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ABSTRACT 

 The main criterion in investment decisions is to maximize the investors utility. 

Traditional capital asset pricing models cannot be used when asset returns do not 

follow a normal distribution. For this reason, we use capital asset pricing model with 

independent and identically asymmetric power distributed (CAPM-IIAPD) and 

capital asset pricing model with asymmetric independent and identically asymmetric 

exponential power distributed with two tail parameters(CAPM-AIEPD) to estimate 

return and risk. When the assumption of normality is violated, the first and second 

moments lose their efficiency in optimization and we need to use the third and fourth 

moments. In this article, we use a new method to estimate return and risk in abnormal 

distributions, and for the first time, we propose independent and identically 

asymmetric exponential power distributed with two tail parameters. Then, we use 

higher moments optimization with unequal weights to optimize portfolios. The 

results indicate that capital asset pricing model with independent and identically 

asymmetric power distributed (CAPM-IIAPD) is better than asymmetric 

independent and identically asymmetric exponential power distributed with two tail 

parameters(CAPM-AIEPD) to estimate return and risk. Adjusted Sharpe ratio in 

portfolio optimization in second moments are higher than others. Adjusted returns 

to risk in third and fourth moments in the CAPM-IIAPD model significantly differ 

from the CAPM-AIEPD model and have a better performance. 

 

1 Introduction 
 

Economic endeavors have always been threatened by numerous threats. Changes in price, Economic laws, 

ddd oteer iff lnnntill  fcctors in  innnii al mrrktt ’’ eemddd ddd pppply rre the mii n raassss frr  lcck ff  
certainty and existence of risk. In recent years, international financial markets have gained greater depths 
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and started to affect financial decisions and predictions of individuals toward the markets. Up to now, there 

have been countless criteria introductions to forecast, manage and calculate investment risk in financial 

assets that sometimes complement one another, but all of them point out the stochastic reality of risk. One 

such method to model financial decision making is approach of finance and mathematical modeling. [27] 

In financial theory, classic risk management and portfolio optimization approaches quibbled by researchers 

ddd rccttt  fiaaiii ll  crisss hvve lll ddd tee rikk maaagemttt ’s rll e in rrr tfolio optimization more than ever 

[7]. Dynamic risk measurement and portfolio management is one of important issues in finance world. 

Considering the its distribution features in real world, portfolio risk and return measurement is highly 

important and in financial crisis times, it yields a more accurate and reliable performance when compared 

to classic models. Furthermore, portfolio optimization with higher moment approach has a better 

performance level since it is used when asset return does not have a normal distribution [1]. Whereas in 

critical situations asset return do not have a normal distribution, it is not possible to use optimization 

methods, such as optimization on first and second moments (MVM), that are based on normal distribution 

[2]. The preeminent concern of this study is to develop a solution for risk and return estimation in financial 

crises and optimizing portfolios. The solution for this problem is the usage of Higher Moments models in 

which in addition to first (mean) and second (variance) moments that are used in traditional models, higher 

moments are also included [10].  

Therefore, with the help of return assumptions, the optimization is conducted. The two methods of Mean-

Variance-Skewness-Model (MVSM) and Mean-Variance-Skewness-Kurtosis-Model are used to optimize 

portfolios. Since third moment models have low levels of practicality in financial crises, and to address this 

issue, entropy is used in optimization [4]. concluded that the usage entropy as risk index yields a higher 

efficiency for the portfolio. When analyzing the performance, Sharpe ratio is only valid when the data have 

a normal distribution since it is based on Mean-Variance theory [3]. Hence, Sharpe index can produce 

deceiving answers when distributions have skewness and fat tails. To tackle this, we need tools to include 

higher moments. In this research we aim to the research in the first step seeks a suitable solution to calculate 

the expected return and risk in real conditions and when the market is experiencing financial crises. Then, 

considering that the return on assets in real conditions does not follow the normal distribution, look for a 

solution to optimize the portfolio using higher moments (third and fourth) with two approaches MVSM and 

MVSKM. Finally, considering the methods of calculating the returns and risk of the optimization portfolio 

with unequal weights, the effect of each of them in optimizing the portfolio and the effect of each in 

improving the performance of the portfolio is evaluated.[22] They are goals that follow in this study include: 

• Dtt rrmiii gg tee eett  approach to achieve the expected return and portfolio risk among the CAPM, CAPM-

IAPD, CAPM-IAEPD approaches 

• Ott imiztt inn ff  ii grrr  oortfll io momttt s sss dd nn two rrrr aaeees MVMM nnd VV SKM, ccoordigg to 
the three approaches of calculating efficiency and comparing them 

P Prr tfll ip pptimiztt iii i n t t imf ff  fincccial rr isi..  

E Evll ttt e rrr tfolie eerformccca aaeeo om mtt bbbb bbboo om miii ii i rrr  momttt s 
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2 Theorical Framework 

2.1 Review of Literature 

Markowitz is the founder of a well-known structure called modern portfolio theory. The most important 

role of this theory is to create a risk-return portfolio framework for investors to make decisions. With a 

quantitative definition of investment risk, Markowitz provided a mathematical approach for investors in 

asset selection and portfolio management. There are many criticisms. One of the assumptions considered 

in this model is that the distribution of returns is normal distribution, which many studies have rejected this 

assumption and emphasize the abnormality of returns. According to studies Previous, asymmetry and fat 

tails of financial data are considered suitable assumptions for pricing financial assets [23]. In this study, the 

capital asset pricing model (CAPM) is considered with the general assumption that the independent and 

identically error component (IIAPD) has a distribution with mean zero and variance 𝜎𝜀𝑖
2  and skewness 

eeeffiii ett  ,, whihh ddjutt s tee ssymmtt ric return ii strittt i... In iiii tinn, tee geeerll izdd Ciii tal sseet 
pricing model developed in this study includes the normality of returns as one of the specific modes of the 

model [16]. 

 

2.1.1 Fat Tail 

The term fat tail can have a variety of meanings. In fact, the fat tail is a property of a random variable, 

which in the common definition, indicates a higher number of observations in the random variable 

distribution sequence than the observations in the normal distribution sequence. Researchers have used 

different approaches to consider this property. One of the approaches used is mainly the use of generalized 

exponential functions, which include functions such as gamma variance distribution (VG), normal inverse 

distribution (NIG), Cauchy distribution, and Laplace distributions. In the present study, we use a 

generalized exponential function to find a solution in the field of financial data broad sequences [22]. 

