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Abstract  

Purpose: This study aims to investigate the influence of known price increases on the 

inventory model regarding both uniform and an exponential distribution of replenishment 

intervals with the partial backorder. It examines the optimization of inventory control 

decisions for deteriorating products considering a known price increase, probabilistic 

replenishment interval, warehouse capacity constraint, and partial back-ordering. 

Design/methodology/approach: To obtain the specific inventory order quantity, the 

problem has been modeled in such a way that the total cost savings function is obtained 

from the differences in the optimal order policy for both special and regular orders. The 

two situations discussed in this study are: i) unconstrained problem modeling, and ii) 

constrained problem. Some computational experiments have been performed to examine 

the effects of various parameters on cost savings performance. For the constrained 

problem, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) have been 
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used and their results have been compared in terms of the cost savings values and 

computation time. 

Findings: Findings indicated that for the constrained problem, GA has a better 

performance than PSO. Accordingly, for an unconstrained problem, by using the 

derivative of the profit function and performing sensitivity analysis, the influence of 

parameters such as demand, price, holding cost after the price increase, λ in exponential 
distribution, length of periods in uniform distribution, and deterioration rate on the 

decision variables including order quantity and the profit were obtained,  

Practical implications: The model’s generated policy is more effective and profitable 
for retailers when demand and deterioration rate are higher and replenishment periods are 

decreased. 

Originality/value: This study completes the previous inventory control models that were 

under the policy of known price increase and is closer to the real environment by 

utilizing deteriorating items, capacity constraints, and meta-heuristic approaches. 

Keywords: Inventory control, Partial back-ordering, Probabilistic replenishment 

intervals, Deteriorating items, Genetic Algorithm (GA), Particle Swarm Optimization 

(PSO) 

 

1. Introduction  

Inflation and rising prices for some raw materials, oil, on the one hand, and the 

introduction of various incentive policies by some suppliers, on the other hand, have a great 

influence on stock decisions. Therefore, taking into account the increase in commodity prices 

in the future is inevitable for the supplier. When a supplier announces a price increase in the 

future and allows the retailer to buy a surplus of goods at the current price. Deciding whether 

to buy or not to buy and the amount of purchase is necessary for the retailer. Therefore, 

retailers must decide on their inventory based on the increased rate of product prices in the 

coming months, random time to the next savings, amount of deterioration items, warehouse 

capacity and use the optimal use of the special order provided by the supplier (Zhang, X.L & 

Shi., 2018; Janssen, 2018a; Tashakkor, Mirmohammadi, & Iranpoor, 2018; Li and Teng, 

2018; Bounkhel et al., 2019; Soni and Suthar, 2020; Babangida and Baraya, 2020). 

This study aims to determine replenishment level values in response to a price increase by 

maximizing the total cost saving between special and regular orders. We provide several 

numerical examples for both constrained and unconstrained inventory models as the simplest 

type of optimization is unconstrained and the unconstrained-optimization technique is so 

efficient, it has been used as the point of departure for constructing a more realistic 

constrained inventory model (Bradley et al., 1977; Malik & Sarkar, 2018).  Furthermore, a 

sensitivity analysis of the optimal solution is conducted to show the effects of some 

parameters on replenishment levels and total saving. In this paper, we will use the decision 

variables and expected total saving structure as is shown in Taleizadeh, Zarei, & Sarker. 

(2016). 



Journal of Production and Operations Management, Vol. 11, Issue 4, No. 23, Winter 2021/117 

 

According to previous research, including Taleizadeh et al. (2013a), Yang et al. (2015), 

Karimi-Nasab & Wee (2015), and Taleizadeh, Zarei, & Sarker (2016), it can be seen that they 

did not include real-world constraints and more attention has been paid to the increase in 

price over time due to a random delivery period and a motivational policy. In several studies, 

there are no limitations and the problem is modeled and solved with integer decision 

variables and linear programming (Zeballos, Seifert & Protopappa-Sieke, 2013; Sarkar & 

Moon, 2014; Giri & Sharma, 2016; Braglia, Castellano & Frosolini, 2016; Braglia, 

Castellano, & Song, 2017). Therefore, in studies that focus exclusively on known price 

increases, the gap is quite evident when a study is aimed at getting a better understanding of 

the real-world conditions (Cimen & Kirkbride, 2017). Therefore, this research seeks to 

consider goods that do not have a stable lifespan, as well as storage space limitations and 

problem-solving by using meta-heuristics algorithms. 

The rest of the paper is organized as follows: In Section 2, a brief literature review is 

presented after which the problem along with assumptions is defined in section 3. In Section 

4, a proposed model of the problem is devised. To do this, first, the parameters and the 

variables of the problem are introduced. Next, an unconstrained model with both uniform and 

exponential distributions is presented and the solution method is elaborated. Then, a 

constrained problem and the algorithms used to solve it are described. In Section 5, through 

the numerical examples, both constrained and unconstrained models are implemented and the 

results are presented in the relevant tables. A sensitivity analysis is performed and its results 

are shown in section 6, in section 7, the conclusions and also recommendations for future 

research are presented. Finally, a discussion is presented in section 8 in which the findings of 

this study are compared with previous research.  

 

2. Literature review  

For many researchers and management, decisions about inventory control of deteriorating 

items have always been challenging due to their specific characteristics. Goyal & Giri (2001) 

discussed developments of deteriorating inventory from 1990 to 2001. They indicated that 

most of the models had been classified on the base of demand, constraint, and condition. 

Yang & Wee (2003) developed a mathematical multi-lot-size production model for a 

deteriorating item in which the perspective of buyers and sellers has been considered. Moon, 

Giri, & Ko (2005) studied the EOQ model for two kinds of products 

(deteriorating/ameliorating) under situations such as finite planning horizon, time-dependent 

demand, inflation, and time value of money. Prekopa (2006) used the model which so-called 

Hungarian inventory control to obtain that optimal safety stock level. In his model, 
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production was continuous without disruption. Caloieroa, Strozzia & Comenges (2008) 

investigated the bullwhip effect on demand in the supply chain; they focused on a single 

product in a serial supply chain. Another work that expanded the EOQ model is Ouyang et al. 

(2008) which linked permissible delay in payment to deteriorating EOQ. In recent studies, 

such as Amorim, Costa, & Almada-Lobo (2013), Yu et al. (2012), Abad (2008), Maihami & 

Karimi (2014), Chen et al. (2016), Neeraj & Kumar (2017), Jaggi, Tiwari & Goel (2017), 

Zhang, X.L & Shi (2018), Janssen (2018b), Tashakkor, Mirmohammadi, & Iranpoor (2018), 

Li & Teng (2018), Asif and Biswajit (2018), Bounkhel et al. (2019), Soni & Suthar (2020), 

Babangida & Baraya (2020), demand (deterministic or stochastic) has been found as a very 

significant factor in diversifying inventory control models for deteriorating items. To get 

closer to the real world, Tiwari, et al (2017) developed the model for deteriorating seasonal 

products with ramp-type demand. They formulated their model with some considerations 

such: as stock-dependent consumption rate and partial backordering. The main model 

variable was the preservation technology cost. 

