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Abstract 

Fog computing is considered a promising solution to minimize processing and networking 
demands of the Internet of things (IoT) devices. In this work, a model based on the energy 
consumption evaluation criteria is provided to address the deployment issue in fog computing. 
Numerous factors, including processing loads, communication protocols, the distance 
between each connection of fog nodes, and the amount of traffic that is exchanged, all have an 
impact on the re-search system's overall energy consumption. The power consumption for 
implementing each com-ponent on the fog node as well as the power consumption for 
information exchange between the fog nodes are taken into account when calculating each fog 
node's energy use. Each fog node's energy consumption is closely correlated to how its 
resources are used, and as a result, to the average normalized resource utilization of a fog 
node. When the dependent components are spread across two distinct fog nodes, the transfer 
energy is taken into account in the computations. The sum of the energy used for transmission 
and the energy used for computational resources is the entire amount of energy consumed by 
a fog node. The goal is to reduce the energy consumption of the fog network while deploying 
components using a novel metaheuristic method.  Therefore, this work presents an enhanced 
water strider algorithm (EWSA) to address the problem of deploying application components 
with minimum energy consumption. Simulation experiments with two scenarios have been 
conducted based on the proposed EWSA algorithm. The results show that the EWSA 
algorithm achieved better performance with 0.01364 and 0.01004 optimal energy 
consumption rates. 
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Introduction 

Cloud computing provides smart systems with useful solutions for managing Internet of 
things (IoT) devices (Stojmenovic, 2014; Al-Khafaji, 2022). Currently, a wide range of IoT 
devices around the world, generate a significant amount of data. Processing this data is a 
complex process, time-consuming and expensive. In this way, scientists introduced fog 
computing. In contrast to cloud computing, fog computing accelerates data processing and 
can send information more quickly. Along with the growth and penetration of IoT devices in 
different sectors, the use of fog computing services also became more important.  

In the fog infrastructure, any device having processing power, storage, and network 
connectivity qualifies as a node and may be placed anywhere in the fog network. These nodes 
may be placed in vehicles or in offices that serve as target locations (Al-Khafaji et. al, 2019). 
Data generated by an IoT device may be received by one of these nodes, processed inside the 
network, and then sent to cloud data centers. Fog computing facilitates the location of IoT 
technology near the data source by supporting the integrated use of edge and cloud resources. 
Deploying, managing and updating applications in such a layered environment creates new 
challenges. The large-scale fog network includes a large number of heterogeneous nodes with 
separate computing resources, such as processing, storing, and memory. Deploying the 
components of an application on minimal nodes in the fog network leads to the reduction of 
energy consumption and the optimal use of computing resources, as well as reducing the 
delay between the application components, but this deployment plan leads to the 
strengthening of the single-point failure phenomenon, in which failure of one node disrupts 
communication through the whole system. Therefore, the single-point failure has a negative 
effect on the reliability of the customer's use, and as a result, a solution must be adopted for 
the proper deployment of components to provide reliable services.  

This work focuses on one of the major fog computing challenges that is application 
components placement in fog computing environments. Finding the best deployment strategy 
is not a trivial task, due to the heterogeneous nature of fog nodes. In recent years, studies have 
been done regarding the distribution of components in the fog infrastructure. Samani et al. 
(2021) suggested a multilayer resource-aware partitioning mechanism. Using a multilayered 
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network graph, the approach represented the heterogeneous Fog components as subsets 
depending on network topology and resource properties. The appropriate device partitions to 
put an application in are then determined depending on its requirements; these partitions must 
overlap in the same network topology partition. Simulations showed that the multilayer 
resource-aware partition technique can put 2 times so many more operations, satisfy deadlines 
for 3 times so many more operations requests, and minimize waste of material besides up to 
15-32 times compared to two published availability-aware and resource-aware methods. To 
find a cloud computing environment with fog an efficient scheduling method for connecting 
application elements. Arshed et al. (2022) provided a genetic algorithm-based method. The 
suggested approach bases its module scheduling on the implementation time as a fitness 
function, taking into account the accessible fog devices. In terms of execution time, financial 
cost, and bandwidth, the suggested technique was assessed and contrasted against baseline 
algorithms. The suggested technique provides a superior scheduling strategy than the current 
scheduler, according to extensive simulation data. To reduce network consumption and 
latency, Hassan et al. (2022) created an optimization algorithm that dynamically allocates 
suitable sensor equipment among fog nodes. The suggested method computed the volume of 
information sensed by the edge device based on the speed of sensing frequency of the sensors 
connected to the edge device. The recommended strategy took device heterogeneity and 
computing power into account while joining the network nodes. For the evaluation of the 
suggested method, many evaluations were carried out on various scales. The assessment 
results demonstrated that the suggested technique is successful in reducing network usage and 
end-to-end latency.  

In general, the component placement optimization problem is an NP-hard problem that 
cannot be solved in polynomial time. The metaheuristic method has been widely used to solve 
NP-hard problems, due to its ability to achieve a feasible solution in a reasonable time. 
Furthermore, a metaheuristic method can be used to solve a variety of optimization problems 
with less modification. Examples of such metaheuristics include arithmetic optimization (AO) 
(Abualigah et al., 2021a), aquila optimizer (Abualigah et al., 2021b), world cup optimization 
(WCO) (Razmjooy et al., 2018) and cat swarm optimization (Ahmed et al., 2020). 

The water strider algorithm (WSA) is one of the recently proposed metaheuristics 
(Kaveh and Eslamlou, 2020). This algorithm has shown competitive performance in solving 
several optimization problems. However, based on the no-free-lunch theorem, no algorithm 
guarantee success in solving all optimization problems. Furthermore, the searchability of the 
WSA algorithm is weak, and it is difficult to jump out of the local optimum when optimizing 
complex problems. For this reason, in this study, an enhanced WSA (EWSA) has been 
proposed. The proposed EWSA is used for the reliable distribution of application components 
in fog networks with different scenarios such as theft alarm systems, elderly care, and fire 
extinguishing system. In these scenarios, reliability and reliance on the system is very 
important for the customer. For optimal energy consumption, full mesh subnets are extracted 
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from the fog network. Among them, the most appropriate sub-network is selected, and the 
application components are distributed on the nodes of the selected sub-network according to 
the resources of the nodes and communication traffic between the components. The proposed 
EWSA presents an efficient balance between exploration and exploitation strategies that 
Yielded good results in terms of reducing energy consumption for running applications in fog 
landscape as well as fast convergence. 