 

2.1.2 Asymmetric Distribution 

An important fact about the return on assets is nonlinear dependency; That is, observations in which the 

dependence between different returns depends on market conditions. To prevent these phenomena, 

nonlinear models design the correlation structure in such a way that it changes according to market 

conditions. In contrast, linear models had the disadvantage that linear correlations in non-critical periods 

overestimated the correlation and in critical periods the correlation was underestimated. One way to solve 

this problem is to use models with independent and asymmetric error components so that in financial crises 

and non-compliance of distribution with normal distribution, it is possible to accurately estimate the return 

and risk, as well as optimize the data portfolio with the least possible error [25]. One of unrealistic 

assumptions of traditional models is the consideration of return distributions as normal ones, which several 

studies have rejected it and emphasized on the fact that asset return does not have a normal distribution. 

Asymmetry and fat-tail financial data tails are proper assumptions when pricing financial assets due to the 

results of the studies conducted in past [9]. Numerous researches were done to include more pragmatic 
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assumptions in financial markets. The first studies conducted by [26] used a generalized t-student 

distribution to model capital asset pricing and used functions other than Gaussian function to research 

market fluctuations. Their results showed that generalized t-student had a better performance in comparison 

to normal distribution yet it had the fundamental problem of instability of generalized t-student distribution 

compared to the normal one. In his estimations, [8] ventured to use non-Gaussian distributions such as 

Cauchy and t-student and a combination of these function in contrast to symmetric normal distribution and 

found different results from the time he used normal distribution. Yet, the models he studied did not clearly 

mentioned their superiority over traditional models and there was not enough reason to use non-Gaussian 

distributions over normal distributions where also its non-Gaussian distribution had less consistency in 

comparison to traditional forms [17]. In the other research, financial distress is independent variable and 

corporate investment behavior is dependent variable and investment opportunities is considered as 

interactive variable. The present research is an applied research and in terms of methodology is a 

correlational study. The results showed that firms with less investment opportunities tend to be less likely 

to invest, in addition distressed financially firms with more investment opportunities are more likely to 

increase investment [15]. Some years later, [9] added new assumptions such as skewness, asymmetric 

interdependency, fluctuation clustering and semi-fat tail to asset return and utilizing these assumptions they 

compared generalized distributions. They used generalized hyperbolic distributions to estimate value at risk 

and demonstrated that t-student distribution with skewness has more efficiency in generalized hyperbolic 

distributions, and for this reason, t-student with skewness is more optimal than other distributions. To 

predict the value at risk, [24] included skewness and fat tail factors and discarded fluctuation cluster and 

sequential interdependency from the model. Then he showed conditional mean-value at risk models have a 

better performance in comparison to traditional mean-variance model. It was after this research that once 

again [31] used maximum-likelihood to model stretched-exponential production decline model and used 

this model to solve fat tails problem. In addition, he proved that this method has consistent estimation and 

forecast capabilities, and solved consistency problem of previous models by exponential distribution. To 

solving the problem of optimal portfolio selection for asymmetric distributions of the stock returns, by 

putting it into a framework of a mean-variance-skewness measure. optimal solutions are explicit and are 

closed-form. In particular, they provide an analytical portfolio optimization solution to the exponential 

utility of the well-known skew-normal distribution.  

Therefore, their analytical solution can be investigated in comparison to other portfolio selection rules, such 

as the standard mean-variance model. The new methodology is illustrated numerically [33]. Using two 

assumptions of asymmetric and exponential asset return to the analysis, [16] tried to study the credibility 

degree of capital asset pricing model. Their research variables were μ ddd σ taat rsspcctivll y rre eeed as 
return and variance. Investigations revealed that these two variables are not suitable for Asymmetric Power 

Distributions (APD) and they cannot be used to prove that asset return in capital asset pricing model is 

asymmetric. To model fluctuations, [18] utilized Orthogonal Generalized Autoregressive Conditional 

Heteroscedasticity (OGARCH) covariance matrix and its regime aaaggss ddd to nnll yze mllll ’s rikk 
components, firstly, they used mean value at risk definition. Then, using OGARCH, they achieved a better 

efficiency in financial crisis periods compared to traditional models. The study modeled the non-normal 

returns of multiple asset classes by using a multivariate truncated Lévy flight distribution and incorporating 

non-normal returns into the mean-conditional value at risk (M-CVaR) optimization framework. In a series 

of controlled optimizations, they found that both skewness and kurtosis affect the M-CVaR optimization 
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and lead to substantially different allocations than do the traditional mean–variance optimizations [27] 

skewness is considered to measure the asymmetry of portfolio returns and a mean-risk-skewness model for 

portfolio selection will be proposed in uncertain environment. Here, the returns of the securities are 

regarded as uncertain variables which are estimated by experienced experts instead of historical data. 

Furthermore, the corresponding variations and crisp forms of the model are considered. To solve the 

proposed optimization models, a hybrid intelligent algorithm is designed [29]. The next study, the asset 

return and liquidity are fuzzy variables which follow the normal possibility distributions. Liquidity is 

measured as the turnover rate of the asset. On the basis of possibility theory, we transform the model into 

a quadratic programming problem to obtain its solution. We illustrate that, in the process of investment, 

investors can make better use of capital by choosing their investment portfolios according to their expected 

return and asset liquidity [28]. The study is intended to construct optimal portfolios and efficient frontiers 

with the inclusion of higher-order moments of risk. The findings show that optimized portfolios with 

inclusion of skewness and kurtosis are sustainable and significantly different than those from mean-variance 

optimized portfolios which show asymmetric and fat-tail risk. The results also endorse that induction of 

skewness and kurtosis affects portfolio allocation weights and expected returns [24]. Many financial 

portfolios are not mean-variance-skewness-kurtosis efficient. They recommend tilting these portfolios in a 

direction that increases their estimated mean and third central moment and decreases their variance and 

fourth central moment. The advantages of tilting come at the cost of deviation from the initial optimality 

criterion and show the usefulness of portfolio tilting applied to the equally-weighted, equal-risk-

contribution and maximum diversification portfolios in a UCITS-compliant asset allocation setting [26]. A 

toolset beyond mean–variance portfolio optimization is appropriate for those instances where higher return 

moments might need to be taken into account, either for individual decisions or for pricing studies. 

Maximizing expected log surplus utility is superior for compounding returns in excess of financial 

obligations. Here, it is matched with a more flexible scenario represttt tt ion ff  the ivvsstrr ’s joint 
probability distribution of returns and with an agnostic optimization engine.  

