component are shown in Figure 2 and the relationship between the components is depicted
through links.

Figure 2. Specifications of application components

Journal of Information Technology Management, 2023, Vol. 15, Issue 4, 185

For the timely management of the condition of the elderly, the cmp3 component must
access the required sensors (physical condition control sensors) and a trigger that activates the
mechanisms of preliminary operations and notification to the treatment centers, and this must
be within 10 milliseconds from the location of the cmp3 to the location. Installation of sensors
and actuators will take place.

It should be noted that the APIs offered by the fog service layer are meant to allow fog
or cloud units to remotely access items in surrounding nodes. How to distribute this module in
such a manner that the resources it requires are met is the issue that has to be resolved for the
activation of the aforementioned application components.

Even for this straightforward example, it is necessary to compare several deployment
strategies to choose the best mapping for the application's components. Because several
components might be deployed on a single node depending on the resources available, it is
vital to employ sophisticated search algorithms to determine the best deployments as
topologies and the number of application units develop.

In this study, it is assumed that ܴ number of IoT applications exist and each application
ݎ ∈ ܴ demonstrations represented using a vector [ܯ, ݉ܿ]. Each application has several
modules, where ܯ and ܿ݉ are, in turn, the number and the list of the application
components. The user application is modeled using a graph ܩ = ݉ܿ) , ܶ), where, ܶ =
,ଵଵݐ] … , ݉ܿ ,] is a matrix in this graphݐ = ,ଵ݉ܿ] ,ଶ݉ܿ … , ே] is the traffic sent݉ܿ
between ܿ݉ and ܿ݉ . In the following formula, the traffic matrix between application
components is presented in Equation (1).

ଶ݉ܿ ଵ݉ܿ … ݉ܿ
ଵ݉ܿ
ଶ݉ܿ

⋮
݉ܿ

൦

ଵଵݐ ଵଶݐ … ଵݐ
ଶଵݐ ଶଶݐ … ଶݐ

⋮
ଵݐ

⋮
ଶݐ

⋱ ⋮
… ݐ

൪
 (1)

Fog Model

In this study, a network consisting of ܰ fog nodes with heterogeneous processing power and
energy is assumed, which are capable of storing and executing application components. Fog
nodes in the assumed network are members of one or more subnets of the complete mesh.
Each of the fog nodes has direct or indirect access to a variety of sensor nodes through wired
or wireless connections. A fog network ݂݊ ∈ is represented using a vector ܨ
,݀݅ܯ] ,ܮܵ ,ܦܫ ܹܵ, ݀݅ܯ ,in which ,[ܹܪ is the ID in the complete mesh, ܵܮ is the list of
available sensors, ܦܫ is the node ID in the fog network, ܹܵ is the software, and ܹܪ is the
hardware.

Energy-Efficient and Reliable Deployment of IoT Applications in a Fog… 186

The components that are distributed in the nodes of a complete mesh have access to the
software capabilities and sensors of other fog nodes in the same mesh. The communication
link 1 between fog nodes can be shown using the vector [ܦ, stands for the ܦ ,]. In whichܤ
delay amount and ܤ is the link bandwidth. Figure 3 demonstrates the details of a complete
mesh.

Figure 3. Specifications of a complex subnet and member nodes

Communication network model: The communication network in a full mesh subnet is
modeled using a graph ܩ = ,ܰܨ) ܰܨ ,In this graph .(ݐݏܦ = [݂݊ଵ, ݂݊ଶ, … , ݂݊ெ] is a set of fog
nodes and ݐݏܦ = ݐݏ݀ൣ ൧ is the distance between ݂ ݊ and ݂݊. In each complete mesh subnet,
if ݂ ݊ = ݂݊ , then ݀ݐݏ = 0, otherwise ݀ݐݏ = 1. The communication network and distance
matrix of fog nodes can be shown as follows:

 ݂݊ଵ ݂݊ଶ … ݂݊
݂݊ଵ
݂݊ଶ

⋮
݂݊

൦

ଵଵݐݏ݀ ଵଶݐݏ݀ … ଵݐݏ݀
ଶଵݐݏ݀ ଶଶݐݏ݀ … ଶݐݏ݀

⋮
ଵݐݏ݀

⋮
ଶݐݏ݀

⋱ ⋮
… ݐݏ݀

൪
 (2)

Journal of Information Technology Management, 2023, Vol. 15, Issue 4, 187

Reliability Model

One of the problems that lie ahead is trying to strengthen the single goal of failed
phenomenon for application programs. When an application's components are deployed on
the fewest possible fog nodes, objectives like cutting down on energy use and making the best
use of computational power are maximized. As a result, a minimum constraint for the number
of fog nodes is taken into consideration for the deployment of application components to
satisfy the aims of fog computation owners in attaining the ideal goals and to also lower the
level of vulnerability of services in centralized transmission in fog structure. The number of
nodes in the chosen complete mesh subnet is used as the least quantity of nodes for element
distribution for this purpose. The distribution of the components in the event of non-
fulfillment is carried out over the shortest possible distance in relation to the total number of
nodes in the mesh subnet.