System Modeling 

This section presents a fog-based approach for the deployment of application components and 
also suggests a framework for component management. The issue with installing the 
application components on the fog node is finally described. The application components 
management framework is presented in Figure 1 and according to the figure, an organizer is 
utilized on the highest of the fog. One of the responsibilities of the organizer is to extract 
complete mesh subnets from fog nodes.  

 

 
Figure 1. Application components management framework 

The communication architecture of nodes in each subnet is similar to the architecture of 
a wireless mesh network. The computing model in each full mesh network is different from 
the traditional mesh network. The mesh network of fog nodes (switches and fog servers) is 
used for distributed operations inside the network. After extracting the complete meshes, a 
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suitable subnet is selected from among them and the organizer decides to deploy them in the 
selected complete mesh according to the characteristics of the application components. This 
planner is technically centralized and may be deployed for fault tolerance and the central 
point of component failures. The main priority in the suggested framework is the extraction of 
the deployment plan according to the selected complete meshes and the distribution of 
components based on the plan. In the distribution of components, only those that are not 
sensitive to delay are transferred to the cloud infrastructure for deployment and are 
communicated with them in rounds for information processing. 

To properly manage and deploy the application components in the fog nodes according 
to the system efficiency, a deployment planning framework is used in the fog organizer. As 
shown in Figure 1, the programming part includes the application component manager and 
also modules that help in component management. Next to the deployment scheduler, there 
are modules for storing and retrieving network information and other resources of full mesh 
subnets. The collected information is used by the deployment planner module to manage the 
application components and provide an optimal deployment plan. In the following, the details 
related to these components are explained in the proposed framework. 

The first component is the application element administrator. This component is crucial 
because it leverages other framework modules to determine how to distribute application 
element in fog or cloud networks. In a multi-component application, due to the dependence of 
the components on each other, the decision to deploy is made based on several factors such as 
the network structure, availability of resources, load distribution, and service quality 
requirements for the application. Component placement might be based on objectives like 
lowering energy usage, cutting down on network connections, and also lowering the total 
delay in use. 

The second element is component resource data, which is used to determine how to 
deploy application components by extracting from user requests the processing and memory 
needs of the application components. The third component is communication information of 
components that has a major contribution in consuming the resources of fog nodes used in the 
IoT. Fog node handling of application modules comprises a memory, processing, and 
communication optimization. This module extracts the communication information of the 
application components from the request sent by the users and makes it available to the 
application components manager.  

The fourth component is to discover the resources of full mesh subnets that are based on 
the information received from the application components manager, the information 
repository monitors the complete mesh subnets and sends the desired full mesh information 
for component deployment to the application components manager. The last component is the 
full mesh subnet manager. According to the information received from the fog, this 
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component extracts the complete mesh subnets from the fog nodes and stores the information 
of these subnets in the information repository. It also validates the status of complete meshes 
in the tank by periodically monitoring the fog infrastructure. 

Application Components 

The architecture of apps that handle user data on a wide scale has altered recently in response 
to demand and now has a multi-component structure to accommodate shifting users' needs 
and new expectations from Internet-based services. These components are interdependent and 
work together to satisfy the customer's needs. For example, consider a simple elderly care IoT 
application provided by a smart health service provider to its customers. This use of three 
components of control center (cmp1) for interpretation of collected data and manual control of 
the system, condition manager (cmp3) to monitor the condition of elderly and disabled people 
and provide immediate information to the nearest medical center in case of physical and 
mental problems and the learning machine (cmp2) was created to record the history of 
people's information and estimate their future health status. 

The cmp2 component is not sensitive to delay and can be deployed in the cloud or data 
centers in fog infrastructure. The hardware resources and software capabilities needed by each 
component are shown in Figure 2 and the relationship between the components is depicted 
through links. 

  

 
Figure 2. Specifications of application components  
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For the timely management of the condition of the elderly, the cmp3 component must 
access the required sensors (physical condition control sensors) and a trigger that activates the 
mechanisms of preliminary operations and notification to the treatment centers, and this must 
be within 10 milliseconds from the location of the cmp3 to the location. Installation of sensors 
and actuators will take place. 

It should be noted that the APIs offered by the fog service layer are meant to allow fog 
or cloud units to remotely access items in surrounding nodes. How to distribute this module in 
such a manner that the resources it requires are met is the issue that has to be resolved for the 
activation of the aforementioned application components. 

Even for this straightforward example, it is necessary to compare several deployment 
strategies to choose the best mapping for the application's components. Because several 
components might be deployed on a single node depending on the resources available, it is 
vital to employ sophisticated search algorithms to determine the best deployments as 
topologies and the number of application units develop. 

In this study, it is assumed that ܴ number of IoT applications exist and each application 
ݎ ∈ ܴ demonstrations represented using a vector [ܯ, ݉ܿ ]. Each application has several 
modules, where ܯ and ܿ݉  are, in turn, the number and the list of the application 
components. The user application is modeled using a graph ܩ = ݉ܿ) , ܶ), where, ܶ =
,ଵଵݐ] … , ݉ܿ ,] is a matrix in this graphݐ = ,ଵ݉ܿ] ,ଶ݉ܿ … ,  ே] is the traffic sent݉ܿ
between ܿ݉  and ܿ݉ . In the following formula, the traffic matrix between application 
components is presented in Equation (1). 