We show simple examples based on extrapolating historical stock and bond returns and then extended using 

hypothetical option prices. We clarify how Black–Scholes implied volatility anomalies can arise in a 

portfolio context [25]. They use Tail Mean-Variance (TMV) model, which focuses on the rare risks but 

high losses and usually happens in the tail of return distribution. The proposed TMV model is based on two 

risk measures the Tail Condition Expectation (TCE) and Tail Variance (TV) under Generalized Skew-

Elliptical (GSE) distribution. They apply a convex optimization approach and obtain an explicit and easy 

solution for the TMV optimization problem, and then derive the TMV efficient frontier [13]. In the other 

paper, they consider the estimated weights of the tangency portfolio and derive analytical expressions for 

the higher order non-central and central moments of these weights when the returns are assumed to be 

independently and multivariate normally distributed. Moreover, the expressions for mean, variance, 

skewness and kurtosis of the estimated weights are obtained in closed forms. Then, complement results 

with a simulation study where data from the multivariate normal and t-distributions are simulated, and the 

first four moments of estimated weights are computed by using the Monte Carlo experiment. It is 

noteworthy to mention that the distributional assumption of returns is found to be important, especially for 

the first two moments. Finally, through an empirical illustration utilizing returns of four financial indices 

listed in NASDAQ stock exchange, we observe the presence of time dynamics in higher moments [19]. The 
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research presents a mathematical model for performance-based budgeting and combines it with rolling 

budget for increased flexibility. The model has been designed by Chebyshev's goal programming technique 

with fuzzy approach. Data for calculating productivity indicators were collected from gas refineries of Iran 

in 2011–2015 and analyzed by Excel and GAMS software. Then, the model was tested for determining the 

2016 budget of those refineries. The solution of the model reduced 0.68% of the total refinery's budget 

compared with the actual budgets for 2016, which is higher than the annual budget of some of the companies 

in this group [12]. Whereas data return does not have normal distribution, we cannot use optimization 

methods that are based on normal distribution such as Mean-Variance Model (MVM) and Value at risk 

(VaR) [11]. The solution for this problem is using higher moment models that in addition to the first (mean) 

and second (variance) moment which are used in traditional models, the third (skewness) and fourth 

(Kurtosis) moments are also included. Mean-Variance-Skewness Model (MVSM) and Mean-Variance-

Skewness-Kurtosis Model (MVSKM) were used to optimize estimated portfolio [21]. 

 

2.2 Capital Asset Pricing Models 
 

With the assumption of borrowing and lending with a risk-free ratio, Sharpe-lintner CAPM would be as it 

follows: 

E(𝑅𝑖)= 𝑅𝑓+𝛽𝑖𝑚 (E(𝑅𝑚)- 𝑅𝑓)                                                                            

ere Er is expected return of ith asset, Rf risk-free return and E(Rm) expected return of the market portfolio. 

Excess return relative to risk-free rate is described as (formula) in which Zi shows excess return of Ith asset 

relative to risk-free return, Zm is excess return of market portfolio and𝛽𝑖𝑚 = 
𝐶𝑜𝑣(𝑍𝑖,𝑍𝑀)

𝑉𝑎𝑟(𝑍𝑀)
  is the sensitivity 

coefficient return relative to market return. 

The data generating process in capital asset pricing model is: 

𝑍𝑖𝑡= 𝛼𝑖𝑚+𝛽𝑖𝑚 𝑍𝑚𝑡+ 𝜀𝑖𝑡            𝜀𝑖𝑡~ NID(0,𝜎𝜀𝑖
2 ) (1) 

 

According to mean-variance frame of modern portfolio theory, E(𝜀𝑖𝑡)= 0 and  E(𝜀𝑖𝑡
2 )= 𝜎𝜀𝑖

2 , random variable 

𝜀 with the mean of null and variance of  𝜎𝜀𝑖
2  is standardized as it follow where 𝜎𝜀 is the standard variance 

of ε ddd X it t rr r mmmmm variable with the mean of W and variance of 𝜎2. 

𝜺𝒊𝒕 =𝛔𝛆𝐢
𝐗−𝛚

𝛅
                                                                                                                                            (2) 

Assume that random variable of x has asymmetric distribution in CAPM-IAPD and asymmetric exponential 

distribution in AEPD. Then we can describe it as it follows: 

X=𝛚+
𝛅

𝛔𝛆
𝛆 = 𝛚+

𝛅

𝛔𝛆
(𝐙𝐢𝐭 − 𝛂𝐌𝐢 − 𝛃𝐌𝐢𝐙𝐌)                                                                                                         

(3) 

In which Z and Zm were respectively determined as the random variable of excess return and Zm as the non-

random variable. To determine Asymmetric Power Distribution for return variable Z is used as : 

𝑓𝑍(𝓏) = 𝑓𝑋(𝑥) |
𝑑𝒵

𝑑𝒳
|
−1
= 𝑓𝑋 (𝜔 + 𝛿.

𝑍−𝛼𝑀−𝛽𝑀𝑍𝑀
𝜎𝜀

) .
𝛿

𝜎𝜀
                                                                                 (4) 

And Data Generation Process in CAPM-IAPD would be as: 
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Zit = αiM + βiMZMt + εit,       εit~IAPD(α, λ, 0, σεi
2 ),                                             

εit = σεi
X − ω

δ
 

Ε(εit) = 0                                                                                                                                                     (5)  

E(εit2 ) = σεi
2  

The next distribution which use in this paper is exponentially asymmetric independent distribution. 
Considering exponential distribution function and its fat tails, DGP in CAPM-IAEPD is as follows: 

𝑍𝑖𝑡 = 𝛼𝑖𝑀 + 𝛽𝑖𝑀𝑍𝑀𝑡 + 𝜀𝑖𝑡        𝜀𝑖𝑡~IAEPD(𝛼ˎ 𝑃1ˎ 𝑃2ˎ 0ˎ 𝜎𝜀𝑖
2) 

𝜀𝑖𝑡 = 𝜎𝜀𝑖𝑡
𝑌−𝜔

𝛿
                                                          

E (εit) = 0                                                                                                                                         �         (6)                

E (𝜀𝑖𝑡
2 ) = 𝜎𝜀𝑖𝑡

2  

These models help us estimate returns and risk in situations where the distribution of assets is not normal 

[13]. 