In the literature, many studies have focused on the announcement of a price increase 

problem. Naddor (1966) was one of the first researchers who considered the price increase in 

the future. He modeled an EOQ (economic order quantity) model that highlighted the rise in 

prices and offered a chance to buy to the buyer. Ghosh (2003) and Huang, Kulkarni & 

Swaminathan (2003) considered the effect of the infinite horizon on the increase of known 

price problems. In their studies, buyers could have spatial order before the price increase. In 

inventory management literature, few studies consider the constant price change. Yang 

(2006) developed a two-warehouse inventory model for deterioration items with different 

rates and linear demands under inflationary conditions. Sarker & Kindi (2006) developed 

economic order quantity (EOQ) models with a discounted price. In their work, they attempt 

to obtain the order value in five different cases: a) coincidence of sale period with 

replenishment time, b) non-coincidence of sale period with replenishment time, c) sale period 

longer than a cycle, d) discounted price as a function of the special ordering quantity, and (e) 

incremental discount. Sharma (2009) proposed a composite model for the environment with 

fractional back-ordering. Hsu & Yu (2011) developed an EOQ model for imperfect quality 

items under an announced price increase where a 100% screening process was performed; 

then defectives were screened out, and at the end of the inspection process, the defectives 

were sold as a single batch. They obtained optimal ordering policies under this situation and 

by some examples, illustrated their proposed model. Taleizadeh, Akhavan Niaki & Makui 

(2012) described an economic order quantity model in which there were costs in advance and 

divided the prepayment into multiple equal-size parts during a fixed lead time. Taleizadeh, et 
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al (2013a) formulated and modeled the multiple partial prepayments of the EOQ problem 

with partial back-ordering. They considered the level of inventory at the time of special order 

and provided scenarios to explain it. Then, Taleizadeh (2014), Wang et al. (2015), Tsao & 

Linh (2016), Diabat, Taleizadeh, & Lashgari (2017), Lashgari, Taleizadeh & Sadjadi (2018), 

Tiwari et al. (2018), and Taleizadeh et al. (2020), developed another EOQ models in which 

they consider partial back-ordering and prepayment policy. For inflation and the time value 

of money or deteriorating items, Singh, Kumar & Kumari (2011) developed a two-warehouse 

model. Ouyang (2016), Palanivel, Uthayakumar & Finite (2015), Herbon (2017), Banerjee & 

Agrawal (2017), Herbon & Khmelnitsky (2017), Jaggi, Tiwari & Goel (2017), and Kaya & 

Ghahroodi (2018), considered various situations to obtain optimal order quantity for 

deteriorating items under changing prices. 

In many studies, the consideration of probabilistic replenishment intervals is very 

common (Rabbani, Pourmohammad, & Rafiei, 2016; Chen et al., 2016; Pal, Bardhan & Giri, 

2018; Palak, Sioglu, & Geunes, 2018; Janssen, 2018b). For example, Sazavar et al. (2016), 

investigated multi-period with single item model with restricted order size. The model 

included a multi-period/multi-product optimal ordering problem considering the expiry date. 

Pan (2017), investigated a medical resource inventory model for emergency preparation with 

uncertain demand and stochastic occurrence time, considering different risk preferences.  

Meta-hubristic algorithms such as Genetic Algorithm (GA) and Particle Swarm 

Optimization (PSO) can be used in inventory control to obtain optimal reorder points (Dye, 

2012; Mousavi et al., 2014; Buhnia, Shaikh & Gupta, 2015; Bhunia & Shaikh, 2015; 

Vandani, Niaki, & Aslanzade, 2017; Akbari Kaasgari, Imani, & Mahmoodjanloo, 2017; 

Azadeh, 2017; Hiassat, Diabat & Rahwan, 2017; Tiwari, 2017). In general, scholars suggest 

that hybrid meta-heuristic algorithms have gained considerable attention for their capability 

to solve difficult problems in different fields of science especially to solve the inventory 

problems and due to the non-linearity of the proposed model of this study, particle swarm 

optimization (PSO) and genetic algorithm (GA), are implemented as optimizing solvers 

instead of analytical methods (Talezadeh et al., 2013b; Alejo-Reyes, et al., 2020). 

Yao & Chu (2008) developed an improved inventory control model with the GA approach 

to obtain the optimal value of replenishment cycles. They minimized maximum warehouse 

space and allowed the warehouse to replenish at any time. Hong & Kim (2009) used a 

Genetic algorithm to optimize a joint replenishment model. Chiang (2013) completed 

previous work and considered partial back-ordering and fix–cost-ordering for replenishment.  

Taleizadeh et al. (2013b) assumed that in several products, the time between two 

replenishments is the same and follows random variables. They also considered shortages 
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including back-order and emergency orders. Muthuraman, Seshadri, & Wu (2014) modeled 

an inventory system with stochastic demand and stochastic delivery lags as Quasi-Variation 

Inequality (QVI). Their model had an infinite-dimensional state-space and was intractable. 

Bischak et al. (2014) developed an analytical model to obtain optimum inventory levels under 

lead time constraints. They summed that crossover orders occur. Shu, Huang, & Fu (2015) 

developed a production–delivery lot-sizing model in which, the time between two delivery 

was stochastic. Karimi-Nasab & Wee (2015) formulated an inventory model with stochastic 

replenishment intervals and deterministic sale offers in which replenishment intervals had an 

exponential distribution and shortage was partially backordered.  

 

3. Problem definition and assumptions  

Consider a periodic inventory control model in which a supplier announces a price 

increase for all items in the future at or before the next scheduled ordering time of the buyer.  