ଶ݉ܿ  ଵ݉ܿ              …  ݉ܿ   
ଵ݉ܿ
ଶ݉ܿ

⋮
݉ܿ

൦

ଵଵݐ ଵଶݐ … ଵݐ
ଶଵݐ ଶଶݐ … ଶݐ

⋮
ଵݐ

⋮
ଶݐ

⋱ ⋮
… ݐ

൪ 
          (1) 

Fog Model 

In this study, a network consisting of ܰ fog nodes with heterogeneous processing power and 
energy is assumed, which are capable of storing and executing application components. Fog 
nodes in the assumed network are members of one or more subnets of the complete mesh. 
Each of the fog nodes has direct or indirect access to a variety of sensor nodes through wired 
or wireless connections. A fog network ݂݊ ∈  is represented using a vector ܨ
,݀݅ܯ] ,ܮܵ ,ܦܫ ܹܵ, ݀݅ܯ ,in which ,[ܹܪ  is the ID in the complete mesh, ܵܮ is the list of 
available sensors, ܦܫ is the node ID in the fog network, ܹܵ is the software, and ܹܪ is the 
hardware. 
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The components that are distributed in the nodes of a complete mesh have access to the 
software capabilities and sensors of other fog nodes in the same mesh. The communication 
link 1 between fog nodes can be shown using the vector [ܦ,  stands for the ܦ ,]. In whichܤ
delay amount and ܤ  is the link bandwidth. Figure 3 demonstrates the details of a complete 
mesh. 

 

 
Figure 3. Specifications of a complex subnet and member nodes 

Communication network model: The communication network in a full mesh subnet is 
modeled using a graph ܩ = ,ܰܨ) ܰܨ ,In this graph .(ݐݏܦ = [݂݊ଵ, ݂݊ଶ, … , ݂݊ெ] is a set of fog 
nodes and ݐݏܦ = ݐݏ݀ൣ ൧ is the distance between ݂ ݊  and ݂݊. In each complete mesh subnet, 
if ݂ ݊ = ݂݊ , then ݀ݐݏ = 0, otherwise ݀ݐݏ = 1. The communication network and distance 
matrix of fog nodes can be shown as follows: 

           ݂݊ଵ        ݂݊ଶ  …     ݂݊ 
݂݊ଵ
݂݊ଶ

⋮
݂݊

൦

ଵଵݐݏ݀ ଵଶݐݏ݀ … ଵݐݏ݀
ଶଵݐݏ݀ ଶଶݐݏ݀ … ଶݐݏ݀

⋮
ଵݐݏ݀

⋮
ଶݐݏ݀

⋱ ⋮
… ݐݏ݀
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 (2) 
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Reliability Model 

One of the problems that lie ahead is trying to strengthen the single goal of failed 
phenomenon for application programs. When an application's components are deployed on 
the fewest possible fog nodes, objectives like cutting down on energy use and making the best 
use of computational power are maximized. As a result, a minimum constraint for the number 
of fog nodes is taken into consideration for the deployment of application components to 
satisfy the aims of fog computation owners in attaining the ideal goals and to also lower the 
level of vulnerability of services in centralized transmission in fog structure. The number of 
nodes in the chosen complete mesh subnet is used as the least quantity of nodes for element 
distribution for this purpose. The distribution of the components in the event of non-
fulfillment is carried out over the shortest possible distance in relation to the total number of 
nodes in the mesh subnet. 

Deployment Model 

To install the components from the extracted complete meshes, a complete mesh is selected 
according to the needs of the application. The fog nodes in a complete mesh provide the 
resources required by the components (delay, bandwidth and sensors). Our assumption in the 
proposed model is that the sensors or software required by the application components are 
shared by the fog nodes. will be available in a complete mesh subnet. In the procedure of 
distributing application modules, ݅ on fog nodes, the computation resources, the distance of 
fog nodes and the quality-of-service parameters required by the application components 
should be considered. To decrease the traffic load, the space matrix should be considered. 
between the fog nodes in the network graph and also calculated the traffic matrix between the 
components of an application. It should be noted that the communication link between the fog 
nodes m and n has a fixed ability in terms of delay and bandwidth, and consequently the 
traffic amount of the modules of the applications with the capacity of the link is limited 
between fog nodes, so we have: 

  ܾ × ݈ < ܤ × ܮ
∈ೕ∈

 (3) 

In the above expression, ܾ  and ݈  represent, in turn, the bandwidth and desired delay 
between ݆ and ݅ components, and ܤ and ܮ  are, in turn, the bandwidth and delay of the 
communication link between fog nodes ݊ and ݉. We define a binary variable, ݔ

 , to 
determine the deployment status of the application components ܿ݉ ∈ ܷ on the fog node 

fn ݂݊ ∈ ݔ ,component is placed on the ݂݊ node ݉ܿ if the ,ܨ
  will be equal to 1 and 

otherwise, it will be 0. A module can be located on a fog node when the fog node stands 
active, that is, ݕ = 1 and as a result we have (Arshed et al., 2022): 
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ݔ
 ≤ ݉ܿ∀ ,ݕ ∈ ܷ , ݂݊ ∈  (4) ܨ

It should also be noted that all the hardware resources needed by the components 
located in the fog node ݂݊ should not exceed the capacity of that node and therefore we have 
(Chegini et al., 2022): 

∑ ݔ
 × ∈ೌݎݏ ≤ ܵ ܴ , ∀݂݉ ∈  (5) ܨ

In the above expression, ܵ ܴ  and ݎݏ represent the software resources capacity of 
the complete mesh subnet and the requested software resources of the application 
components. We also have (Arshed et al., 2022): 

∑ ݔ
 × ∈ೌݏ ≤ ܵ, ∀݂݉ ∈  (6) ܨ

where, ܵand ܵrepresent the available sensors through the fully selective mesh 
subnet and the requested sensor resources of the application components. Each of the 
components is executed only on one of the fog nodes, so we have (Xiao et al., 2022): 

∑ ݔ


∈ி = ݉ܿ∀ ,1 ∈ ܷ (7) 

Methodology 

The study system's overall energy usage is generally influenced by several variables, 
including processing loads, communication technologies, the range between each connection 
of fog nodes, and the volume of traffic that is exchanged. To compute the energy usage of 
each fog node, the energy consumption related to the implementation of each of the 
components on the fog node and the power consumption for exchanging information between 
the fog nodes are considered. The energy consumption of each fog node directly depends on 
the use of its resources, and therefore the average use of normalized resources from a fog 
node is calculated as shown in Equation (8). 