Deployment Model

To install the components from the extracted complete meshes, a complete mesh is selected
according to the needs of the application. The fog nodes in a complete mesh provide the
resources required by the components (delay, bandwidth and sensors). Our assumption in the
proposed model is that the sensors or software required by the application components are
shared by the fog nodes. will be available in a complete mesh subnet. In the procedure of
distributing application modules, ݅ on fog nodes, the computation resources, the distance of
fog nodes and the quality-of-service parameters required by the application components
should be considered. To decrease the traffic load, the space matrix should be considered.
between the fog nodes in the network graph and also calculated the traffic matrix between the
components of an application. It should be noted that the communication link between the fog
nodes m and n has a fixed ability in terms of delay and bandwidth, and consequently the
traffic amount of the modules of the applications with the capacity of the link is limited
between fog nodes, so we have:

 ܾ × ݈ < ܤ × ܮ
∈ೕ∈

 (3)

In the above expression, ܾ and ݈ represent, in turn, the bandwidth and desired delay
between ݆ and ݅ components, and ܤ and ܮ are, in turn, the bandwidth and delay of the
communication link between fog nodes ݊ and ݉. We define a binary variable, ݔ

 , to
determine the deployment status of the application components ܿ݉ ∈ ܷ on the fog node

fn ݂݊ ∈ ݔ ,component is placed on the ݂݊ node ݉ܿ if the ,ܨ
 will be equal to 1 and

otherwise, it will be 0. A module can be located on a fog node when the fog node stands
active, that is, ݕ = 1 and as a result we have (Arshed et al., 2022):

Energy-Efficient and Reliable Deployment of IoT Applications in a Fog… 188

ݔ
 ≤ ݉ܿ∀ ,ݕ ∈ ܷ , ݂݊ ∈ (4) ܨ

It should also be noted that all the hardware resources needed by the components
located in the fog node ݂݊ should not exceed the capacity of that node and therefore we have
(Chegini et al., 2022):

∑ ݔ
 × ∈ೌݎݏ ≤ ܵ ܴ , ∀݂݉ ∈ (5) ܨ

In the above expression, ܵ ܴ and ݎݏ represent the software resources capacity of
the complete mesh subnet and the requested software resources of the application
components. We also have (Arshed et al., 2022):

∑ ݔ
 × ∈ೌݏ ≤ ܵ, ∀݂݉ ∈ (6) ܨ

where, ܵand ܵrepresent the available sensors through the fully selective mesh
subnet and the requested sensor resources of the application components. Each of the
components is executed only on one of the fog nodes, so we have (Xiao et al., 2022):

∑ ݔ

∈ி = ݉ܿ∀ ,1 ∈ ܷ (7)

Methodology

The study system's overall energy usage is generally influenced by several variables,
including processing loads, communication technologies, the range between each connection
of fog nodes, and the volume of traffic that is exchanged. To compute the energy usage of
each fog node, the energy consumption related to the implementation of each of the
components on the fog node and the power consumption for exchanging information between
the fog nodes are considered. The energy consumption of each fog node directly depends on
the use of its resources, and therefore the average use of normalized resources from a fog
node is calculated as shown in Equation (8).

ܷ
௦ =

1
2

× ቌݓଵ ×
ݎ

ܴೕ

ೕ

+ ଶݓ ×
ݎ

ோெ

ܴೕ
ோெ

ೕ

ቍ (8)

In the above equation, the coefficients ݓଵ and ݓଶ have real values, such that 0 ≤
ଵݓ , ଶݓ ≤ 1 where, ݓଵ + ଶݓ = 1. These coefficients are used to determine the importance of
combined resources in total energy consumption. Since most of the energy usage is related to
the processing units, in this article, ݓଵ = 0.8 and ݓଶ = 0.2 are considered. Therefore, the
energy usage related to each host node of different components is calculated using Equation
(9).

Journal of Information Technology Management, 2023, Vol. 15, Issue 4, 189

ܲ
௦ = ݕ+ܲ × ൫ܲ − ܲ൯ × ܷ

௦ (9)

where the parameters ܲ and ܲ are utilized to determine the least and most energy usage
of each processing node in the lowest and highest operating conditions, respectively, and the
binary variable ݕ is utilized to indicate whether the preceding node is active or inactive.
Also, the energy usage resulting from the transmission is done through communication links
as shown in Equation (10).

ܲ
௧ = ௧ܲ × ೕ,ݐ

ೕஷ

 (10)

In the above expression, ௧ܲ describes the data transmission energy in the fog node and
 ೕ,is the traffic of the dependent components. According to the above relationship, theݐ

transfer energy is used in calculations when the dependent components ݆ and ݅ are located in
two different fog nodes. Finally, the total consumed energy in a fog node, which is the sum of
the transmission energy and the consumed energy of computing resources, is obtained from
Equation (11).

ܲ = ܲ
௧ + ܲ

௦ (11)

The proposed optimization model for minimizing the fog network total power
consumption (TPC) in the deployment of components is formulated as shown in Equation
(12) (Sofia et. al, 2018).

ܥܲܶ ݊݅݉ = ݉݅݊ ܲ
∈ி

 (12)

Such that:
݊ > ∑݂݊ (13)

ݔ
 ∈ [0, 1],

(14)

ݕ ∈ [0, 1] (15)

 ܾ × ݈ < ܤ × ܮ
∈ೕ∈

 (16)

 ݔ
 × ℎݎ ≤ ܪ ܴ , ∀݂݊ ∈ ܨ

∈ೌ

 (17)

 ݔ
 × ݎݏ ≤ ܵ ܴ , ∀݂݉ ∈ ܨ

∈ೌ

 (18)

 ݔ
 × ݏ ≤ ܵ , ∀݂݉ ∈ ܨ

∈ೌ

 (19)

Energy-Efficient and Reliable Deployment of IoT Applications in a Fog… 190

ݔ
 ≤ ݉ܿ∀ ,ݕ ∈ ܷ , ݂݊ ∈ (20) ܨ

 ݔ

∈ி

= ݉ܿ∀ ,1 ∈ ܷ (21)

Water Strider Algorithm

The WSA is inspired by the territorial behavior, mating manner, ripple communication,
foraging and succession of water striders. This algorithm includes five main steps namely,
birth, territory establishment, mating, feeding, and death. In the birth step, the WSA mimics
the female egg hatching to create a uniform distribution of the water strider population. The
initial position of the ݅௧ water strider, ݔ

, is expressed as shown in Equation (22).