 

2.3 Entropy 

After estimating the return and risk using the mentioned methods, we need to optimize and select the 

optimal portfolio and analyze it with appropriate methods. To do so, in addition to higher moments of the 

model, we use Shannon and Gini-Sipmson entropy to optimize our model. Measuring the amount of 

calculated uncertainty in Shannon entropy uses the following equation: 

𝐸𝑖 = 𝑆(𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛) = −𝑘(∑ 𝑝𝑖 × 𝐿𝑛𝑝𝑖)
𝑛
𝑖=1                                                                                       (7)   

Here K is a fixed amount and is used to make sure that Ei is going to be between null and one and is 

calculated as: 

1

𝐿𝑛(𝑚)
 =K   

The main index of Simpson λ is equal to the probability that two values randomly chosen from a set of data 

that are under evaluation (with substitution) are the same type. Transformation of 1- λ is aaaal to tee 
probability that two values show different types. Also in ecology, this measurement is known as the 

probability of special impact and Gini-Simpson index which is accounted for as a revolution in regular 

diversification: 

1-λ11-∑ 𝑝𝑖
2𝑅

𝑖=1  =1-
1

𝐷2
                                                                                                                                   (8) 
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In matrix form is equal to: 

𝐸𝐺−𝑆 =1 -  ∑ 𝑤𝑖
2𝑛

𝑖=1  =1- 𝑊𝑇𝑊                  (9) 

Therefore, in this research in addition to optimization of higher moments, Shannon and Gini-Simpson 

entropies are used to improve the optimization of the portfolio [22]. In the second phase of the research, to 

find the optimum portfolio, we will use higher moments optimization and then we will analyze the effect 

of different weights on adjusted Sharpe ratio value in the third moment. With this, we will choose the best 

portfolio from the aspects of return and risk. 

 

3 Research Methodology 

This is an empirical study in the descriptive research category. The population in this research includes all 

the companies registered in Tehran Stock Exchange (TEDPIX). Sampling was conducted by 217 companies 

and in the period of March 20th 2011 to the end of February 2017. After summarization, the data was 

categorized in 11 groups. Financial information related to stock index were gathered from Rahavard Novin 

software and Bourseview.com. Statistical steps are as it follows: 

1. weekly return of the sample companies is gathered and stock index and risk-free index information 

in each month are extracted from Rahavard Novin software and Boursevies.com. 

2.  Using SPSS software, we analyze whether the return for 11 investment group is normal or not.  

3. Utilizing R software, generalized capital asset pricing models – with taking the aforementioned 

assumption into account – are coded and both return and risk of the assets that are being studied 

are calculated and informative criteria of Akaike and Schwarz are assessed. 

4.  Due to limitations, we optimize higher moments using MATLAB software. By SPSS, a statistical 

test is conducted on the data and hypotheses are tested to be accepted or rejected . 

5. Finally, last step utilizing the chosen weights, the effect of each moment on the optimized portfolio 

is observed and they were compared by adjusted Sharpe ratio. 
 

3.1 Model Estimation  

In the following, we will estimate the return and risk in two models, CAPM-IAPD and CAPM-

IAEPD. 𝜀𝑖𝑡 is IAPD distribution error with the mean of null and variance of 𝜎𝜀𝑖
2 . Mean and vaiance of x are: 

ω = E(X) =
Г(2/λ)

Г(1/λ)
(1 − 2a)δα,λ

−1/λ
                                                                      

𝛿2 = 𝑉𝑎𝑟(𝑋) =
Г(3/𝜆)Г(1/𝜆)(1−3𝛼+3𝛼2)−Г(2/𝜆)2(1−2𝛼)2

Г(1/𝜆)2
𝛿𝛼,𝜆
−2/𝜆

                                                         (10) 

in which α is the skewness parameter and measures asymmetry degree in range of (0,1) and λ>0 is 

distribution sequence variable as: 

𝛿𝛼,𝜆=  2𝛼
𝜆(1−𝛼)𝜆

𝛼𝜆+(1−𝛼)𝜆
               𝛿𝛼,𝜆 𝜖 (۰,1)                                                                                            (11)          
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and )۰ (Г  is Gama distribution variable. So, density function of x is: 

𝑓𝑥(𝑥) =

{
 
 

 
 (

𝛿𝛼,𝜆
1/𝜆

Г(1+1/𝜆)
) exp (−

𝛿𝛼,𝜆

𝛼𝜆
|𝑥|𝜆) ,         for 𝑥 ≤ 0    

(
𝛿𝛼,𝜆
1/𝜆

Г(1+1/𝜆)
) exp (−

𝛿𝛼,𝜆

(1−𝛼)𝜆
|𝑥|𝜆) ,      for 𝑥 ˃0.

                                                                     (12) 

In Capital Asset Pricing Model with the assumption of an independent and uniform AEPD (CAPM-IAEPD) 

mean and variance are: 

𝜔 = 𝐸(𝑌) =
1

𝐵
[(1 − 𝛼)2

𝑃2Г(2/𝑃2)

Г2(1/𝑃2)
− 𝛼2

𝑃1Г(2/𝑃1)

Г2(1/𝑃1)
]                                                                          (13)  

𝛿2 = Var(Y)=
1

B2
{(1 − α)3

P2
2Г(2/P2)

Г3(1/P2)
+ α3

P1
2Г(3/P1)

Г3(1/P2)
− [(1 − α)2

P2Г(2/P2)

Г2(1/P2)
− α2

P1Г(2/P1)

Г2(1/P1)
]        

and p1 and p2 are respectively left and right sequences. Standard density function of AEPD is defined as: 

𝑓𝑌(𝑦) = {
(
𝛼

𝛼∗
)𝐾𝐸𝑃(𝑃1)exp (−

1

𝑃1
|
𝑦

2𝛼∗
|
𝑃1
)                       for 𝑦 ≤ 0

(
1−𝛼

1−𝛼∗
)𝐾𝐸𝑃(𝑃2)exp (−

1

𝑃2
|

𝑦

2(1−𝛼∗)
|
𝑃2
)    for 𝑦 ˃0.

                                                          (14) 

 

3.2 Higher Moment Optimization 

  considering that risk and return variables which were calculated by previous capital asset pricing models, 

now is the time for optimizing higher moments. To do so, first we introduce the required variables as it 

follows: 

In this segment, by utilizing Polynomial Goal Programing (PGP), we optimize higher moment. Assume 

that the transpose matrix of asset weight is 𝑊𝑇 =(𝑤1و𝑤2و…  𝑤𝑛), in which Wi is the weight of ith assetو

with risk in the portfolio. Furthermore, the value of R and M=(𝑚1و𝑚2و… (𝑚𝑛و
𝑇
is used as distribution 

and assets return matrix. The values of V, S and K are respectively matrixes of variance-

covariance, skewness and kurtosis. 