This paper developed and formulated an inventory control problem in which: 

(i) The time between two consecutive visits is stochastic and follows exponential and 

uniform distributions 

(ii) There are several products 

(iii) The level of inventory at the beginning of the spatial period is zero 

(iv) The supplier offers special sales 

(v) The price increase is not temporary 

(vi) The shortage is in the partial back-ordering form  

(vii) Goods are deteriorating items and the deteriorating rate is constant 

(viii) The demand rate is constant   

(ix) There is a warehouse space restriction 

(x) The holding cost per unit will increase after the price is increased  

(xi) There are holding, shortage, and purchase costs 

(xii) Only one provider exists 

 

4. Mathematical modeling  

The following notation is used to model the problem: 

For i=1, 2,..., n, the parameters and the variables of the model are defined as 

Parameters: 

Demand market rate of the i
th

 product (units/year) Di 

The fixed ordering cost of i
th

 product (in dollars) 𝐴𝑖 

The selling price of the i
th

 product (unit /year) Pi 

Regular purchasing price per unit of the i
th

 product (in dollars) Ci 
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Purchasing price in future per unit of the i

th
 product (in dollars) Cki 

The fraction of shortages that will be back-ordered of the i
th

 product (Percent) αi 

Unit backorder cost of the i
th

 product ($/unit/year)   πi 

Lost sale cost in normal price per unit of the i
th

 product ($/unit) π′
i 

Lost sale cost in increased price per unit of the i
th

 product ($/unit) π′
ki 

Inventory holding cost per unit of the i
th

 product ($/unit/year) hi 

Inventory holding cost when pricing increases per unit of the i
th

 product ($/unit/year) hki 

Deteriorating rate of the i
th

 product  θi 

The time between two consecutive replenishments of the i
th

 product  Ti 

The maximum amount of time between two consecutive replenishments in uniform distribution of 

the i
th

 product  

tmaxi 

The minimum amount of time between two consecutive replenishments in uniform distribution of 

the i
th

 product  

tmini 

Mean number of replenishments per year for the exponential probability distribution function of 

the i
th

 product  

λi 

Probability distribution function (pdf) of L of the i
th

 product  f(ti ) 

The cumulative distribution function of L of the i
th

 product  F(ti ) 

The required warehouse space per unit of the i
th

 product mi 

Total available warehouse space M 

 

Variables:  

The replenish-up-to level in the regular order of the i
th

 product (unit)   Ri 

The replenish-up-to level when the price increase of the i
th

 product (unit)   Rki 

The replenish-up-to level in the special sale of the i
th

 product (unit)   Rsi 

Expected number of units replenished per cycle in the special sale before price increases of the i
th

 

product (Unit/order) 

Q1Si 

Expected number of units sold per cycle in the special sale before price increases of the i
th

 

product (unit)  

Q2Si 

Expected back-ordered quantity per cycle in the special sale of the i
th

 product, (unit) Bsi 

Expected lost sale quantity per cycle in the special sale of the i
th

 product, (unit) Lsi 

Expected inventory per cycle in the special sale of the i
th

 product (unit) Isi 

Expected number of units replenished per cycle when the price increased of the i
th

 product 

(Unit/order) 

Q1ki 

Expected number of units sold per cycle in special sale when the price increased of the i
th

 product 

(Unit)  

Q2ki 

Expected back-ordered quantity per cycle of the i
th

 product when the price increased (unit) Bki 

Expected lost sale quantity per cycle of the i
th

 product when the price increased (unit) Lki 

Expected inventory per cycle of the i
th

 product when the price increased (unit) Iki 

Expected number of units replenished per cycle in the special sale before price increases of the i
th

 

product (Unit/order) 

Q1i 

Expected number of units sold per cycle in the special sale before price increases of the i
th

 

product (Unit)  

Q2i 

Expected back-ordered quantity per cycle in the special sale of the i
th

 product (unit) Bi 
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Expected lost sale quantity per cycle in the special sale of the i
th

 product (unit) Li 

Expected inventory per cycle in the special sale of the i
th

 product (unit) Ii 

Expected cyclic profit without ordering a special sale ($) ECPN 

Expected cyclic profit when special order is placed ($) ECPS 

Expected total saving function  TS 

 

Unconstrained Modeling  

If the retailer or buyer decided to place a special order, the total cost of the order is 

computed as follows. Taleizadeh, Zarei, & Sarker (2016) proposed the following total cost 

function when an order is placed: 

(1) 
𝐸𝐶𝑃𝑆 = ∑  

𝑛

𝑖=1

𝑃𝑖𝑄2𝑠𝑖 − [𝐴𝑖 + 𝑄1𝑠𝐶𝑖 + ℎ𝑖𝐼𝑆𝑖 + 𝐿𝑆𝑖𝜋𝑖
′ + 𝐵𝑆𝑖𝜋𝑖

 + 𝐶𝑘𝑖(𝐵𝑆𝑖 − 𝐵𝑘𝑖)] 

If the special order is not placed: 

(2) 
𝐸𝐶𝑃𝑁 = ∑  

𝑛

𝑖=1

− 𝐵𝑖𝜋𝑖 − 𝐿𝑖𝜋′
𝑖 + (𝑃𝑖 − 𝐶𝐾𝑖)𝐵𝑖 + 

[𝑃𝑖𝑄2𝑘𝑖 − (𝐴𝑖 + 𝑄1𝑘𝑖𝐶𝑘𝑖 + ℎ𝑖𝐼𝑘𝑖 + 𝐿𝑘𝑖𝜋
′
𝑖 + 𝐵𝑘𝑖𝜋𝑖

 )] (
𝑄1𝑠𝑖

𝑄1𝑘𝑖
−

𝐿𝑖 + 𝐵𝑖

𝑄1𝑘𝑖
) 

 

To calculate the optimal size of the replenishment level, the difference in total costs must 

be maximized: 

 

(3) 
𝑇𝑆 = ∑ 𝐸𝐶𝑃𝑆𝑖

𝑛

𝑖=1
− 𝐸𝐶𝑃𝑁𝑖 

(4) 𝑇𝑆 = ∑  𝑛
𝑖=1 {𝑃𝑖𝑄2𝑠𝑖 − [𝐴𝑖 + 𝑄1𝑠𝐶𝑖 + ℎ𝑖𝐼𝑆𝑖 + 𝐿𝑆𝑖𝜋𝑖

′ + 𝐵𝑆𝑖𝜋𝑖
 + 𝐶𝑘𝑖(𝐵𝑆𝑖 − 𝐵𝑘𝑖)]}-

{−𝐵𝑖𝜋𝑖 − 𝐿𝑖𝜋′
𝑖 + (𝑃𝑖 − 𝐶𝐾𝑖)𝐵𝑖 + 

 

[𝑃𝑖𝑄2𝑘𝑖 − (𝐴𝑖 + 𝑄1𝑘𝑖𝐶𝑘𝑖 + ℎ𝑘𝑖𝐼𝑘𝑖 + 𝐿𝑘𝑖𝜋𝑘𝑖
′ + 𝐵𝑘𝑖𝜋𝑖

 +)] (
𝑄1𝑆𝑖

𝑄1𝐾𝑖
−

𝐿𝑖 + 𝐵𝑖

𝑄1𝑘𝑖
)} 

 

By simplifying the equation (4): 

 

(5) 𝑇𝑆 = ∑ [𝑄2𝑠𝑖
𝑛
𝑖=1  𝜑1𝑖 − 𝑄1𝑠𝑖 𝜑2𝑖 − 𝐼𝑆𝑖  𝜑3𝑖 − 𝐵𝑆𝑖 𝜑4𝑖 − 𝐿𝑠𝑖  𝜑5𝑖 − 𝐴𝑖 + 𝜑6𝑖 ]     