ݔ
 = ܾܮ + ݀݊ܽݎ × (ܷܾ − ;(ܾܮ ݅ = 1,2, … , ܰ. (22)

where ܰ is the total number of water striders. ܷܾ and ܾܮ for the maximal and minimal
bounds of the problem, respectively. rand is a random number between 0 and 1. The best
solutions are then selected by calculating the fitness values of water striders using an
objective function. To establish nt number of territories, the population of water striders, nws
is then divided into ௪௦

௧
 groups based on their fitness value. To catch and flirt with females in

every location, the keystone (male water strider) sends out a specific wavy pattern to the
females. Any female can either respond to the signs or ignore them. Consequently, mating can
only take place if the females receive and accept the request. In this case, the keystone may
mate or be repelled, either way. This behavior is formulated as shown in Equation (23).

ቊ
ݔ

௧ାଵ = ݔ
௧ + ܴ × ,ߜ (݂ ݕݐ݈ܾܾ݅݅ܽݎ ℎݐ݅ݓ) ݏݎݑܿܿ ݃݊݅ݐܽ݉ ݂݅

ݔ
௧ାଵ = ݔ

௧ + ܴ × (1 + ݁ݏ݅ݓݎℎ݁ݐܱ ,(ߜ

(23)

where ߜ is a random value between 0 and 1 the position off the ith water strider is
denoted by ݔ

௧ , and R is the distance between the male position, ݔ
௧ିଵ and female position, ݔி

௧ ,
which is calculated as shown in Equation (24).

ܴ = ிݔ
௧ିଵ − ݔ

௧ିଵ (24)

The water striders relax by eating and updating their position following the mating ritual
because the fish used a significant amount of energy. If the previous position is greater than
the objective quantity in these situations, this should travel through the ideal area with the best
fitness (ݔ

௧), but if the previous position is less than the objective quantity, the meal is not
provided for reconstruction. This strategy may be expressed mathematically as follows:

ݔ
௧ାଵ = ݔ

௧ + 2 × ݀݊ܽݎ × ൫ݔ
௧ − ݔ

௧൯ (25)

Journal of Information Technology Management, 2023, Vol. 15, Issue 4, 191

The purpose of the update formula, as it is presented following, is to place restrictions
on the search process within the targeted range.

ݔ
௧ାଵ = ܮ ܾ

௧ + ݀݊ܽݎ × ൫ܷ ܾ
௧ − ܮ ܾ

௧൯ (26)

The algorithm usually ends if the terminating conditions have been met. Most iteration
serves as the cutoff point for the optimization algorithm.

Courtship Learning-based Water Strider Algorithm

Although in the WSA, a male transmits specific signals to attract a female, it does not offer a
specific method for distinguishing males and females in the population. Hence, it cannot
effectively use the gender information of water striders, which restricts the global search
ability of WSA. Therefore, to preserve the global search ability and increase its effectiveness,
the courtship learning approach has been integrated with WSA. In the courtship learning
approach, an individual with a lower fitness value is more likely to be selected. To select a
female from the archive, each individual is ranked based on their fitness value as shown in
Equation (27).

ܯ =
1

݂൫ݔ
௧൯

 (27)

where, ݂(ݔ
௧) specifies the fitness value of the ith female in the archive. The selection

probability of a female from the female archive is calculated as shown in Equation (28)
(Zheng and Li, 2018).

ܵ =
ܯ

∑ ܯ
ே
ୀଵ

 (28)

According to Equation (28), a female water strider of a lower fitness value will have a
higher probability of being selected from the female archive. The water strider could get stuck
in the local optimal solution if there is no probabilistic selection. Therefore, after calculating
the selection probability (Equation (28)), the roulette wheel selection method is employed to
select a female individual and avoid local optima.

Movement Strategy

Once the selected water stride's goal quantity is lower than the existing water stride, the
current water stride will initiate the moving controller (Ramezani et al., 2020). Even if the
distance between the 2 water striders is less appealing, the moving process will likely
conclude sooner and the optimal answer won't be found. The following formula is proposed
as a solution to this problem:

Energy-Efficient and Reliable Deployment of IoT Applications in a Fog… 192

ߙ = ቀ
ݎ

1600
ቁ × (ߚ−)ቀ ݃݅ݏ݈݃

లబబ ቁ (29)

ݔ
௧ାଵ = ݔ

௧ + ݒ × ݀݊ܽݎ × ൫ݔ
௧ − ݔ

௧൯ (30)

where the epoch time is indicated by ݐ, the regression analysis function ݈݃݅ݏ݃(,) is
specified in the range [0,1], and the attraction variable v is denoted by, if ݎ = is ݒ ,0
equivalent to 0.