Rp = E(Rp) = W
TM = ∑ wimi

n
i=1                                                                                                                (15) 

Vp = V(Rp) = W
TV(W) = ∑ ∑ wiwjσij

n
j=1

n
i=1                                                                                            (16)  

Sp = S(Rp) = E(W
T(R − M))3 = ∑ ∑ ∑ wiwjwksijk

n
k=1

n
j=2

n
i=1                                                            (17) 

Kp = K(Rp) = E(W
T(R − M))4 = ∑ ∑ ∑ ∑ wiwjwkwlkijkl

n
l=1

n
k=1

n
j=1

n
i=1                                             (18) 

in which Sijk and kijkl are defined as it follows: 



Higher Moments Portfolio Optimization with Unequal Weights Based on Generalized Capital Asset Pricing Model with Independent 

 

 
[272] 

 
Vol. 6, Issue 2, (2021) 

 
Advances in Mathematical Finance and Applications 

 

𝑠𝑖𝑗𝑘 =E[(𝑅𝑖−𝑚𝑖)( 𝑅𝑗 −𝑚𝑗)( 𝑅𝑘 −𝑚𝑘)]                                                                                             (19) 

𝑘𝑖𝑗𝑘𝑙 =E[(𝑅𝑖−𝑚𝑖)( 𝑅𝑗 −𝑚𝑗)( 𝑅𝑘 −𝑚𝑘)( 𝑅𝑙 −𝑚𝑙)]                                                                            (20) 

The relative values of skewness and kurtosis are Ku(𝑅𝑝)=
𝑆(𝑅𝑝)

𝜎𝑝
4(𝑅𝑝)

 and SK(𝑅𝑝)=
𝑆(𝑅𝑝)

𝜎𝑝
3(𝑅𝑝)

 and the values of K 

and S as Shannon-Simpson entropy index values are defined as: 

𝐸𝑠 = −∑ 𝑤𝑖𝑙𝑛𝑤𝑖 = −𝑊
𝑇𝑛

𝑖=1 𝑙𝑛𝑊                                                                                                                 (21) 

𝐸𝐺−𝑆 =1 -  ∑ 𝑤𝑖
2𝑛

𝑖=1  =1- 𝑊𝑇𝑊                                                                                                                       (22) 

where Es and EG-S are portfolios. 

The objective function of first to fourth moments model and Shannon-Simpson entropy is: 

𝑃(1) =

{
 
 
 
 

 
 
 
 
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒                    𝑊𝑇𝑀
Minimize                𝑊𝑇𝑉(𝑊)

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒    𝐸(𝑊𝑇(𝑅 −𝑀))3

Minimize    𝐸(𝑊𝑇(𝑅 −𝑀))4

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒        − 𝑊𝑇(𝑙𝑛𝑊)

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒              1 − 𝑊𝑇𝑊
Subject to               𝑊𝑇1𝑁 = 1

𝑊 ≥  0
 

                                                                                              (23) 

there are two steps in Polynomial Goal Programing. First, focusing on each objective function and the 

optimized calculation without considering other objective functions which are shown as  ،𝑅𝑝𝑒  ∗  𝐾𝑝
∗،𝑆𝑝∗،،𝐸𝑠∗  

𝑉𝑝
∗  𝐸𝐺−𝑆∗ . 

Second, the goal values of 𝑑2،𝑑3،𝑑4،𝑑4،𝑑5،𝑑6 𝑑1، are used to minimize variance from expected levels. 

The expected levels are produced by a one by one calculation of 6 sub-function. 

𝑆𝑃(1) = {

Maximize     𝑅𝑝𝑒
∗ = 𝑊𝑇𝑀

subject to        𝑊𝑇1𝑁 = 1
𝑊 ≥  0

                                                                                               (24) 

𝑆𝑃(2) = {

Minimize     𝑉𝑝
∗ = 𝑊𝑇𝑉(𝑊)

subject to          𝑊𝑇1𝑁 = 1
𝑊 ≥  0

                                                                                           (25) 

𝑆𝑃(3) = {

Maximize     𝑆𝑝
∗ = 𝐸(𝑊𝑇(𝑅 −𝑀))3

subject to                     𝑊𝑇1𝑁 = 1
𝑊 ≥  0

                                                                              (26)    
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𝑆𝑃(4) = {
Minimize     𝐾𝑝

∗ = 𝐸(𝑊𝑇(𝑅 −𝑀))4

subject to       𝑊𝑇1𝑁 = 1
𝑊 ≥  0

                                                                              (27)   

𝑆𝑃(5) = {
Maximize     𝐸𝑠

∗ = −𝑊𝑇(𝑙𝑛𝑊)

subject to   𝑊𝑇1𝑁 = 1
𝑊 ≥  0

                                                                                       (28)        

𝑆𝑃(6) = {
Maximize     𝐸𝐺−𝑆

∗ = 1 − 𝑊𝑇𝑊

subject to   𝑊𝑇1𝑁 = 1
𝑊 ≥  0

                                                                                        (29) 

The above mentioned models can be solved by using a linear or non-linear programming. Now, 

these objective functions can be accumulated using Minowski Distance in PGP model. Minowski 

distance is defined as it follows: 

Z=(∑ |
𝑑𝑘

𝑍𝑘
|
𝑝
)1/𝑝𝑚

𝑘=1                                                                                                                                  (30)   

{
 
 
 
 
 
 

 
 
 
 
 
 𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝒁 = (𝟏 + |

𝒅𝟏
𝑹𝒑𝒆
∗ |)

𝝀𝟏

+ (𝟏 + |
𝒅𝟐
𝑽𝒑
∗ |)

𝝀𝟐

+ (𝟏 + |
𝒅𝟑
𝑺𝒑
∗ |)

𝝀𝟑

+ (𝟏 + |
𝒅𝟒
𝑲𝒑
∗ |)

𝝀𝟒

+ (𝟏 + |
𝒅𝟓
𝑬𝒔
∗|)

𝝀𝟓

+ (𝟏 + |
𝒅𝟔
𝑬𝑮−𝑺
∗ |)

𝝀𝟔

         𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐 ∶ 𝑾𝑻𝑴+𝒅𝟏 = 𝑹𝒑𝒆
∗                                                                                                

𝑾𝑻𝑴−𝒅𝟐 = 𝑽𝒑
∗                                                                                                                     

𝑬(𝑾𝑻(𝑹 −𝑴))𝟑 + 𝒅𝟑 = 𝑺𝒑
∗                                                                                                

𝑬(𝑾𝑻(𝑹 −𝑴))𝟒 − 𝒅𝟒 = 𝑲𝒑
∗                                                                                   

−𝑾𝑻(𝒍𝒏𝑾) + 𝒅𝟓 = 𝑬𝒔
∗                                                                                                     

𝟏 − 𝑾𝑻𝑾 + 𝒅𝟔 = 𝑬𝑮−𝑺
∗                                                                                               

𝑾𝑻𝟏𝑵 = 𝟏                                                                                                                         
𝒘 ≥ 𝟎                                                                                                                                 
 𝒅 ≥ 𝟎                                                                                                                                  

 

 

 

 

 

 

 

 

(𝟑𝟏) 

In the above-mentioned equation Zk shows the standardized values of Kth objective function and dk shows 

the variance from Kth objective function. Furthermore, investors have their own priorities in among different 

goals which priorities of each objective function is shown by 𝜆𝑖. Considering different values for 𝜆𝑖 can 

change the optimization model.  