ܷ
௦ =

1
2

× ቌݓଵ × 
ݎ



ܴೕ


ೕ



+ ଶݓ × 
ݎ

ோெ

ܴೕ
ோெ

ೕ



ቍ  (8) 

In the above equation, the coefficients ݓଵ and ݓଶ have real values, such that 0 ≤
ଵݓ , ଶݓ ≤ 1 where, ݓଵ + ଶݓ = 1. These coefficients are used to determine the importance of 
combined resources in total energy consumption. Since most of the energy usage is related to 
the processing units, in this article, ݓଵ = 0.8 and ݓଶ = 0.2 are considered. Therefore, the 
energy usage related to each host node of different components is calculated using Equation 
(9). 
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ܲ
௦ = ݕ+ܲ × ൫ܲ − ܲ൯ × ܷ

௦  (9) 

where the parameters ܲ and ܲ are utilized to determine the least and most energy usage 
of each processing node in the lowest and highest operating conditions, respectively, and the 
binary variable ݕ  is utilized to indicate whether the preceding node is active or inactive. 
Also, the energy usage resulting from the transmission is done through communication links 
as shown in Equation (10). 

ܲ
௧ = ௧ܲ ×  ೕ,ݐ

ೕஷ

    (10) 

In the above expression, ௧ܲ  describes the data transmission energy in the fog node and 
 ೕ,is the traffic of the dependent components. According to the above relationship, theݐ

transfer energy is used in calculations when the dependent components ݆ and ݅ are located in 
two different fog nodes. Finally, the total consumed energy in a fog node, which is the sum of 
the transmission energy and the consumed energy of computing resources, is obtained from 
Equation (11). 

ܲ = ܲ
௧ + ܲ

௦                                                                                                                                             (11) 

The proposed optimization model for minimizing the fog network total power 
consumption (TPC) in the deployment of components is formulated as shown in Equation 
(12) (Sofia et. al, 2018). 

ܥܲܶ ݊݅݉ = ݉݅݊  ܲ
∈ி

 (12) 

Such that: 
݊ > ∑݂݊ (13) 

ݔ
 ∈ [0, 1],  

(14) 

ݕ ∈ [0, 1] (15) 

  ܾ × ݈ < ܤ × ܮ
∈ೕ∈

 (16) 

 ݔ
 × ℎݎ ≤ ܪ ܴ ,   ∀݂݊ ∈ ܨ

∈ೌ

 (17) 

 ݔ
 × ݎݏ ≤ ܵ ܴ ,   ∀݂݉ ∈ ܨ

∈ೌ

 (18) 

 ݔ
 × ݏ ≤ ܵ ,   ∀݂݉ ∈ ܨ

∈ೌ

 (19) 
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ݔ
 ≤ ݉ܿ∀   ,ݕ ∈ ܷ ,   ݂݊ ∈  (20)  ܨ

 ݔ


∈ி

= ݉ܿ∀   ,1 ∈ ܷ  (21) 

Water Strider Algorithm  

The WSA is inspired by the territorial behavior, mating manner, ripple communication, 
foraging and succession of water striders. This algorithm includes five main steps namely, 
birth, territory establishment, mating, feeding, and death. In the birth step, the WSA mimics 
the female egg hatching to create a uniform distribution of the water strider population. The 
initial position of the ݅௧  water strider, ݔ

, is expressed as shown in Equation (22). 

ݔ
 = ܾܮ + ݀݊ܽݎ × (ܷܾ − ;(ܾܮ  ݅ = 1,2, … , ܰ.  (22)    

where ܰ is the total number of water striders. ܷܾ and ܾܮ for the maximal and minimal 
bounds of the problem, respectively. rand is a random number between 0 and 1. The best 
solutions are then selected by calculating the fitness values of water striders using an 
objective function. To establish nt number of territories, the population of water striders, nws 
is then divided into ௪௦ 

௧ 
  groups based on their fitness value. To catch and flirt with females in 

every location, the keystone (male water strider) sends out a specific wavy pattern to the 
females. Any female can either respond to the signs or ignore them. Consequently, mating can 
only take place if the females receive and accept the request. In this case, the keystone may 
mate or be repelled, either way. This behavior is formulated as shown in Equation (23). 

ቊ
ݔ

௧ାଵ = ݔ
௧ + ܴ × ,ߜ ( ݂ ݕݐ݈ܾܾ݅݅ܽݎ ℎݐ݅ݓ) ݏݎݑܿܿ ݃݊݅ݐܽ݉ ݂݅

ݔ
௧ାଵ = ݔ

௧ + ܴ × (1 +  ݁ݏ݅ݓݎℎ݁ݐܱ                                                             ,(ߜ
 

(23) 

where ߜ is a random value between 0 and 1 the position off the ith water strider is 
denoted by ݔ

௧ , and R is the distance between the male position, ݔ
௧ିଵ and female position, ݔி

௧ , 
which is calculated as shown in Equation (24). 

ܴ = ிݔ
௧ିଵ − ݔ

௧ିଵ (24) 

The water striders relax by eating and updating their position following the mating ritual 
because the fish used a significant amount of energy. If the previous position is greater than 
the objective quantity in these situations, this should travel through the ideal area with the best 
fitness (ݔ

௧ ), but if the previous position is less than the objective quantity, the meal is not 
provided for reconstruction. This strategy may be expressed mathematically as follows: 

ݔ
௧ାଵ = ݔ

௧ + 2 × ݀݊ܽݎ × ൫ݔ
௧ − ݔ

௧൯ (25) 
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The purpose of the update formula, as it is presented following, is to place restrictions 
on the search process within the targeted range. 