Initialization by Chaos Theory

The typical WSA primarily employs a random distribution strategy to produce the initial
population. When the search space is large, the beginning population finds it difficult to
supply a high ergodic degree, which affects how successfully the water striders solves
problems. To improve the quality of the vectors, the beginning locations are begun using a
pseudo-random chaotic sequence. The chaotic logistic map creates the chaotic sequences, and
the following may be said about the link between the maps:

ݔ
௧ାଵ = ߤ × ݔ

௧ × ൫1 − ݔ
௧ ൯ (31)

where, ߤ determines bifurcation coefficient which is in the interval [3.57,
ݔ ,[4

௧ signifies the ݅௧ chaotic candidate in the interval [0, 1], where, ݔ ∉
[0, 0.25, 0.5, 0.75, 1] (Liu et al., 2005). Straight away, a certain chaotic variable tracking that
is considered for the entire search space.

Performance Evaluation

To validate the performance of the proposed EWSA, six common benchmark functions have
been employed that illustrated in Table 1. The proposed EWSA has been compared to four
recent optimizers namely, the billiard-based optimization algorithm (BOA) (Kaveh et al.,
2020), black hole (BH) (Hatamlou, 2013), locust swarm optimization (LS) (Cuevas et al.,
2020), and the original WSA (Kaveh and Eslamlou, 2020). Simulations have been conducted
using MATLAB version R2017b on a laptop with AMD A4 3600 processor and 8GB RAM.
The algorithms' parameters are shown in Table 1.

Table 1. Algorithms' parameters utilized in this simulation

Algorithm Parameters Values

BOA (Kaveh et al., 2020)
No. of pockets 19

 0.6 ݓ
 0.5 ܵܧ

BH (Hatamlou, 2013) ܽ 0.7
Number of stars 60

LS (Cuevas et al., 2020)
F 0.4
L 1
g 23

Journal of Information Technology Management, 2023, Vol. 15, Issue 4, 193

Table 2 lists the mathematical equation, dimension (ܦ), range, and fitness value (ܨ)
of the optimal solution for each of the benchmark functions under investigation.

Table 2. The information about the utilized test functions

Type Function Name Function D Range ܨ

Unimodal
Sphere ܨଵ(ݔ) = ݔ

ଶ

ୀଵ

 30 [-100,100] 0

Schwefel2.22 ܨଶ(ݔ) = | ܺ| + ෑ |ݔ|

ୀଵ

ୀଵ

 30 [-10,10] 0

Multimodal
Basic

Functions

Rosenbrock's ܨଷ(ݔ) = [100൫ݔାଵ − ݔ
ଶ൯ଶ + ݔ) − 1)ଶ]

ିଵ

ୀଵ

 30 [-30,30] 0

Quartic ܨସ(ݔ) = ݔ݅
ସ + (0,1]݉݀݊ܽݎ

ୀଵ

 30 [-128,128] 0

Multimodal
Benchmark
Functions

Schwefe ܨହ(ݔ) = (|ݔ|ඥ) ݊݅ݏݔ−

ୀଵ

 30 [-500,500] -418.99

Ackley
(ݔ)ܨ = −20 ݔ݁ ൮−0.2ඩ

1
݊

 ݔ
ଶ

ୀଵ

൲

–) ݔ݁
1
݊

 ݔߨ2) ݏܿ

ୀଵ

)) + 20 + ݁

30 [-32,32] 0

For a fair comparison, the population size is set to 30, and the maximum number of
iterations for all optimization algorithms is set to 200 (Razmjooy et al., 2016). The average
(AVG) of the 45 (Razmjooy et al., 2019, 2021) experimental results and standard deviation
(SD) are used as evaluation indicators, and the statistical results are shown in Table 3.

Table 3. Comparison results of the algorithms

Algorithms

Function

BOA (Kaveh et al., 2020) BH (Hatamlou, 2013) LS (Cuevas et al., 2020)

AVG SD AVG SD AVG SD
Sphere 5.246 E-10 3.734E-11 5.123 E-12 4.705-13 6.154 E-12 3.158E-14

Schwefel2.22 4.128E-8 0.42E-8 2.3011E-10 2.730E-11 2.493 E-12 1.853E-13
Rosenbrock's 0.760 0.00574 1.96 0.081 1.723 1.0528

Quartic 1.437E-5 0.084 0.007 0.004 0.0024 0.0084
Schwefe -115.507 24.1 -153.364 24 -195.351 19.15
Ackley 1.213E-9 3.43-10 3.13E-9 2.25E-10 2.65E-10 1.64E-11

Algorithm

Function

WSA (Kaveh and Eslamlou, 2020) EWSA

AVG SD AVG SD

Sphere 4.241 E-15 3.156E-16 4.124 E-16 2.031E-17
Schwefel2.22 1.098 E-13 1.238E-14 1.650E-12 1.095E-13
Rosenbrock's 0.847 0.040 0.2162 0.915

Quartic 0.00953 0.0056 0.00125 0.00001
Schwefe -186.705 18.15 -245.730 13
Ackley 1.06 E-11 1.14E-12 2.78 E-11 2.53E-12

Energy-Efficient and Reliable Deployment of IoT Applications in a Fog… 194

From the comparison of the statistical results in Table 3, it can be seen that the
performance of EWSA is better than the WSA and other algorithms in solving all benchmark
functions.

Module Placement Using Courtship Learning-based Water Strider Algorithm

This algorithm receives the application component deployment problem data, including
application component request resource information, component communication, fog network
infrastructure configuration, amount of population members, and the greatest number of
iterations as input parameters, and then an optimal deployment plan as output. Algorithm 1
demonstrates the pseudocode of the proposed method.