In the next part, by utilizing equations of expected levels simultaneously and knowing the value 

of 𝜆𝑖, the optimum value of each objective function in the second step of optimization model would 

be changed to (31). In the last step, the produced portfolios will be compared using performance ratio 

criteria and then, the best one will be chosen. For this purpose, we will use Iralsen-Adjusted-Sharpe ratio 

and adjusted skewness criteria. 
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Table 1: The Result of Kolmogorov-Smirnov Test 

Results Degree of freedom Significance level statistic Group  

Reject or null 7126 0.00 0.128 Concrete sector 1 

Reject or null 1172 0.00 0.130 Medicine sector 2 

Reject or null 2912 0.00 0.095 Metal sector 3 

Reject or null 7196 0.00 0.139 Sugar sector 4 

Reject or null 398 0.00 0.115 Mineral sector 5 

Reject or null 557 0.00 0.133 Ceramic sector 6 

Reject or null 1213 0.00 0.151 Automotive sector 7 

Reject or null 809 0.00 0.119 Construction sector 8 

Reject or null 5147 0.00 0.119 Petrochemical sector 9 

Reject or null 2788 0.00 0.098 Investment sector 10 

Reject or null 2842 0.00 0.114 Other sectors 11 

 

3.3 Performance Index 

Sharp criterion is one of the most widely used criteria for evaluating portfolio performance. To calculate 

this criterion: 

SR=
rp
0

σp
0                                                                                                                                                         (32) 

In the above mentioned equation 𝑟𝑝
0 and 𝜎𝑝

0 are respectively mean and variance. SR index is a proper 

criterion to measure portfolio performance when 𝑟𝑝
0 has a negative value. In this index we must use Iralsen-

Adjusted-ratio index in which abs show the absolute values: 

𝑀𝑆𝑅 = 
𝑟𝑝
0

𝜎𝑝

𝑟𝑝
0

𝑎𝑏𝑠(𝑟𝑝
0)

⁄

                                                                                                                                     (33) 

Since Sharpe ratio is based on mean and variance theory, it is only valid when the data has normal 

distribution. Therefore, Sharpe criterion can have a misleading answer to distributions with skewness and 

fat tails. To solve this problem, we use adjusted ratio with skewness: 

 

𝐴𝑆𝑅 = SR × √1 +
𝑆𝐾(𝑅𝑝)×𝑆𝑅

3
                                                                                                                    (34) 

                                               

4 Empirical Results 

4.1 Normality Test 

In this research, in the first step, we will examine whether assets return is normal or not. To do so, we use 

Kologorov-Smirnov test in which we had the results of Table 1. By considering Kolmogorov-Smirvvv tsst’s 
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statistic in different groups and the reliability level that we are executing our study, the meaningfulness 

level is less than 0.05 and the null hypothesis declaring that the data are normal is rejected. In this regard, 

return distribution of under-study groups are not normal ones. 

 

Table 2: The result of Average Return and Risk of 30 Selected Samples 

 CAPM-IIAPD CAPM-IAEPD 

 Return Variance Return Variance 

1 0.0199 0.0563 0.0251 0.0448 

2 0.0178 0.0375 0.0608 0.0493 

3 0.0173 0.0336 0.0058 0.0556 

4 0.0241 0.0386 0.0256 0.0484 

5 0.0435 0.0388 0.0696 0.0443 

6 0.0425 0.0358 0.0040 0.0538 

7 0.0130 0.0312 0.0051 0.0582 

8 0.0136 0.0344 0.0467 0.0632 

9 0.0261 0.0378 0.0392 0.0479 

10 0.0364 0.0336 0.0656 0.0445 

11 0.0220 0.0398 0.0491 0.0489 

12 0.0320 0.0287 -0.0049 0.0540 

13 0.0244 0.0400 0.0572 0.0483 

14 0.0297 0.0315 0.0602 0.0441 

15 0.0239 0.0389 0.0138 0.0442 

16 0.0287 0.0358 0.0685 0.0467 

17 0.0250 0.0403 -0.0580 0.0481 

18 0.0297 0.0368 0.0321 0.0487 

19 0.000 0.0010 -0.0704 0.0539 

20 0.0219 0.0354 -0.0518 0.0481 

21 0.0175 0.0409 -0.0757 0.0504 

22 0.0251 0.0396 0.0206 0.0487 

23 0.0178 0.0359 -0.0617 0.0472 

24 0.0149 0.0360 0.0511 0.0494 

25 0.0258 0.0395 -0.0363 0.0480 

26 0.0351 0.0450 -0.0262 0.0378 

27 0.0277 0.0388 0.0012 0.0388 

28 0.0204 0.0392 0.0543 0.0489 

29 0.0303 0.0400 0.0568 0.0472 

.30 0.0290 0.0383 -0.0513 0.0470 

 

4.2 CAPM (IIAPD) and CAPM (IAEPD) Return and Variance Estimation  

To estimate return and risk in each CAPM we use R software. Table 2 illustrates mean of return and risk of 

30 chosen sample in each model. 
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4.3 Goodness of Fit 

Following this, we will search for the best fitting model for the data. For this reason, we will use Akaike 

and Schwartz information criterion and doing so we will categorize the best models. Here, the lesser the 

value of Schwartz criterion is, the better the chosen model is, compared to the other ones. Results in table-

3 demonstrates the best model. 

Table 3: The Result of Information Criterion for Fitted Models 

 Schwarts criterion (BIC)  Akaike criterion(AIC) Model 

-238.67 -250.70 CAPM-IAPD 

-232.130 -246.70 CAPM-IAEPD 

 

The result for Akaike and Schwartz statistic can be stated as follows. CAPM with independent and 

identically asymmetric power distributed (CAPM-IIAPD), is better than CAPM with asymmetric 

independent and identically asymmetric exponential power distributed with two tail parameters (CAPM-

IAEPD). Also, Schwartz statistic of CAPM-IIAPD is better than CAPM-IAEPD. As a result, considering 

the results for Akaike and Schwartz statistics of CAPM-IIAPD has a better approach in comparison to 

CAPM-IAEPD. 
 