Where 

(6) 𝜑1𝑖 = 𝑃𝑖 
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(7) 
𝜑2𝑖 =  (𝐶𝑖 +

1

𝑄1𝑘𝑖
(𝑃𝑖𝑄2𝑘𝑖 − [𝐴𝑖 + 𝑄1𝑘𝑖𝐶𝑘𝑖 + ℎ𝑘𝑖𝐼𝑘𝑖 + 𝐿𝑘𝑖𝜋𝑘𝑖

′ + 𝐵𝑘𝑖𝜋𝑖
 ]) 

(8) 𝜑3𝑖 = ℎ𝑖 

(9) 𝜑4𝑖 = (𝜋𝑖 + 𝐶𝑘𝑖) 

(10) 𝜑5𝑖 = 𝜋𝑖
′ 

(11) 𝜑6𝑖 = 𝐶𝑘𝑖 𝐵𝑘𝑖 + 𝐵𝑖𝜋𝑖 + 𝐿𝑖𝜋𝑖
′ − (𝑃𝑖 − 𝐶𝐾𝑖)𝐵𝑖

+ (𝑃𝑖𝑄2𝑘𝑖 − [𝐴𝑖 + 𝑄1𝑘𝑖𝐶𝑘𝑖 + ℎ𝑘𝑖𝐼𝑘𝑖 + 𝐿𝑘𝑖𝜋𝑘𝑖
′ + 𝐵𝑘𝑖𝜋𝑖

 ])(
𝐿𝑖 + 𝐵𝑖

𝑄1𝑘𝑖 

 ) 

 

Fig 1- The inventory system scheme for one product 

 

Considering that both normal price period and increased price period are probabilistic, 

𝑄1𝑘𝑖, 𝑄2𝑘𝑖, 𝐵𝑘𝑖, 𝐿𝑘𝑖, 𝐼𝑘𝑖, 𝑄1𝑠𝑖, 𝑄2𝑠𝑖, 𝐵𝑠𝑖, 𝐿𝑠𝑖, 𝐼𝑠𝑖 , 𝑄1𝑖, 𝑄2𝑖, 𝐵𝑖, 𝐿𝑖 , 𝐼𝑖 are computed as below. 

 

Uniform distribution  

When the time follows a uniform distribution,  𝑄1𝑠𝑖,  𝑄2𝑠𝑖,  𝐵𝑠𝑖,  𝐿𝑠𝑖,  Isi, and total cost 

saving would be: 

 

(12) 
𝑄1𝑆𝑖 =

1

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
{(1 − 𝛼𝑖)𝑅𝑠𝑖𝑡𝑚𝑎𝑥𝑖 +

𝐷𝑖

2
(𝛼𝑖𝑡𝑚𝑎𝑥𝑖

2 − 𝑡𝑚𝑖𝑛𝑖
2 )

+  
𝑅𝑠𝑖

2

2𝐷𝑖
  𝜃𝑖(𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖) −

𝑅𝑠𝑖
2

2𝐷𝑖

(1 − 𝛼𝑖) } 
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(15) 
𝐿𝑠𝑖 =

1 − 𝛼𝑖

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
{
𝐷𝑖𝑡𝑚𝑎𝑥𝑖

2

2
+

𝑅𝑠𝑖
2

2𝐷𝑖
−𝑅𝑠𝑖𝑡𝑚𝑎𝑥𝑖} 

(16) 
𝐼𝑆𝑖 =

1

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
{

𝑅𝑠𝑖
2

2𝐷𝑖

(𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖)} 

 

(17) 
𝑇𝑆 = ∑[(

𝜑1𝑖

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
{(1 − 𝛼𝑖)𝑅𝑠𝑖𝑡𝑚𝑎𝑥𝑖 +

𝐷𝑖

2
(𝛼𝑖𝑡𝑚𝑎𝑥𝑖

2 − 𝑡𝑚𝑖𝑛𝑖
2 )

𝑛

𝑖=1

−
𝑅𝑠𝑖

2

2𝐷𝑖

(1 − 𝛼𝑖)})   

 
-(

𝜑2𝑖

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
{(1 − 𝛼𝑖)𝑅𝑠𝑖𝑡𝑚𝑎𝑥𝑖 +

𝐷𝑖

2
(𝛼𝑖𝑡𝑚𝑎𝑥𝑖

2 − 𝑡𝑚𝑖𝑛𝑖
2 )

+
𝑅𝑠𝑖

2

2𝐷𝑖
𝜃𝑖(𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖) −

𝑅𝑠𝑖
2

2𝐷𝑖

(1 − 𝛼𝑖) })  

−(
  𝜑3𝑖

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
{

𝑅𝑠𝑖
2

2𝐷𝑖

(𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖)}) 

−(
𝜑4𝑖 𝛼𝑖

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
{

𝐷𝑖𝑡𝑚𝑎𝑥𝑖
2

2
+

𝑅𝑠𝑖
2

2𝐷𝑖
−𝑅𝑠𝑖𝑡𝑚𝑎𝑥𝑖})  

−(
𝜑5𝑖 (1 − 𝛼𝑖)

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
{

𝐷𝑖𝑡𝑚𝑎𝑥𝑖
2

2
+

𝑅𝑠𝑖
2

2𝐷𝑖
−𝑅𝑠𝑖𝑡𝑚𝑎𝑥𝑖})  − 𝐴𝑖 + 𝜑6𝑖]  

 

The value of 𝑄1𝑘𝑖, 𝑄2𝑘𝑖 , 𝐵𝑘𝑖, 𝐿𝑘𝑖 , 𝐼𝑘𝑖 are 

(18) 

𝑄1𝑘𝑖 =
1

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
{(1 − 𝛼𝑖)𝑅𝑘𝑖𝑡𝑚𝑎𝑥𝑖 +

𝐷𝑖

2
(𝛼𝑖𝑡𝑚𝑎𝑥𝑖

2 − 𝑡𝑚𝑖𝑛𝑖
2 ) 