Algorithm 1: Pseudocode of the proposed method
1) Initializing: input Application components specification, Fog Network specification and the

EWSA

2) Apply preprocessing

3) Perform initial step of Courtship Learning-based Water Strider Algorithm

4) Calculate cost function

5) If stopping criteria is reached, go to (9) and return the results

6) Else

7) Update Fog data structure based on the algorithm updating formulas

8) Go to (3)

9) End

Figure 4. Pseudocode of the proposed method

Each water strider can be considered a possible solution to the deploying application
components optimization problem in fog nodes. A water strider consists of ܰ components,
which represent a used component. The allocation value given to each component is an
integer between 1 and ܯ, which indicates the location of the components. As can be observed
from Algorithm 1, Before executing the main loop of the program, preprocessing steps are
performed. Then, some algorithms are used to extract full mesh subnets. Then in the main
loop, two parts are executed. The impossible solutions are then corrected. The ܲ percent of a
less valuable solution is then updated based on the cost function. To do this, ܲ% has been
chosen based on the worst-ranked solutions. Then, they updated by running the random-step
procedure. Merit values are then calculated to update the solutions and after the execution of
the last round of the iteration loop, the optimal solution is returned.

Journal of Information Technology Management, 2023, Vol. 15, Issue 4, 195

Preprocessing Stage

Figure 5 shows the proposed method for the pre-processing step. In this figure, the Fog net is
the Fog Network Communication Matrix with dimension ݆ × ݅, such that ݆, ݅ = 1,2, … , ݊, and
݊ is the number of fog nodes.

Figure 5. Preprocessing stage

As can be observed from Figure 5, in the pre-processing stage, a set of complete mesh
subnets are selected in the fog network for the deployment of components. The extraction of
these subnets has several advantages: the first advantage is the decrease of the search space
for extracting the optimal deployment plan, and the second advantage is the sharing of sensors
and software required by the components of the complete mesh subnets.

In the proposed algorithm, at the beginning of entering the condition, all the nodes that
are connected are extracted and each pair is stored in the ݈݈ݑܨ௦௦ array. For the loop, all fog
nodes are compared with lines from ݈݈ݑܨ௦௦ that do not exist in it, and if it is connected to
all the nodes in it, it is added to the node list of the current line. Then, the repeated lines from
ெ௦௦݈݈ݑܨ are deleted. This process continues until the end of the condition, and finally, the
௦௦݈݈ݑܨ array, which contains a set of ݂݈݈ݑ௦ subnets are returned.

The stopping criteria of the algorithm are the desired number of ݇ clicks, and in other
words, the key loop is repeated ݇ times. After extracting the complete meshes, several

Start

Inputs:
- Fog net

- Number of Fog nodes

 Initialization:
-FullMeshs = {}

-FogNet = upper triangular (FogNet)

K=0

k=k+1
FullMeshs [row,k] = [Fognodej,

Fognodei]

Currentrow =
FullMeshs [row k]

For all Fognodej and k

Fognodej Not in Currentrow &
Fognodej connected to all node

in Currentrow in Fognet

Yes

Fullmeshs[row,k] =
[Fullmeshs[row,k],Fognodej]

Remove duplicate rows in
Fullmeshs

Return FullMeshs

End

For all fog
nodesj,I in Fog net

No

Energy-Efficient and Reliable Deployment of IoT Applications in a Fog… 196

complete meshes are selected for the deployment of components. Figure 6 shows the
pseudocode of extracting candidate complex subnets.

Algorithm2: Pseudocode of finding candidate Full୫ୣୱ୦ subnetworks
1) Initializing

Application components list Appcmp = (1, … , n)
Fog node list (fn = (1, … , m))
Bandwidth between components (Appcmp = array(n × n))
Bandwidth between fog nodes ൫FN = array(m × m)൯
Latency between fog nodes (FNୟ୲ୣ୬ୡ୷ = array(m × m))
Latency between components Appcmpୟ୲ୣ୬ୡ୷ = array(n × n))
AppcmpDataset is Application components resource requirements
FNDataset is Fog nodes resources
Full୫ୣୱ୦ୱ is Full୫ୣୱ୦ୱ list

2) For each Full୫ୣୱ୦ୱ as row୧:
 Latency౩౪౪౫౩
 = Checkୟ୲ୣ୬ୡ୷ా ൫Appcm_Latency, Appcmp, row୧ , FNDataset, FN , FNୟ୲ୣ୬ୡ୷൯;

3) HRୱ୲ୟ୲୳ୱ = HRୡ୦୩(AppcmpDataset, FNDataset, row୧)
4) SRୱ୲ୟ୲୳ୱ = SRୡ୦୩(AppcmpDataset, FNDataset, row୧)
5) Sୱ୲ୟ୲୳ୱ = Sୡ୦୩(AppcmpDataset, FNDataset, row୧)
6) If Latency౩౪౪౫౩ & HRୱ୲ୟ୲୳ୱ& SRୱ୲ୟ୲୳ୱ& Sୱ୲ୟ୲୳ୱ are true, go to (7)
7) Candidate୳୪୪ౣ౩౩ = [Candidate୳୪୪ౣ౩౩ ; row୧]
8) Return Candidate୳୪୪౩౩

Figure 6. Pseudocode of extracting candidate complex subnets

Results

Several tests are planned and carried out to evaluate the success of the proposed EWSA in
determining the best deployment strategy for application components in the fog infrastructure.
We assessed the suggested strategy using the energy consumption evaluation criterion. Fog
node energy consumption is often influenced by several variables like the volume of
exchange traffic, communication technology, the distance between nodes, and the number of
computations.