Table 4: The Results for CAPM-IIAPD Objective Functions 

 

 

 

Model 

Return 

mean 

Variance 

mean 

 

Skewness 

mean 

(×10-4) 

 

Kurtosis 

mean 

 (×10-4) 

Shannon entropy 

mean 

Simpson entropy 

mean 

1 EWM 0.0173 0.0336 -0.0272 0.0362 7.5258 1.348 

2 MVM 0.0223 0.0101 -0.0022 0.0011 1.5548 0.7797 

3 MVSM 0.0224 0.0101 -0.0020 9.4843 1.555 0.7787 

4 MVSKM 0.0256 0.014 -1.8704 5.2919 1.3069 0.7089 

5 MVSK𝐸𝑆M 0.0252 0.0138 -1.9474 5.4504 1.3327 0.7137 

6 
MVSK 𝐸𝐺−𝑆 

M 
0.0249 0.0135 -1.9919 5.6005 1.3418 0.7170 

 

4.4 Model Review Using Different Moments 

Table 4 shows objective functions of (CAPM-IIAPD). As it is shown in Table 4, the highest values in return 

means among MVSM, MVM, EWM and MVSKM models belongs to MVSKM model. When we consider 

entropy models too, MVSKEG-S and MVSKESM have equal efficiencies. The best variance (Vp) belongs to 

MVM model. The most optimum third moment (Sp) belongs to MVSM model. The best Shannon entropy 

(Es) belongs to EWM and the best Gini-Simpson entropy (EG-S) belongs to EWM. Now if MVM, MVSM 

and MVSKM are compared to one another, MVSKM will have the best Rp and Kp, and MVM and MVSM 

will have the best variance value (Vp). MVSM has the best third moment value (Sp) but EWM has the best 
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Shannon entropy (Es) and mean Gini-Simpson entropy (EG-S) values. In addition, when we compare 

MVSKESM and MVSKEG-S models, we can conclude that MVSKEG-S has the best variance (Vp), Shannon 

entropy (ES) and Gini-Simpson entropy (EG-S) values. On the other hand, MVSKESM has more optimum 

return (Rp) and Kurtosis (Kp) values when compared to MVSKEG-S and the second CAPM model is CAPM-

IAEPD which is illustrated in Table 5. 

Table 5: The Results of CAPM-IAEPD Objective Functions 

 

 

 

Model 

Return 

mean 

Variance 

mean 

 

Skewness 

mean 

(×10-4) 

 

Kurtosis 

mean 

(×10-4) 

Shannon entropy 

mean 

Simpson entropy 

mean 

1 EWM 0.0058 0.0556 -0.0272 0.0362 1.9051 2.0485 

2 MVM 0.0146 0.0219 -0.0066 0.0046 0.9959 0.5955 

3 MVSM 0.0145 0.0219 -0.0063 0.0043 0.9934 0.5944 

4 MVSKM 0.028 0.0194 -0.00297 7.5674 1.1449 0.5762 

5 MVSK𝐸𝑆M 0.0291 0.0183 -0.00271 7.1460 1.1922 0.6012 

6 
MVSK 𝐸𝐺−𝑆 

M 
0.0302 0.0174 -0.0026 7.8745 1.2305 0.6229 

 

As it is demonstrated in Table 5, the highest values in return means among MVSM, MVM, EWM and 

MVSKM models belongs to MVSKM model. When we consider entropy models too, MVSKEG-S has a 

higher return. From the aspect of fluctuations, the best variance (Vp) belongs to MVSKEG-S. The best 

Shannon entropy and Gini-Simpson entropy belongs to MVSKESM. Also, the best fourth moment belongs 

to MVM. Now if MVM, MVSM and MVSKM are compared to one another, MVSKM will have the best 

Rp and Vp, and MVM and MVSM will have the best third moment (Sp). MVSKM has the best skewness 

(Kp) and in MVSKM the best entropy Es, Gini-Simpson entropy mean values are approximately equal in 

all three models. In addition, when we compare MVSKESM and MVSKEG-S models, we can conclude that 

MVSKEG-S has the best variance (Vp), return (Rp), third moment (Sp), Shannon entropy (ES) and Gini-

Simpson entropy (EG-S) values. 

 

4.5 Testing the Research Hypothesis 

4.5.1 First Hypothesis 

By taking the data acquired from higher moment optimization for CAPM-IIAPD and CAPM-IAEPD into 

account, the following results were found. 

Table 6: Comparison of Adjusted Return Mean Approach in CAPM-IIAPD and CAPM-IAEPD for Third Moments 

 
CAPM-IIAPD CAPM-IAEPD results  

Return Risk Return Risk statistic t Significance level 
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MVSM 0.022 0.01 0.015 0.022 0.2419 0.9552 

 

According to the results reported in table-6, we can accept the hypothesis of equal adjusted return based on 

optimized portfolio risk based on MVSM using approach CAPM-IAEPD compared to portfolio with 

approach CAPM-IIAPD. In other words, there is no meaningful difference in approach of CAPM-IIAPD 

and CAPM-IAEPD. 

 

4.5.2 Second Hypothesis 

Table 7: Comparison of Adjusted Return Mean Approach in CAPM-IIAPD and CAPM-IAEPD for Third and Fourth Moments 

 
CAPM-IIAPD CAPM-IAEPD results  

Return Risk Return Risk statistic t Significance level 

MVSKM 0.026 0.014 0.028 0.019 2.9215 0.0387 

 

According to the reported results in Table 7, we can reject the hypothesis of equal adjusted return based on 

optimized portfolio risk based on MVSM using approach CAPM-IAEPD compared to portfolio with 

approach CAPM-IIAPD. In other words, there is no meaningful difference in approach of CAPM-IIAPD 

and CAPM-IAEPD in second to fourth moments (the statistic value of the test is less than t-student value - 

t58,95% = 2.002 – and the meaningfulness level is less than 0.05.) 

 

Table 8: Results for The Models (With the Assumption of Unequal weights) Using Performance Analysis Criteria 

Priority 

Model 

CAPM CAPM-IIAPD CAPM-IAEPD 

MSR ASR MSR ASR MSR ASR 

0-1-1-1-1-3 0.1123 0.0637 0.1440 0.1333 0.1036 0.1063 

1-0-1-1-1-3 0.1118 0.0630 0.1407 0.1293 0.1061 0.1061 

0-3-1-1-1-3 0.1131 0.0601 0.1638 0.1501 0.1079 0.1079 

3-0-1-1-1-3 0.1131 0.0608 0.1625 0.1490 0.1075 0.1075 

0-0-1-1-1-3 0.1123 0.0635 0.1328 0.1234 0.1057 0.1057 

0-1-1-1-3-1 0.1010 0.0591 0.2413 0.2167 0.3005 0.2577 

1-0-1-1-3-1 0.1019 0.0597 0.2413 0.2167 0.3013 0.2587 

0-3-1-1-3-1 0.0978 0.0535 0.2395 0.2131 0.3064 0.2592 

3-0-1-1-3-1 0.1023 0.0583 0.2414 0.2164 0.3101 0.2636 

0-0-1-1-3-1 0.1015 0.0602 0.2422 0.2183 0.2986 0.2571 

0-3-1-1-1-1 0.0897 0.0642 0.2380 0.2164 0.2490 0.2197 

3-0-1-1-1-1 0.0944 0.0746 0.2228 0.2055 0.2554 0.2252 
 

4.6 Performance Index 

Typically, optimization is done with binary values and the effect of each moment and chosen entropies, 