ݔ
௧ାଵ = ܮ ܾ

௧ + ݀݊ܽݎ × ൫ܷ ܾ
௧ − ܮ ܾ

௧൯ (26) 

The algorithm usually ends if the terminating conditions have been met. Most iteration 
serves as the cutoff point for the optimization algorithm. 

Courtship Learning-based Water Strider Algorithm  

Although in the WSA, a male transmits specific signals to attract a female, it does not offer a 
specific method for distinguishing males and females in the population. Hence, it cannot 
effectively use the gender information of water striders, which restricts the global search 
ability of WSA. Therefore, to preserve the global search ability and increase its effectiveness, 
the courtship learning approach has been integrated with WSA. In the courtship learning 
approach, an individual with a lower fitness value is more likely to be selected. To select a 
female from the archive, each individual is ranked based on their fitness value as shown in 
Equation (27). 

ܯ =
1

݂൫ݔ
௧൯

 (27) 

where, ݂(ݔ
௧) specifies the fitness value of the ith female in the archive. The selection 

probability of a female from the female archive is calculated as shown in Equation (28) 
(Zheng and Li, 2018). 

ܵ =
ܯ

∑ ܯ
ே
ୀଵ

 (28) 

According to Equation (28), a female water strider of a lower fitness value will have a 
higher probability of being selected from the female archive. The water strider could get stuck 
in the local optimal solution if there is no probabilistic selection. Therefore, after calculating 
the selection probability (Equation (28)), the roulette wheel selection method is employed to 
select a female individual and avoid local optima.  

Movement Strategy 

Once the selected water stride's goal quantity is lower than the existing water stride, the 
current water stride will initiate the moving controller (Ramezani et al., 2020). Even if the 
distance between the 2 water striders is less appealing, the moving process will likely 
conclude sooner and the optimal answer won't be found. The following formula is proposed 
as a solution to this problem: 
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ߙ = ቀ
ݎ

1600
ቁ × (ߚ−)ቀ ݃݅ݏ݈݃


లబబ ቁ (29) 

ݔ
௧ାଵ = ݔ

௧ + ݒ × ݀݊ܽݎ × ൫ݔ
௧ − ݔ

௧൯ (30) 

where the epoch time is indicated by ݐ, the regression analysis function ݈݃݅ݏ݃(, ) is 
specified in the range [0,1], and the attraction variable v is denoted by, if ݎ =  is ݒ ,0
equivalent to 0. 

Initialization by Chaos Theory 

The typical WSA primarily employs a random distribution strategy to produce the initial 
population. When the search space is large, the beginning population finds it difficult to 
supply a high ergodic degree, which affects how successfully the water striders solves 
problems. To improve the quality of the vectors, the beginning locations are begun using a 
pseudo-random chaotic sequence. The chaotic logistic map creates the chaotic sequences, and 
the following may be said about the link between the maps: 

ݔ
௧ାଵ = ߤ × ݔ

௧ × ൫1 − ݔ
௧ ൯ (31) 

where, ߤ determines bifurcation coefficient which is in the interval [3.57, 
ݔ ,[4

௧ signifies the ݅௧  chaotic candidate in the interval [0, 1], where, ݔ ∉
[0, 0.25, 0.5, 0.75, 1] (Liu et al., 2005). Straight away, a certain chaotic variable tracking that 
is considered for the entire search space. 

Performance Evaluation 

To validate the performance of the proposed EWSA, six common benchmark functions have 
been employed that illustrated in Table 1. The proposed EWSA has been compared to four 
recent optimizers namely, the billiard-based optimization algorithm (BOA) (Kaveh et al., 
2020), black hole (BH) (Hatamlou, 2013), locust swarm optimization (LS) (Cuevas et al., 
2020), and the original WSA (Kaveh and Eslamlou, 2020). Simulations have been conducted 
using MATLAB version R2017b on a laptop with AMD A4 3600 processor and 8GB RAM. 
The algorithms' parameters are shown in Table 1. 

Table 1. Algorithms' parameters utilized in this simulation 

Algorithm Parameters Values 

BOA (Kaveh et al., 2020)  
No. of pockets 19 

 0.6 ݓ
 0.5 ܵܧ

BH (Hatamlou, 2013)  ܽ 0.7 
Number of stars 60 

LS (Cuevas et al., 2020) 
F 0.4 
L 1 
g 23 
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Table 2 lists the mathematical equation, dimension (ܦ), range, and fitness value (ܨ) 
of the optimal solution for each of the benchmark functions under investigation. 

Table 2. The information about the utilized test functions 

Type Function Name Function D Range ܨ 

Unimodal 
Sphere ܨଵ(ݔ) =  ݔ

ଶ


ୀଵ

 30 [-100,100] 0 

Schwefel2.22 ܨଶ(ݔ) =  | ܺ| + ෑ |ݔ|


ୀଵ



ୀଵ

 30 [-10,10] 0 

Multimodal 
Basic 

Functions 

Rosenbrock's ܨଷ(ݔ) =  [100൫ݔାଵ − ݔ
ଶ൯ଶ + ݔ) − 1)ଶ]

ିଵ

ୀଵ

 30 [-30,30] 0 

Quartic ܨସ(ݔ) =  ݔ݅
ସ + (0,1]݉݀݊ܽݎ



ୀଵ

 30 [-128,128] 0 

Multimodal 
Benchmark 
Functions 

Schwefe ܨହ(ݔ) =  (|ݔ|ඥ) ݊݅ݏݔ−


ୀଵ

 30 [-500,500] -418.99 

Ackley 
(ݔ)ܨ = −20 ݔ݁ ൮−0.2ඩ

1
݊

 ݔ
ଶ



ୀଵ

൲ 

– ) ݔ݁ 
1
݊

 ݔߨ2) ݏܿ



ୀଵ

)) + 20 + ݁ 

30 [-32,32] 0 

For a fair comparison, the population size is set to 30, and the maximum number of 
iterations for all optimization algorithms is set to 200 (Razmjooy et al., 2016). The average 
(AVG) of the 45 (Razmjooy et al., 2019, 2021) experimental results and standard deviation 
(SD) are used as evaluation indicators, and the statistical results are shown in Table 3.  