+
𝑅𝑘𝑖

2

2𝐷𝑖
𝜃𝑖(𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖) −

𝑅𝑘𝑖
2

2𝐷𝑖

(1 − 𝛼𝑖) } 

(19) 𝑄2𝑘𝑖 =
1

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
{(1 − 𝛼𝑖)𝑅𝑘𝑖𝑡𝑚𝑎𝑥𝑖 +

𝐷𝑖

2
(𝛼𝑖𝑡𝑚𝑎𝑥𝑖

2 − 𝑡𝑚𝑖𝑛𝑖
2 ) −

𝑅𝑘𝑖
2

2𝐷𝑖

(1 − 𝛼𝑖)} 

(20) 𝐵𝑘𝑖 =
𝛼𝑖

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
{
𝐷𝑖𝑡𝑚𝑎𝑥𝑖

2

2
+

𝑅𝑘𝑖
2

2𝐷𝑖
−𝑅𝑘𝑖𝑡𝑚𝑎𝑥𝑖} 

(21) 𝐿𝑘𝑖 =
1 − 𝛼𝑖

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
{
𝐷𝑖𝑡𝑚𝑎𝑥𝑖

2

2
+

𝑅𝑘𝑖
2

2𝐷𝑖
−𝑅𝑘𝑖𝑡𝑚𝑎𝑥𝑖} 

(13) 
𝑄2𝑆𝑖 =

1

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
{(1 − 𝛼𝑖)𝑅𝑠𝑖𝑡𝑚𝑎𝑥𝑖 +  

𝐷𝑖

2
(𝛼𝑖𝑡𝑚𝑎𝑥𝑖

2 − 𝑡𝑚𝑖𝑛𝑖
2 ) −

𝑅𝑠𝑖
2

2𝐷𝑖

(1 − 𝛼𝑖)} 

(14) 
𝐵𝑠𝑖 =

𝛼𝑖

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
{
𝐷𝑖𝑡𝑚𝑎𝑥𝑖

2

2
+

𝑅𝑠𝑖
2

2𝐷𝑖
−𝑅𝑠𝑖𝑡𝑚𝑎𝑥𝑖} 
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(22) 𝐼𝑘𝑖 =
1

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
{

𝑅𝑘𝑖
2

2𝐷𝑖

(𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖)} 

 

Then𝑄1𝑖, 𝑄2𝑖, 𝐵𝑖, 𝐿𝑖, 𝐼𝑖: 

(23) 
𝑄1𝑖 =

1

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
{(1 − 𝛼𝑖)𝑅𝑖𝑡𝑚𝑎𝑥𝑖 +

𝐷𝑖

2
(𝛼𝑖𝑡𝑚𝑎𝑥𝑖

2 − 𝑡𝑚𝑖𝑛𝑖
2 )

+
𝑅𝑖

2

2𝐷𝑖
𝜃𝑖(𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖) −

𝑅𝑖
2

2𝐷𝑖

(1 − 𝛼𝑖) } 

(24) 
𝑄2𝑖 =

1

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
{(1 − 𝛼𝑖)𝑅𝑖𝑡 +

𝐷𝑖

2
(𝛼𝑖𝑡𝑚𝑎𝑥𝑖

2 − 𝑡𝑚𝑖𝑛𝑖
2 ) −

𝑅𝑖
2

2𝐷𝑖

(1 − 𝛼𝑖)} 

(25) 
𝐵𝑖 =

𝛼𝑖

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
{
𝐷𝑖𝑡𝑚𝑎𝑥𝑖

2

2
+

𝑅𝑖
2

2𝐷𝑖
−𝑅𝑖𝑡𝑚𝑎𝑥𝑖} 

(26) 
𝐿𝑖 =

1 − 𝛼𝑖

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
{
𝐷𝑖𝑡𝑚𝑎𝑥𝑖

2

2
+

𝑅𝑖
2

2𝐷𝑖
−𝑅𝑖𝑡𝑚𝑎𝑥𝑖} 

(27) 
𝐼𝑖 =

1

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
{

𝑅𝑖
2

2𝐷𝑖

(𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖)} 

 

In the total saving equation described above, the 𝜑1,𝜑2,𝜑3,𝜑4,𝜑5,𝜑6, are considered 

constant and do not have any effect on the concavity of the functions. TS is a quadratic 

equation and its second derivative is negative (see Appendix). Therefore, the concavity of 

profit function is proven. To obtain the optimal value of replenishment level value, the first-

order derivative of TS must be equal to zero, therefore: 

 

(28) 𝑅𝑠𝑖
∗

=
−(1 − 𝛼𝑖)𝑡𝑚𝑎𝑥𝑖(𝜑1𝑖 − 𝜑2𝑖) − 𝑡𝑚𝑎𝑥𝑖(1 − 𝛼𝑖)𝜑5𝑖 − 𝑡𝑚𝑎𝑥𝑖𝛼𝑖𝜑4𝑖

1
𝐷𝑖

{(1 − 𝛼𝑖)𝑡𝑚𝑎𝑥𝑖(𝜑1𝑖 − 𝜑2𝑖) − 𝜃𝑖 (𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖)(𝜑2𝑖) − (1 − 𝛼𝑖)𝜑5𝑖 − 𝛼𝑖𝜑4𝑖 − (𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖)𝜑3𝑖}
 

 

Exponential distribution  

Similar to what was done above, when time follows exponential distribution with 𝜆 

(replenishments/period) the 𝑄1𝑠𝑖, 𝑄2𝑠𝑖 , 𝐵𝑠𝑖, 𝐿𝑠𝑖 , 𝐼𝑠𝑖 , 𝑄1𝑘𝑖, 𝑄2𝑘𝑖, 𝐵𝑘𝑖, 𝐿𝑘𝑖, 𝐼𝑘𝑖, 𝑄1𝑖, 𝑄2𝑖, 𝐵𝑖 , 𝐿𝑖, 𝐼𝑖 in 

total cost saving are computed as below: 

 

(29) 
𝑄1𝑠𝑖 =

𝐷𝑖

𝜃𝑖
𝑒

−𝜆𝑖
𝑅𝑠𝑖
𝐷𝑖 (

𝛼𝑖 + 𝜃𝑖

𝜆𝑖
−

𝜃𝑖

𝜃𝑖 + 𝜆𝑖
) +

𝐷𝑖

𝜃𝑖
𝑒

𝜃𝑖
𝑅𝑠𝑖
𝐷𝑖  (

𝜃𝑖

𝜃𝑖 + 𝜆𝑖
) 
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(30) 
𝑄2𝑠𝑖 =

𝐷𝑖

𝜆𝑖
𝑒

−𝜆𝑖
𝑅𝑠𝑖
𝐷𝑖

 
(𝛼𝑖 − 1) +

𝐷𝑖

𝜆𝑖
 

(31) 
𝐵𝑠𝑖 = 𝛼𝑖 

𝐷𝑖

𝜆𝑖
𝑒

−𝜆𝑖
𝑅𝑠𝑖
𝐷𝑖   

(32) 
𝐿𝑠𝑖 = (1 − 𝛼𝑖 )

𝐷𝑖

𝜆𝑖
𝑒

−𝜆𝑖
𝑅𝑠𝑖
𝐷𝑖   

(33) 

𝐼𝑠𝑖 =
𝑒

𝜃𝑖
𝑅𝑠𝑖
𝐷𝑖 𝐷𝑖

𝜃𝑖  (𝜃𝑖 + 𝜆𝑖)
+

𝐷𝑖𝑒
−𝜆𝑖

𝑅𝑠𝑖
𝐷𝑖

 
 