A fog node's energy consumption is determined by taking into account both the energy
used for processing application components on the node and the energy used for information
transfer between fog nodes. The outcomes produced by the suggested algorithm are compared
with those of some other metaheuristic approaches, including the accelerated particle swarm
optimization algorithm (APSO) (Ouyang et al., 2022), the multiswarm algorithm (MSA)
(Hasan and Al-Rizzo, 2019), accelerated particle swarm optimization algorithm (APSO)

Journal of Information Technology Management, 2023, Vol. 15, Issue 4, 197

(Ouyang et al., 2022), the multiswarm algorithm (MSA) (Hasan and Al-Rizzo, 2019), and the
original WSA (Kaveh & Eslamlou, 2020).

To evaluate the proposed framework, two scenarios were implemented. In each
scenario, the number of modules and the amount of fog nodes changes. In the first scenario,
20 mesh nodes and 30 modules were considered, and in the second scenario, 25 mesh nodes
and 40 components were considered. We performed all the experiments by MATLAB version
R2017b on a laptop with AMD A4 3600 processor and 8GB RAM as aforementioned. To
calculate the capability of the proposed algorithm in providing the optimal deployment plan
of application components, fog nodes are assumed to be heterogeneous in terms of storage
capacity, processing ability, delay and bandwidth. For better display, an example of data set
information, a fog network with 5 nodes is shown in Table 4 to Table 6.

Table 4. Sources of fog nodes

Fog nodes 1 2 3 4 5
The central processing unit (GHz) 1.03 1.016 1.39 1.45 1.05

Memory size (GB) 1.29 1.58 1.19 1.35 1.29
Consumption threshold 0.94 0.90 0.94 0.90 0.89

Memory consumption threshold 1.00 0.97 0.90 0.91 0.95
Minimum energy consumption 92 80 95 79 75
Maximum energy consumption 125 125 128 135 130

Sensors 0.95 1.1 1.1 1.8 0
Software 0 1.1 1.8 0 1.8

transfer energy 0.15 0.15 0.15 0.8 0.8

As seen in Table 4, CPU and memory consumption thresholds, computing resources, as
well as minimum and maximum energy consumption, supported software, transmission
energy, and types of sensors, are considered different for each node. The value of 0 in the
sensors and software means that the sensors and software are not supported, and the values of
1 and 2 show the supported types of software and sensors.

In Tables 5 and 6, the bandwidth and delay in the direct connection between nodes are
shown, and the values in these tables are normal numbers in the range [0, 1]. The value 0
means no connection between node ݆ and ݅ and bandwidth 1 means that node ݆ is the same as
node ݅.

Table 5. Width of the band between fog nodes

Fog knots 1 2 3 4 5
1 0.99 0.92 0.89 0.82 0.93
2 0.80 0.98 0.81 0.91 0.90
3 0.91 0.92 0.99 0.96 0.99
4 0.87 0.91 0.89 0.99 0.99
5 0.90 0.95 0 0.89 0.98

In Table 6, a delay of 1 between two nodes means that there is no connection between
the two nodes and a delay of 0 means that the two nodes are the same.

Energy-Efficient and Reliable Deployment of IoT Applications in a Fog… 198

Table 6. The delay between fog nodes

Fog knots 1 2 3 4 5
1 0 0.15 0.18 0.09 0.09
2 0.11 0 0.09 0.1 0.16
3 0.17 0.13 0 0.11 0.9
4 0.15 0.17 0.13 0 0.13
5 0.1 0.13 0.99 0.15 0

An example of the specifications of the application components, including the type of
sensor, CPU, memory, and the required software, as well as the connections and delays
between them, are shown in Tables 7, 8, and 9.

Table 7. Required resources of application components

Fog knots 1 2 3 4 5
CPU 0.14 0.18 0.21 0.25 0.28

Memory 0.15 0.15 0.1 0.15 0.1
Sensors 0.98 0 0.98 0 1.9

Software 0 0.9 0 1.1 0.9

Table 8: Bandwidth required by application components

Components 1 2 3 4 5
1 0.98 0.98 0 0 0
2 0 0.98 0.30 0 0.31
3 0 0 1 0.29 0.19
4 0 0 0 0.98 0.35
5 0 0 0 0 0.98

Table 9: The required delay of application components
Components 1 2 3 4 5

1 0 0.98 0.98 0.98 0.98
2 0 0 0.19 0.98 0.25
3 0 0 0 0.21 0.19
4 0 0 0 0 0.20
5 0 0 0 0 0

It should be mentioned that due to the absence of a standard benchmark in the literature
on this subject¸ here, we produced a data set with a range of values similar to Table 4 to Table
9. These values, processing power and storage capacity of fog nodes have been selected based
on the internal processors, smartphones, and digital assistants for individuals that make up
today's fog nodes as well as their topologies and computational capabilities. To compare the
performance of the studied algorithms, graphs of the state of the cost function in the repetition
of the algorithms (i.e., convergence profile), and the minimum rate of energy consumption
have been used. The nodes in the fog network are scattered randomly and with a normal
distribution.

Journal of Information Technology Management, 2023, Vol. 15, Issue 4, 199

Scenario 1

A network with 20 fog nodes and 30 components. Figure 7 shows the superiority of the
proposed EWSA over the proposed method in some of the iteration steps, but in the end, the
proposed EWSA meets our goal in comparison with WSA (Kaveh and Eslamlou, 2020), MSA
(Hasan and Al-Rizzo, 2019), and APSO (Ouyang et al., 2022).

Figure 7. The convergence analysis for the energy consumption rate based on the studied algorithms

for scenario 1.