Table 3. Comparison results of the algorithms  

Algorithms 
 

Function 

BOA (Kaveh et al., 2020) BH (Hatamlou, 2013) LS (Cuevas et al., 2020) 

AVG SD AVG SD AVG SD 
Sphere 5.246 E-10 3.734E-11 5.123 E-12 4.705-13 6.154 E-12 3.158E-14 

Schwefel2.22 4.128E-8 0.42E-8 2.3011E-10 2.730E-11 2.493 E-12 1.853E-13 
Rosenbrock's 0.760 0.00574 1.96 0.081 1.723 1.0528 

Quartic 1.437E-5 0.084 0.007 0.004 0.0024 0.0084 
Schwefe -115.507 24.1 -153.364 24 -195.351 19.15 
Ackley 1.213E-9 3.43-10 3.13E-9 2.25E-10 2.65E-10 1.64E-11 

Algorithm 
 

Function 

WSA (Kaveh and Eslamlou, 2020) EWSA 

AVG SD AVG SD 

Sphere 4.241 E-15 3.156E-16 4.124 E-16 2.031E-17 
Schwefel2.22 1.098 E-13 1.238E-14 1.650E-12 1.095E-13 
Rosenbrock's 0.847 0.040 0.2162 0.915 

Quartic 0.00953 0.0056 0.00125 0.00001 
Schwefe -186.705 18.15 -245.730 13 
Ackley 1.06 E-11 1.14E-12 2.78 E-11 2.53E-12 
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From the comparison of the statistical results in Table 3, it can be seen that the 
performance of EWSA is better than the WSA and other algorithms in solving all benchmark 
functions. 

Module Placement Using Courtship Learning-based Water Strider Algorithm 

This algorithm receives the application component deployment problem data, including 
application component request resource information, component communication, fog network 
infrastructure configuration, amount of population members, and the greatest number of 
iterations as input parameters, and then an optimal deployment plan as output. Algorithm 1 
demonstrates the pseudocode of the proposed method. 

Algorithm 1: Pseudocode of the proposed method 
1) Initializing: input Application components specification, Fog Network specification and the 

EWSA 

2) Apply preprocessing 

3) Perform initial step of Courtship Learning-based Water Strider Algorithm 

4) Calculate cost function 

5) If stopping criteria is reached, go to (9) and return the results 

6) Else 

7) Update Fog data structure based on the algorithm updating formulas 

8) Go to (3) 

9) End 

Figure 4.  Pseudocode of the proposed method 

Each water strider can be considered a possible solution to the deploying application 
components optimization problem in fog nodes. A water strider consists of ܰ components, 
which represent a used component. The allocation value given to each component is an 
integer between 1 and ܯ, which indicates the location of the components. As can be observed 
from Algorithm 1, Before executing the main loop of the program, preprocessing steps are 
performed. Then, some algorithms are used to extract full mesh subnets. Then in the main 
loop, two parts are executed. The impossible solutions are then corrected. The ܲ percent of a 
less valuable solution is then updated based on the cost function. To do this, ܲ% has been 
chosen based on the worst-ranked solutions. Then, they updated by running the random-step 
procedure. Merit values are then calculated to update the solutions and after the execution of 
the last round of the iteration loop, the optimal solution is returned. 
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Preprocessing Stage 

Figure 5 shows the proposed method for the pre-processing step. In this figure, the Fog net is 
the Fog Network Communication Matrix with dimension ݆ × ݅, such that ݆, ݅ = 1,2, … , ݊, and 
݊ is the number of fog nodes. 

 
Figure 5. Preprocessing stage 

As can be observed from Figure 5, in the pre-processing stage, a set of complete mesh 
subnets are selected in the fog network for the deployment of components. The extraction of 
these subnets has several advantages: the first advantage is the decrease of the search space 
for extracting the optimal deployment plan, and the second advantage is the sharing of sensors 
and software required by the components of the complete mesh subnets. 

In the proposed algorithm, at the beginning of entering the condition, all the nodes that 
are connected are extracted and each pair is stored in the ݈݈ݑܨ௦௦ array. For the loop, all fog 
nodes are compared with lines from  ݈݈ݑܨ௦௦  that do not exist in it, and if it is connected to 
all the nodes in it, it is added to the node list of the current line. Then, the repeated lines from 
ெ௦௦݈݈ݑܨ  are deleted. This process continues until the end of the condition, and finally, the 
௦௦݈݈ݑܨ  array, which contains a set of ݂݈݈ݑ௦  subnets are returned. 

The stopping criteria of the algorithm are the desired number of ݇ clicks, and in other 
words, the key loop is repeated ݇ times. After extracting the complete meshes, several 

Start

Inputs: 
- Fog net 

- Number of Fog nodes

 Initialization:
-FullMeshs = {}

-FogNet = upper triangular (FogNet)

K=0

k=k+1
FullMeshs [row,k] = [Fognodej, 

Fognodei]

Currentrow = 
FullMeshs [row k]

For all Fognodej and k

Fognodej Not in Currentrow & 
Fognodej connected to all node 

in Currentrow in Fognet

Yes

Fullmeshs[row,k] = 
[Fullmeshs[row,k],Fognodej]

Remove duplicate rows in 
Fullmeshs

Return FullMeshs

End

For all fog 
nodesj,I in Fog net

No
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complete meshes are selected for the deployment of components. Figure 6 shows the 
pseudocode of extracting candidate complex subnets. 