𝜆𝑖 (𝜃𝑖 + 𝜆𝑖)
−

𝐷𝑖

𝜆𝑖 𝜃𝑖
 

(34) 
𝑄1𝑘𝑖 =

𝐷𝑖

𝜃𝑖
𝑒

−𝜆𝑖
𝑅𝑘𝑖
𝐷𝑖 (

𝛼𝑖 + 𝜃𝑖

𝜆𝑖
−

𝜃𝑖

𝜃𝑖 + 𝜆𝑖
) +

𝐷𝑖

𝜃𝑖
𝑒

𝜃𝑖
𝑅𝑘𝑖
𝐷𝑖  (

𝜃𝑖

𝜃𝑖 + 𝜆𝑖
) 

(35) 
𝑄2𝑘𝑖 =

𝐷𝑖

𝜆𝑖
𝑒

−𝜆𝑖
𝑅𝑘𝑖
𝐷𝑖

 
(𝛼𝑖 − 1) +

𝐷𝑖

𝜆𝑖
 

(36) 
𝐵𝑘𝑖 = 𝛼𝑖 

𝐷𝑖

𝜆𝑖
𝑒

−𝜆𝑖
𝑅𝑘𝑖
𝐷𝑖  

(37) 
𝐿𝑘𝑖 = (1 − 𝛼𝑖 )

𝐷𝑖

𝜆𝑖
𝑒−𝜆𝑖𝑙𝑅𝑘𝑖  

(38) 

𝐼𝑘𝑖 =
𝑒𝜃𝑖𝑙𝑘𝑖𝐷𝑖

𝜃𝑖  (𝜃𝑖 + 𝜆𝑖)
+

𝐷𝑖𝑒
−𝜆𝑖

𝑅𝑘𝑖
𝐷𝑖

 
 

𝜆𝑖 (𝜃𝑖 + 𝜆𝑖)
−

𝐷𝑖

𝜆𝑖 𝜃𝑖
 

(39) 
𝑄1𝑖 =

𝐷𝑖

𝜃𝑖
𝑒

−𝜆𝑖
𝑅𝑖
𝐷𝑖 (

𝛼𝑖 + 𝜃𝑖

𝜆𝑖
−

𝜃𝑖

𝜃𝑖 + 𝜆𝑖
) +

𝐷𝑖

𝜃𝑖
𝑒

𝜃𝑖
𝑅𝑖
𝐷𝑖  (

𝜃𝑖

𝜃𝑖 + 𝜆𝑖
) 

(40) 
𝑄2𝑖 =

𝐷𝑖

𝜆𝑖
𝑒

−𝜆𝑖
𝑅𝑖
𝐷𝑖

 
(𝛼𝑖 − 1) +

𝐷𝑖

𝜆𝑖
 

(41) 
𝐵𝑖 = 𝛼𝑖 

𝐷𝑖

𝜆𝑖
𝑒

−𝜆𝑖
𝑅𝑖
𝐷𝑖 

(42) 
𝐿𝑖 = (1 − 𝛼𝑖 )

𝐷𝑖

𝜆𝑖
𝑒

−𝜆𝑖
𝑅𝑖
𝐷𝑖 

(43) 

𝐼𝑖 =
𝑒

𝜃𝑖
𝑅𝑖
𝐷𝑖𝐷𝑖

𝜃𝑖  (𝜃𝑖 + 𝜆𝑖)
+

𝐷𝑖𝑒
−𝜆𝑖

𝑅𝑖
𝐷𝑖

 
 

𝜆𝑖 (𝜃𝑖 + 𝜆𝑖)
−

𝐷𝑖

𝜆𝑖 𝜃𝑖
 

 

(44) 
𝑇𝑆 = ∑[(

𝐷𝑖

𝜆𝑖
𝑒

−𝜆𝑖
𝑅𝑠𝑖
𝐷𝑖

 
(𝛼𝑖 − 1) +

𝐷𝑖

𝜆𝑖

𝑛

𝑖=1

) 𝜑1𝑖 − (
𝐷𝑖

𝜃𝑖
𝑒

−𝜆𝑖
𝑅𝑠𝑖
𝐷𝑖 (

𝛼𝑖 + 𝜃𝑖

𝜆𝑖
−

𝜃𝑖

𝜃𝑖 + 𝜆𝑖
)

+
𝐷𝑖

𝜃𝑖
𝑒𝜃𝑖𝑙𝑅𝑠𝑖  (

𝜃𝑖

𝜃𝑖 + 𝜆𝑖
)) 𝜑2𝑖 − (

𝑒
𝜃𝑖

𝑅𝑠𝑖
𝐷𝑖 𝐷𝑖

𝜃𝑖 (𝜃𝑖 + 𝜆𝑖)
+

𝐷𝑖𝑒
−𝜆𝑖

𝑅𝑠𝑖
𝐷𝑖

 
 

𝜆𝑖 (𝜃𝑖 + 𝜆𝑖)
−

𝐷𝑖

𝜆𝑖 𝜃𝑖
) 𝜑3𝑖

− (𝛼𝑖 

𝐷𝑖

𝜆𝑖
𝑒

−𝜆𝑖
𝑅𝑠𝑖
𝐷𝑖 ) 𝜑4𝑖 − ((1 − 𝛼𝑖 )

𝐷𝑖

𝜆𝑖
𝑒

−𝜆𝑖
𝑅𝑠𝑖
𝐷𝑖  ) 𝜑5𝑖 − (𝑒

−𝜆𝑖
𝑅𝑠𝑖
𝐷𝑖

 
(

𝐷𝑖𝜃𝑖

𝜆𝑖 (𝜃𝑖 + 𝜆𝑖)
)

− 𝐴𝑖 + 𝜑6𝑖]   
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Similar to a uniform distribution, the 𝜑1,𝜑2,𝜑3,𝜑4,𝜑5,𝜑6, are constant and do not have any 

effect on the concavity. It is proved that this function is concave (see appendix). Therefore, 

the optimal value of the function is given by the first derivative equal to zero. 