does not have different weights for 𝜆𝑖. In this regard, in order to determine the effect of each constraint 
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function of the model, we will consider all the possibilities (For example, in the first instance the 

values 𝜆1 = 3  𝜆2 = 1، ، 𝜆3 = 1، ، 𝜆4 = 𝜆5 و 1 = 1  𝜆6 = 0  is shown as (3-1-1-1-1-0).) We pay 

attention to the point that the highest value is 𝜆i = 3 and the least value is 𝜆𝑖 = 0. When 𝜆𝑖 = 0 it 

means that corresponding objective function is not consider. Taking higher moments values into account, 

performance analysis criteria in two levels for criteria Iralsen adjusted Sharpe and adjusted Sharpe by 

skewness is as Table 8. The comparison of performance analysis results has some interesting points. 

Considering two performance analysis criteria of MSR and ASR, the following results were produced: 

In traditional CAPM model the highest amount of MSR was belong to (3-1-1-1-3-0) model. Since in the 

optimization process higher moments were also used, it is better to use more efficient and up-to-date 

methods in performance analysis. Therefore, the highest amount of ASR belongs to (3-0-1-1-1-1) model. 

In other words, with the addition of entropy (Gini-Simpson) to the model, portfolio performance was 

improved. 

In CAPM-IIAPD model, the highest MSR amount belongs to (3-1-1-1-0-0) model. Since in the optimization 

process higher moments were also used, it is better to use more efficient and up-to-date methods in 

performance analysis. Therefore, the highest amount of ASR belongs to (1-3-1-1-0-0) model. The 

advantage of this criterion over MSR is the consideration of third moment (Skewness) in performance 

analysis. In this model, entropy has no effect on increasing the performance of the model and the best model 

is for the highest weight on second moment. In CAPM-IAEPD model, the highest MSR amount belongs to 

(1-3-1-1-0-3) model. Since in the optimization process higher moments were also used, it is better to use 

more efficient and up-to-date methods in performance analysis. Therefore, the highest amount of ASR 

belongs to (1-3-1-1-0-3) model. The advantage of this criterion over MSR is the consideration of third 

moment (Skewness) in performance analysis. Therefore, with the addition of Gini-Simpson entropy 

mllll ’e eerformccci ii ll bi i mrr vv...  

 

5 Conclusions and Implications 

In this research we set different goals. First, we wanted to present a model that when markets face financial 

crises and distribution of the asset return no longer is a normal one, we would be able to use this distribution 

so that there would be minimum deviation from real data. To do so, we used weekly return data of 

mmmiiii ss rggitt erdd in Ir’’’ s ivvsstmttt  mrrktt . Aftrr  thtt , with the eelp ff  Kolmogorov-Smirnov test, 

we rejected the hypothesis of normal return for the companies under study. Following that, we computed 

CAPM-IIAPD and CAPM-IAEPD models. Then, using Akaike and Schwartz statistics, we categorized the 

models and as a result found that CAPM-IIAPD model is superior to CAPM-IAEPD. Therefore, CAPM-

IIAPD and CAPM-IAEPD are more desirable performance in fitting real financial data to estimate return 

and risk than Traditional CAPM. After choosing the best models for return and risk estimation as entry 

variables for portfolio optimization, optimization was conducted via Polynomial Goal Programming. To 

ttt ermiee the effcct ff  aahh momttt  ddd ett ryyy’s ff fett , differnnt vll ees were givnn to 𝜆𝑖 and in CAPM 

the highest return was belong to (3-1-1-1-0-0) model with highest weight approach first moment 

and (1-3-1-1-1-0) model with highest weight approach second moment had the least variance. 
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These values in CAPM=IIAPD were also considered and the highest return belonged to (1-3-1-1-

0-0) with the highest weight approach variance and (1-1-1-1-3-0) model with the least variance 

that this model emphasizes on the maximum weight of Shannon entropy. Finally, in CAPM-

IAEPD the highest return belonged to (3-1-1-1-0-3) model with maximum weights for second 

moment and Gini-Simpson entropy and (1-3-1-1-0-3) model with the highest weight approach 

variance, has the lease variance.Therefore, According to different weights, portfolio optimization 

with different moment was estimated and the effect of each moment was investigated. After 

optimization via higher moments, it is time for hypothesis test. The third moment test shows that 

there is not meaningful difference between two approach of CAPM-IIAPD and CAPM-IAEPD. 

On the other hand, the hypothesis of equal adjusted return for optimized portfolio risk based on 

MVSKM model via CAPM-IAEPD approach in relevance to CAPM-IIAPD approach was rejected 

and there is a meaningful difference between two pricing approach when optimizing second and 

fourth moments.  

Since the asset return distribution does not follow normal distribution, we use the adjusted Sharp 

ratios to evaluate the performance so that the third and fourth moments in the performance are also 

examined. Finally, we calculate ASR and MSR ratios to evaluate the performance of the optimized 

portfolios. In CAPM-IIAPD the highest ASR value was belong to (1-3-1-1-0-0) model and entropy 

did not have any effect on increasing the performance level of the model and the best model was 

with the highest weight on second moment. In CAPM-IEAPD the highest ASR value was belong 

to (1-3-1-1-0-3) and with the addition of Gini-Simpson entropy, the performance would increase. 

In this research, we developed a proper pricing model for abnormal efficiencies and financial crisis 

and using higher moments, we issued the problem in solving portfolio optimization in financial 

crises, drastic fluctuations and etc. and finally for the times that we are using higher moments, we 

utilized a more proper performance analysis criterion compared to Sharpe criterion to compare 

optimized portfolio. In the following, we will provide practical suggestions and suggestions for 

future research: 

• In asymmetric capital asset pricing models, an undesirable risk criterion can be used instead 

of an absolute risk criterion (variance) to calculate risk. 

• As a practical suggestion, investment managers can use the asymmetric capital asset 

pricing models to predict returns and risk and use higher torque optimization to allocate 

the assets under their management in the market and decision capital. To. 

• It is recommended that problem solving methods be developed and meta-heuristic 

algorithms be used. 

• In addition to Shannon and Ginny-Simpson entropies, it is recommended to use other 

entropy functions to optimize the portfolio. 

• In addition, the models are checked using fuzzy logic to check the performance of the 

models. 
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