As can be seen, the proposed EWSA provided the best convergence. Indeed, we need a
balance between the accuracy and the convergence profile to show the method's effectiveness.
At the end of the simulation, the optimal solution obtained according to the objective function
(Eq. (12)) by the proposed EWSA and the original WSA shows better results in comparison
with MSA and APSO.

Table 10 shows the optimal rate of energy usage at the end of the simulation based on
the studied methods.

Table 10. The optimal rate of energy usage at the end of the simulation for scenario 1
Algorithm The optimal rate of energy consumption

EWSA 0.01364
WSA (Kaveh and Eslamlou, 2020) 0.03372
MSA (Hasan and Al-Rizzo, 2019) 0.04432

APSO (Ouyang et al., 2022) 0.1719

The optimal solution obtained in Table 10 are achieved according to the objective
function (Eq. (12)). As can be observed, the proposed EWSA and the original WSA show
better results in comparison with MSA and APSO algorithms.

Energy-Efficient and Reliable Deployment of IoT Applications in a Fog… 200

With the increase in the number of nodes in the fog, the number of complete meshes
that can be extracted for the distribution of components increases, but due to the
heterogeneous nature of the nodes and application components, the candidate complete
meshes for the distribution of components are limited. In Figure 8, the position of fully
selected mesh nodes is shown in the network map.

Figure 8. Position of fully selected mesh nodes for scenario 1

As can be observed from Figure 8, after applying the proposed optimization
methodology, the complete selection for the distribution of components includes nodes 16,
15, 14, 8, 5, and 18.

Scenario 2

A network with 25 fog nodes and 40 modules. Figure 9 shows the close competition of the
algorithms can be seen in extracting solutions with the minimum value in the TPC objective
function, but finally, in the final stages, the repetition of the EWSA overcomes the other
algorithms with a small difference.

Journal of Information Technology Management, 2023, Vol. 15, Issue 4, 201

Figure 9. The convergence analysis for the energy consumption rate based on the studied algorithms

for scenario 2

The optimal solution obtained according to the objective function (12) shows the
difference between the EWSA and WSA (Kaveh and Eslamlou, 2020), MSA (Hasan and Al-
Rizzo, 2019), and APSO (Ouyang et al., 2022) at the end of the simulation. Table 11 shows
the optimal rate of energy usage at the end of the simulation based on the studied methods.

Table 11. The optimal rate of energy usage at the final of the simulation for scenario 2
Algorithm Optimal rate of energy consumption

EWSA 0.01004
WSA (Kaveh and Eslamlou, 2020) 0.02277
MSA (Hasan and Al-Rizzo, 2019) 0.4991

APSO (Ouyang et al., 2022) 0.1472

Figure 10 shows the position of fully selected mesh nodes is shown in the network map.

Figure 10. Position of fully selected mesh nodes for scenario 2

Energy-Efficient and Reliable Deployment of IoT Applications in a Fog… 202

The full mesh subnet selected by the EWSA for the distribution of components includes
nodes 18, 14, 11, 12, 9, 7, 6, 5, 1 and 20.

Conclusion

With the aid of internet infrastructure, the IoT enables remote management and control of
devices used for various purposes, enhances productivity scalability and connection, and
helps organizations save money and time. Fog computing and the IoT are expanding quickly
in the world of networking. The traditional centralized cloud computing paradigm will
confront several difficulties due to the explosive expansion of IoT applications, including
limited capacity, network failure, and excessive latency. Instead of using the cloud, IoT
devices may process, safeguard, and locally store data by using fog. In actuality, fog offers
IoT users more outstanding performance and quicker solutions than the cloud. The utilization
of computer resources in the cloud architecture is effectively reduced by deploying IoT
applications as a supplement to the cloud. Application components deployed inefficiently in
the fog waste bandwidth, energy, and resources. Additionally, dispersing an application's
elements among the fewest amount of fog nodes feasible to save energy results in decreased
service dependability. In this study, an improved metaheuristic approach based on WSA,
chaos theory and courtship learning were designed for the static distribution of application
elements on fog structure to strike a balance between optimal energy consumption,
minimizing the impact of a single goal of failure, and enhancing the dependability of the
application against damage. The simulations of the proposed method were compared with
those from Accelerated Particle Swarm Optimization Algorithm, the multiswarm algorithm,
and the basic Water Strider Algorithm. The consequences demonstrated that the approach
described in this article lowers the energy usage in the fog network and offers the high
dependability needed to meet the service quality criteria of an IoT application. Simulation
results showed that the proposed EWSA with 0.01364 and 0.01004 for scenarios one and two
provided the most efficient results.

Conflict of interest

The authors declare no potential conflict of interest regarding the publication of this work. In
addition, the ethical issues including plagiarism, informed consent, misconduct, data
fabrication and, or falsification, double publication and, or submission, and redundancy have
been completely witnessed by the authors.

Funding

The authors would like to thank Al-Mustaqbal University for the financial support provided to
carried out this research.

Journal of Information Technology Management, 2023, Vol. 15, Issue 4, 203

References
Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., & Gandomi, A. H. (2021a). The arithmetic

optimization algorithm. Computer methods in applied mechanics and engineering, 376, 113609.

Abualigah, L., Yousri, D., Abd Elaziz, M., Ewees, A. A., Al-Qaness, M. A., & Gandomi, A. H.
(2021b). Aquila optimizer: a novel meta-heuristic optimization algorithm. Computers &
Industrial Engineering, 157, 107250.

Ahmed, A. M., Rashid, T. A., & Saeed, S. A. M. (2020). Cat swarm optimization algorithm: a survey
and performance evaluation. Computational intelligence and neuroscience, 2020.