 

(45) 
𝑅𝑠𝑖

∗ = 𝐷𝑖{ln ((−
𝜑2𝑖𝜃𝑖

𝜃𝑖 + 𝜆𝑖
) + (

𝜑3𝑖

 (𝜃𝑖 + 𝜆𝑖)
)) 

−ln ((
−𝜑2𝑖𝜆𝑖 

𝜃𝑖
(

𝛼𝑖𝜃𝑖

𝜆𝑖
−

𝜃𝑖

𝜃𝑖 + 𝜆𝑖
)) + (

𝜑3𝑖

 (𝜃𝑖 + 𝜆𝑖)
) + 𝜑5𝑖(1 − 𝛼𝑖 ) + 𝜑4𝑖𝛼𝑖 

− 𝜑1𝑖(𝛼𝑖 − 1))}/(−𝜃𝑖 − 𝜆𝑖) 

 

Solution method  

Similar to the approach of Taleizadeh, Zarei, & Sarker (2016), Karimi-Nasab & Wee 

(2015), the following lemma is used to obtain decision variables: 

(i) 𝑅𝑖,  𝑅𝑘𝑖 for uniform and exponential distribution (see Appendix) 

(ii) calculate  𝑄1𝑘𝑖, 𝑄2𝑘𝑖, 𝐵𝑘𝑖, 𝐿𝑘𝑖, 𝐼𝑘𝑖 , 𝑄1𝑖, 𝑄2𝑖, 𝐵𝑖 , 𝐿𝑖, 𝐼𝑖 for two distributions 

(iii) calculate 𝜑1,𝜑2,𝜑3,𝜑4,𝜑5,𝜑6, 

(iv) calculate an optimal value for 𝑅𝑠𝑖  

 

Constrained model 

As the total available warehouse space is M, the space required for each unit of product is 

Mi, and the upper limits for inventory in various periods are 𝑅𝑖,  𝑅𝑘𝑖,  𝑎𝑛𝑑 𝑅𝑠𝑖. In summary, 

the complete mathematical model would be:  

 

(46) 

Maximize TS  

 

(47) 
∑ 𝑅𝑖𝑚𝑖

𝑛

𝑖=1

 ≤ 𝑀 

(49) 
∑ R𝑘𝑖𝑚𝑖

𝑛

𝑖=1

 ≤ 𝑀 

(50) 
∑ R𝑠𝑖𝑚𝑖

𝑛

𝑖=1

 ≤ 𝑀 
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Note that the TS (above) varies in two distributions and follows equations (17) and (44) 

for uniform and exponential distributions. 

 

Solution method  

Constrained non-linear optimization is a key form of the problem in the fields of 

economics, management, and engineering. Mathematical programming and meta-heuristic 

methods are two common ways to solve these types of problems. Mathematical programming 

can obtain solutions with higher accuracy as compared to the meta-heuristic method but in 

large scale and NP-hard problems, consume a lot of time So during the last decades, a wide 

variety of meta-heuristic algorithms have been designed and applied to solve the constrained 

non-linear optimization problems. GA and PSO are typical examples of these algorithms that 

have strengths and weaknesses (Talezadeh et al., 2013b; Alejo-Reyes, 2020). In this paper, 

GA and PSO algorithms are used to solve the problem, and then, their accuracy, performance, 

and time-consuming are compared. 

 

GA initial population  

GA chromosomes or candidate solutions for the i
th

 product are the maximum inventory 

levels in three periods, i.e., normal price, the announcement of price increase after the price 

increased. Therefore, one chromosome or string for 10 items is a10*3 matrixes.  The positive 

real numbers are randomly generated in each matrix to meet constraints. Hence, N 

chromosomes are generated for the initial population:  

 

    

i=1 R1 RS1 Rk1 

i=2 R2 RS2 Rk2 

i=3 . . . 

i=4 . . . 

i=5 . . . 

i=6 . . . 

i=7   . 

i=8    

i=9    

i=10    

Fig 2- The structure of a chromosome 
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GA crossover operation 

To perform crossover operation, there are two common algorithms including single-point 

crossover and multiple crossovers point like in real organisms. Therefore, a sub-matrix from 

the parent (1) is randomly selected and then, the permutation is copied from the chromosome 

of the first paren. Finally, the chromosome of the second parent is scanned and if the number 

is not yet in the offspring, it would be added. Repeatedly, the second child is also made by 

using the same procedure just as for the first child. (Fig. 3) 

 

PARENT(1) 

R1 RS1 Rk1 

R2 RS2 Rk2 

R3 RS3 RK3 

R4 RS4 RK4 

R5 RS5 RK5 

R6 RS6 RK6 

R7 RS7 RK7 

R8 RS8 RK8 

R9 RS9 RK9 

R10 RS10 RK10 
 

PARNET(2) 

R1 RS1 Rk1 

R2 RS2 Rk2 

R3 RS3 RK3 

R4 RS4 RK4 

R5 RS5 RK5 

R6 RS6 RK6 

R7 RS7 RK7 

R8 RS8 RK8 

R9 RS9 RK9 

R10 RS10 RK10 
 

SPRING(1) 

R1 RS1 Rk1 

R2 RS2 Rk2 

R3 RS3 RK3 

R4 RS4 RK4 

R5 RS5 RK5 

R6 RS6 RK6 

R7 RS7 RK7 

R8 RS8 RK8 

R9 RS9 RK9 

R10 RS10 RK10 
 

SPRING(2) 

R1 RS1 Rk1 

R2 RS2 Rk2 

R3 RS3 RK3 

R4 RS4 RK4 

R5 RS5 RK5 

R6 RS6 RK6 

R7 RS7 RK7 

R8 RS8 RK8 

R9 RS9 RK9 

R10 RS10 RK10 
 

Fig 3- The crossover operation 

 

GA mutation operation 

A mutation is performed by making minor changes in the mutated chromosomes. To do 

this, a random number RN between (0,1) is generated for each gene. If RN is less than a 

predetermined mutation probability Pm, then the mutation occurs in the gene. Otherwise, it 

does not. In this research, 0 and10, are chosen as the values of Pm. Note that infeasible 

chromosomes resulting from this operation do not move to the new population. 
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GA  

Objective function: f(x) 

1. Define Fitness F  

2. Initialize population 

3. Initialize probabilities of crossover (pc) and mutation (pm) 

4. Do 

5. Generate new solutions by crossover and mutation 

6. Apply mutation and cross-over to each chromosome  

7. Accept the new solution if its fitness increases 

8. Select the current best for the next generation 

9. While maximum iterations or minimum error criteria are not attained* 

*Note that the algorithm stops until a maximum number of 500 iterations is reached. 

 

Particle Swarm Optimization (PSO) 

PSO is a technique based on swarm (population) and particles. In this method, each 

particle is a possible solution to the problem; and moves around in a multidimensional search 

space. Each particle changes its position according to its location and the position of its 

neighboring particles. PSO tries to find the optimal solution by moving particles and 

evaluating the fitness of their new position. 

 

Initial population  

The initial population in PSO is generated by creating a particle. In this research, the 

particles are similar to chromosomes in the GA algorithm. It means that they are from a 

3*10martix for 10 products. Every particle has its position and velocity.  

 

PSO fitness function 

Fitness functions in PSO algorithms are considered objective functions. 