Algorithm2: Pseudocode of finding candidate Full୫ୣୱ୦  subnetworks 
1) Initializing 

Application components list Appcmp = (1, … , n) 
Fog node list (fn = (1, … , m)) 
Bandwidth between components (Appcmp = array(n × n)) 
Bandwidth between fog nodes ൫FN = array(m × m)൯ 
Latency between fog nodes (FNୟ୲ୣ୬ୡ୷ = array(m × m)) 
Latency between components Appcmpୟ୲ୣ୬ୡ୷ = array(n × n)) 
AppcmpDataset is Application components resource requirements 
FNDataset is Fog nodes resources 
Full୫ୣୱ୦ୱ is  Full୫ୣୱ୦ୱ list  

2) For each Full୫ୣୱ୦ୱ as row୧: 
          Latency౩౪౪౫౩  
         = Checkୟ୲ୣ୬ୡ୷ా ൫Appcm_Latency, Appcmp, row୧ , FNDataset, FN , FNୟ୲ୣ୬ୡ୷൯;  

3) HRୱ୲ୟ୲୳ୱ = HRୡ୦୩(AppcmpDataset, FNDataset, row୧) 
4) SRୱ୲ୟ୲୳ୱ = SRୡ୦୩(AppcmpDataset, FNDataset, row୧) 
5) Sୱ୲ୟ୲୳ୱ = Sୡ୦୩(AppcmpDataset, FNDataset, row୧) 
6) If Latency౩౪౪౫౩ & HRୱ୲ୟ୲୳ୱ& SRୱ୲ୟ୲୳ୱ& Sୱ୲ୟ୲୳ୱ are true, go to (7) 
7) Candidate୳୪୪ౣ౩౩ = [Candidate୳୪୪ౣ౩౩ ; row୧] 
8) Return Candidate୳୪୪౩౩  

Figure 6. Pseudocode of extracting candidate complex subnets 

Results  

Several tests are planned and carried out to evaluate the success of the proposed EWSA in 
determining the best deployment strategy for application components in the fog infrastructure. 
We assessed the suggested strategy using the energy consumption evaluation criterion. Fog 
node energy consumption is often influenced by several variables like the volume of 
exchange traffic, communication technology, the distance between nodes, and the number of 
computations. 

A fog node's energy consumption is determined by taking into account both the energy 
used for processing application components on the node and the energy used for information 
transfer between fog nodes. The outcomes produced by the suggested algorithm are compared 
with those of some other metaheuristic approaches, including the accelerated particle swarm 
optimization algorithm (APSO) (Ouyang et al., 2022), the multiswarm algorithm (MSA) 
(Hasan and Al-Rizzo, 2019), accelerated particle swarm optimization algorithm (APSO) 
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(Ouyang et al., 2022), the multiswarm algorithm (MSA) (Hasan and Al-Rizzo, 2019), and the 
original WSA (Kaveh & Eslamlou, 2020). 

To evaluate the proposed framework, two scenarios were implemented. In each 
scenario, the number of modules and the amount of fog nodes changes. In the first scenario, 
20 mesh nodes and 30 modules were considered, and in the second scenario, 25 mesh nodes 
and 40 components were considered. We performed all the experiments by MATLAB version 
R2017b on a laptop with AMD A4 3600 processor and 8GB RAM as aforementioned. To 
calculate the capability of the proposed algorithm in providing the optimal deployment plan 
of application components, fog nodes are assumed to be heterogeneous in terms of storage 
capacity, processing ability, delay and bandwidth. For better display, an example of data set 
information, a fog network with 5 nodes is shown in Table 4 to Table 6. 

Table 4. Sources of fog nodes 

Fog nodes 1 2 3 4 5 
The central processing unit (GHz) 1.03 1.016 1.39 1.45 1.05 

Memory size (GB) 1.29 1.58 1.19 1.35 1.29 
Consumption threshold 0.94 0.90 0.94 0.90 0.89 

Memory consumption threshold 1.00 0.97 0.90 0.91 0.95 
Minimum energy consumption 92 80 95 79 75 
Maximum energy consumption 125 125 128 135 130 

Sensors 0.95 1.1 1.1 1.8 0 
Software 0 1.1 1.8 0 1.8 

transfer energy 0.15 0.15 0.15 0.8 0.8 

As seen in Table 4, CPU and memory consumption thresholds, computing resources, as 
well as minimum and maximum energy consumption, supported software, transmission 
energy, and types of sensors, are considered different for each node. The value of 0 in the 
sensors and software means that the sensors and software are not supported, and the values of 
1 and 2 show the supported types of software and sensors. 

In Tables 5 and 6, the bandwidth and delay in the direct connection between nodes are 
shown, and the values in these tables are normal numbers in the range [0, 1]. The value 0 
means no connection between node ݆ and ݅ and bandwidth 1 means that node ݆ is the same as 
node ݅. 

Table 5. Width of the band between fog nodes 

Fog knots 1 2 3 4 5 
1 0.99 0.92 0.89 0.82 0.93 
2 0.80 0.98 0.81 0.91 0.90 
3 0.91 0.92 0.99 0.96 0.99 
4 0.87 0.91 0.89 0.99 0.99 
5 0.90 0.95 0 0.89 0.98 

In Table 6, a delay of 1 between two nodes means that there is no connection between 
the two nodes and a delay of 0 means that the two nodes are the same.  
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Table 6. The delay between fog nodes 

Fog knots 1 2 3 4 5 
1 0 0.15 0.18 0.09 0.09 
2 0.11 0 0.09 0.1 0.16 
3 0.17 0.13 0 0.11 0.9 
4 0.15 0.17 0.13 0 0.13 
5 0.1 0.13 0.99 0.15 0 

An example of the specifications of the application components, including the type of 
sensor, CPU, memory, and the required software, as well as the connections and delays 
between them, are shown in Tables 7, 8, and 9. 