Al-Khafaji, H. M. R. (2022). Improving Quality Indicators of the Cloud-Based IoT Networks Using an
Improved Form of Seagull Optimization Algorithm. Future Internet, 14(10), 281.

Al-Khafaji, H. M. R., Alomari, E. S., & Majdi, H. S. (2019, October). Secured environment for cloud
integrated fog and mist architecture. In 2019 IEEE International Conference on Electrical
Engineering and Photonics (EExPolytech) (pp. 112-116). IEEE.

Arshed, J. U., Ahmed, M., Muhammad, T., Afzal, M., Arif, M., & Bazezew, B. (2022). GA-IRACE:
Genetic Algorithm-Based Improved Resource Aware Cost-Efficient Scheduler for Cloud Fog
Computing Environment. Wireless Communications and Mobile Computing, 2022.

Chegini, H., Naha, R. K., Mahanti, A., & Thulasiraman, P. (2021). Process automation in an IoT–fog–
cloud ecosystem: A survey and taxonomy. IoT, 2(1), 92-118.

Cuevas, E., Fausto, F., & González, A. (2020). The locust swarm optimization algorithm. New
advancements in swarm algorithms: operators and applications, 139-159.

Hasan, M. Z., & Al-Rizzo, H. (2019). Optimization of sensor deployment for industrial internet of
things using a multiswarm algorithm. IEEE Internet of things journal, 6(6), 10344-10362.

Hassan, S. R., Ahmad, I., Rehman, A. U., Hussen, S., & Hamam, H. (2022). Design of resource-aware
load allocation for heterogeneous fog computing environments. Wireless Communications and
Mobile Computing, 2022, 1-11.

Hatamlou, A. (2013). Black hole: A new heuristic optimization approach for data
clustering. Information sciences, 222, 175-184.

Kaveh, A., & Eslamlou, A. D. (2020, June). Water strider algorithm: A new metaheuristic and
applications. In Structures (25), 520-541. Elsevier.

Kaveh, A., Khanzadi, M., & Moghaddam, M. R. (2020, October). Billiards-inspired optimization
algorithm; a new meta-heuristic method. In Structures (27), 1722-1739. Elsevier.

Liu, B., Wang, L., Jin, Y. H., Tang, F., & Huang, D. X. (2005). Improved particle swarm optimization
combined with chaos. Chaos, Solitons & Fractals, 25(5), 1261-1271.

Ouyang, M., Xi, J., Bai, W., & Li, K. (2022). Band-area resource management platform and
accelerated particle swarm optimization algorithm for container deployment in Internet-of-
Things cloud. IEEE Access, 10, 86844-86863.

Ramezani, M., Bahmanyar, D., & Razmjooy, N. (2020). A new optimal energy management strategy
based on improved multi-objective antlion optimization algorithm: applications in smart
home. SN Applied Sciences, 2, 1-17.

Razmjooy, N., Ashourian, M., & Foroozandeh, Z. (Eds.). (2021). Metaheuristics and optimization in
computer and electrical engineering.

Razmjooy, N., Estrela, V. V., & Loschi, H. J. (2019). A study on metaheuristic-based neural networks
for image segmentation purposes. In Data science (25-49). CRC Press.

Energy-Efficient and Reliable Deployment of IoT Applications in a Fog… 204

Razmjooy, N., Estrela, V. V., Padilha, R., & Monteiro, A. C. B. (2020). World cup optimization
algorithm: Application for optimal control of pitch angle in hybrid renewable PV/wind energy
system. In Metaheuristics and Optimization in Computer and Electrical Engineering (25-47).
Cham: Springer International Publishing.

Razmjooy, N., Khalilpour, M., & Ramezani, M. (2016). A new meta-heuristic optimization algorithm
inspired by FIFA world cup competitions: theory and its application in PID designing for AVR
system. Journal of Control, Automation and Electrical Systems, 27, 419-440.

Samani, Z. N., Saurabh, N., & Prodan, R. (2021, May). Multilayer resource-aware partitioning for fog
application placement. In 2021 IEEE 5th International Conference on Fog and Edge Computing
(ICFEC) (9-18). IEEE.

Sathya Sofia, A., & GaneshKumar, P. (2018). Multi-objective task scheduling to minimize energy
consumption and makespan of cloud computing using NSGA-II. Journal of Network and
Systems Management, 26, 463-485.

Stojmenovic, I. (2014, November). Fog computing: A cloud to the ground support for smart things and
machine-to-machine networks. In 2014 Australasian telecommunication networks and
applications conference (ATNAC) (117-122). IEEE.

Xiao, Y., Sun, X., Guo, Y., Cui, H., Wang, Y., Li, J., & Li, S. (2022). An enhanced honey badger
algorithm based on Lévy flight and refraction opposition-based learning for engineering design
problems. Journal of Intelligent & Fuzzy Systems, 43(4), 4517-4540.

Zheng, Z. X., & Li, J. Q. (2018). Optimal chiller loading by improved invasive weed optimization
algorithm for reducing energy consumption. Energy and Buildings, 161, 80-88.

Bibliographic information of this paper for citing:

Alsaabri, Huda Hasan, & Al-Khafaji, Hamza Mohammed Ridha (2023). Energy-Efficient and Reliable
Deployment of IoT Applications in a Fog Infrastructure Based on Enhanced Water Strider Algorithm.

Journal of Information Technology Management, 15 (4), 179-204https://doi.org/
10.22059/jitm.2023.94931

Copyright © 2023, Huda Hasan Alsaabri and Hamza Mohammed Ridha Al-Khafaji