Table 7. Required resources of application components 

Fog knots 1 2 3 4 5 
CPU 0.14 0.18 0.21 0.25 0.28 

Memory 0.15 0.15 0.1 0.15 0.1 
Sensors 0.98 0 0.98 0 1.9 

Software 0 0.9 0 1.1 0.9 
 

Table 8: Bandwidth required by application components 

Components 1 2 3 4 5 
1 0.98 0.98 0 0 0 
2 0 0.98 0.30 0 0.31 
3 0 0 1 0.29 0.19 
4 0 0 0 0.98 0.35 
5 0 0 0 0 0.98 

 

Table 9: The required delay of application components 
Components 1 2 3 4 5 

1 0 0.98 0.98 0.98 0.98 
2 0 0 0.19 0.98 0.25 
3 0 0 0 0.21 0.19 
4 0 0 0 0 0.20 
5 0 0 0 0 0 

It should be mentioned that due to the absence of a standard benchmark in the literature 
on this subject¸ here, we produced a data set with a range of values similar to Table 4 to Table 
9. These values, processing power and storage capacity of fog nodes have been selected based 
on the internal processors, smartphones, and digital assistants for individuals that make up 
today's fog nodes as well as their topologies and computational capabilities. To compare the 
performance of the studied algorithms, graphs of the state of the cost function in the repetition 
of the algorithms (i.e., convergence profile), and the minimum rate of energy consumption 
have been used. The nodes in the fog network are scattered randomly and with a normal 
distribution.  
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Scenario 1 

A network with 20 fog nodes and 30 components. Figure 7 shows the superiority of the 
proposed EWSA over the proposed method in some of the iteration steps, but in the end, the 
proposed EWSA meets our goal in comparison with WSA (Kaveh and Eslamlou, 2020), MSA 
(Hasan and Al-Rizzo, 2019), and APSO (Ouyang et al., 2022). 

 
Figure 7. The convergence analysis for the energy consumption rate based on the studied algorithms 

for scenario 1. 

As can be seen, the proposed EWSA provided the best convergence. Indeed, we need a 
balance between the accuracy and the convergence profile to show the method's effectiveness. 
At the end of the simulation, the optimal solution obtained according to the objective function 
(Eq. (12)) by the proposed EWSA and the original WSA shows better results in comparison 
with MSA and APSO. 

Table 10 shows the optimal rate of energy usage at the end of the simulation based on 
the studied methods.  

Table 10. The optimal rate of energy usage at the end of the simulation for scenario 1 
Algorithm The optimal rate of energy consumption 

EWSA 0.01364 
WSA (Kaveh and Eslamlou, 2020) 0.03372 
MSA (Hasan and Al-Rizzo, 2019) 0.04432 

APSO (Ouyang et al., 2022) 0.1719 

The optimal solution obtained in Table 10 are achieved according to the objective 
function (Eq. (12)). As can be observed, the proposed EWSA and the original WSA show 
better results in comparison with MSA and APSO algorithms. 
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With the increase in the number of nodes in the fog, the number of complete meshes 
that can be extracted for the distribution of components increases, but due to the 
heterogeneous nature of the nodes and application components, the candidate complete 
meshes for the distribution of components are limited. In Figure 8, the position of fully 
selected mesh nodes is shown in the network map. 

 
Figure 8. Position of fully selected mesh nodes for scenario 1 

As can be observed from Figure 8, after applying the proposed optimization 
methodology, the complete selection for the distribution of components includes nodes 16, 
15, 14, 8, 5, and 18. 

Scenario 2 

A network with 25 fog nodes and 40 modules. Figure 9 shows the close competition of the 
algorithms can be seen in extracting solutions with the minimum value in the TPC objective 
function, but finally, in the final stages, the repetition of the EWSA overcomes the other 
algorithms with a small difference.  
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Figure 9. The convergence analysis for the energy consumption rate based on the studied algorithms 

for scenario 2 

The optimal solution obtained according to the objective function (12) shows the 
difference between the EWSA and WSA (Kaveh and Eslamlou, 2020), MSA (Hasan and Al-
Rizzo, 2019), and APSO (Ouyang et al., 2022) at the end of the simulation. Table 11 shows 
the optimal rate of energy usage at the end of the simulation based on the studied methods.  

Table 11. The optimal rate of energy usage at the final of the simulation for scenario 2 
Algorithm Optimal rate of energy consumption 

EWSA 0.01004 
WSA (Kaveh and Eslamlou, 2020) 0.02277 
MSA (Hasan and Al-Rizzo, 2019) 0.4991 

APSO (Ouyang et al., 2022) 0.1472 

Figure 10 shows the position of fully selected mesh nodes is shown in the network map. 

 
Figure 10. Position of fully selected mesh nodes for scenario 2 
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The full mesh subnet selected by the EWSA for the distribution of components includes 
nodes 18, 14, 11, 12, 9, 7, 6, 5, 1 and 20. 

Conclusion 

With the aid of internet infrastructure, the IoT enables remote management and control of 
devices used for various purposes, enhances productivity scalability and connection, and 
helps organizations save money and time. Fog computing and the IoT are expanding quickly 
in the world of networking. The traditional centralized cloud computing paradigm will 
confront several difficulties due to the explosive expansion of IoT applications, including 
limited capacity, network failure, and excessive latency. Instead of using the cloud, IoT 
devices may process, safeguard, and locally store data by using fog. In actuality, fog offers 
IoT users more outstanding performance and quicker solutions than the cloud. The utilization 
of computer resources in the cloud architecture is effectively reduced by deploying IoT 
applications as a supplement to the cloud. Application components deployed inefficiently in 
the fog waste bandwidth, energy, and resources. Additionally, dispersing an application's 
elements among the fewest amount of fog nodes feasible to save energy results in decreased 
service dependability. In this study, an improved metaheuristic approach based on WSA, 
chaos theory and courtship learning were designed for the static distribution of application 
elements on fog structure to strike a balance between optimal energy consumption, 
minimizing the impact of a single goal of failure, and enhancing the dependability of the 
application against damage. The simulations of the proposed method were compared with 
those from Accelerated Particle Swarm Optimization Algorithm, the multiswarm algorithm, 
and the basic Water Strider Algorithm. The consequences demonstrated that the approach 
described in this article lowers the energy usage in the fog network and offers the high 
dependability needed to meet the service quality criteria of an IoT application. Simulation 
results showed that the proposed EWSA with 0.01364 and 0.01004 for scenarios one and two 
provided the most efficient results. 
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