Velocity and Position 

After the initialization stage, every particle must be updated by its best local position and 

also its best global position: 

 

(51)  𝑣𝑖
𝑡+1 = 𝜔. 𝑣𝑖

𝑡 + 𝑐1. 𝑟1. (𝑃𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖
𝑡) + 𝑐2. 𝑟2. (𝐺𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖

𝑡) 

 

(52)  𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1 
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Where ‘t’ is the previous iteration, c1 and c2 are the individuals and global learning rates, 

r1 and r2 are uniformly random numbers in ranges U= [0 1], and 𝜔 is the inertia weight. 

Commonly, the values of c1 and c2 are set equal to 2. Then, two multiples by r1, and r2 

contribute to the social and personal experience equal to each particle. Intertie weight 𝜔 is a 

mechanism for controlling exploration and exploitation, i.e., the contribution of the previous 

velocity. At the first stage, its value is close to 1 form more exploration and other iterations 

reduced for more exploitation:  ω = 0.9ω 

 

PSO algorithm 

1. Objective function: f(x), x = (x1, x2, ..., xn); 

2. Initialize particle position and velocity for each particle and set k = 1. 

3. Initialize the particle’s best-known position to its initial position 

4. Do 

5. Update the best-known position of each particle and swarm’s best-known position  

6. Calculate particle velocity according to the velocity equation  

7. Update particle position according to the position equation  

8. While maximum iterations or minimum error criteria are not attained* 

*Note that the algorithm stops until a maximum number of 500 iterations is reached. 

 

5. Numerical example  

Unconstraint problem 

To illustrate the application of the above-mentioned solution procedure, we will use 

numerical examples. The parameters of examples are addressed in Table 1. 

 

Table 1- Parameters of the model 

i D H π ''  C CK '' K HK P α lmin lmax λ 

1 70 8.00 1.01 29.00 40.00 50.000 19.000 10.000 68.00 0.7 0.1 0.4 5 

2 76 7.22 1.03 26.27 36.10 45.125 17.245 9.025 61.37 0.8 0.2 0.4 5 

3 82 6.44 1.05 23.54 32.20 40.250 15.490 8.050 54.74 0.8 0.2 0.4 5 

4 88 5.66 1.07 20.81 28.30 35.375 13.735 7.075 48.11 0.7 0.2 0.4 10 

5 94 4.88 1.09 18.08 24.40 30.500 11.980 6.100 41.48 0.7 0.2 0.4 5 

6 100 4.10 1.11 15.35 20.50 25.625 10.225 5.125 34.85 0.5 0.1 0.4 10 

7 106 3.32 1.13 12.62 16.60 20.750 8.470 4.150 28.22 0.7 0.1 0.2 5 

8 112 2.54 1.15 9.89 12.70 15.875 6.715 3.175 21.59 0.6 0.1 0.2 10 

9 118 1.76 1.17 7.16 8.80 11.000 4.960 2.200 14.96 0.7 0.1 0.2 5 

10 124 0.98 1.19 4.43 4.90 6.125 3.205 1.225 8.33 0.5 0.1 0.3 10 

*oo te taat: θ=0.1 ،A=50 
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The optimal values for uniform and exponential distributions are addressed in Table 2. 

 

Table 2- The optimal solutions of the unconstrained model 

 
Uniform Exponential 

 
RS Q1S TS RS Q1S TS 

1 25.8518 17.7291 210.1595 40.8695 20.7984 181.3497 

2 28.8247 23.0648 267.1384 44.4957 35.3571 215.7841 

3 31.106 24.8912 255.525 48.0696 49.923 206.0894 

4 33.366 26.8079 214.727 31.6774 31.8496 73.3584 

5 35.6519 28.6414 197.0898 55.2122 79.0533 145.7149 

6 36.9305 25.4855 138.0554 35.9423 46.2197 52.5992 

7 20.6394 16.0665 69.8089 62.7084 108.1936 109.4345 

8 21.8083 16.9869 55.6206 40.7645 60.6251 38.0602 

9 23.0089 17.893 40.897 71.1347 137.3088 61.4744 

10 35.4927 25.2401 32.0431 46.7342 75.0152 15.2866 

 

Constrained problem  

In this section, the same parameters in the previous section are considered and both GA 

and PSO methods are used to obtain the optimal solution. The specific parameters of those 

algorithms are presented in Table 3. All of these parameters are obtained by trial and error. 

 

Table 3- parameters of the algorithm 

Values PSO Parameters Values GA Parameters 

100 Number of initial particles 100 Initial population size 

The decrease from 0.9 

to 0.3 
ω 0.9 Pc 

2.0 C1 0.1 Pm 

2.0 C2 
Reach maximum 

iteration 
Stop criteria Reach maximum 

iteration 
Stop criteria 

 

In this section, multiple problems are designed and solved in different sizes, which can be 

classified into small, medium, and large categories. The first category includes 10 and 20 

products; the second category includes 80 and 100 products, and the third category includes 

400 and 500 products. The following table shows the differences between time and cost for 

both uniform and exponential distributions. It should be noted that all values in the tables are 

written after 10 iterations of each problem (each problem has 500 iteration loops) and its best 

mode are displayed. In Table 4 and Figure 4, the results are compared. 
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Table 4- The optimal solutions of the constrained model 

Uniform distribution 

Number of products 
GA PSO 

TS($) Time(s) TS($) Time(s) 

10 1478.9625 14.0776 994.9977 35.7438 

20 1509.8552 15.3666 1071.4022 36.0521 

80 1658.9988 17.2976 1481.4763 39.0854 

100 1924.2439 17.5966 1744.0593 39.3118 

400 31649.2948 26.0723 30956.226 49.4003 

500 41441.7108 28.5222 41099.5035 54.1311 

Exponential distribution 

Number of products 
GA PSO 

TS($) Time(s) TS($) Time(s) 

10 3348.9605 16.1923 1750.0724 36.3512 

20 5938.2014 16.9589 3604.1214 36.9368 

80 13166.0403 21.6333 7319.1813 42.1105 

100 13536.1344 23.4927 8768.8806 44.1671 

400 82371.4125 46.2719 59179.1205 70.2324 

500 104280.3503 53.6850 76239.5825 77.8652 

 

  

(a) (b) 

Fig. 4- Comparison of optimal solutions by GA and PSO for (a)uniform distribution and (b)exponential 

distribution 

 

6. Discussion and sensitivity analysis 

The selection of parameters is a significant issue in the decision-making context. Thus, to 

analyze the effects of changes on the maximum value of inventory levels, the order quantity, 

and total profit, some sensitivity analysis is performed and the results are shown in Tables 4 

and 5. The values of each parameter are changed from +75% to -75% for a single product, 

regardless of the space constraints. Better displaying parameter changes and their effects are 

shown in Figures 5 and 6. 

  

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

10 20 80 100 400 500

To
ta

l C
o

st
 S

av
in

g 
($

) 

Number of Pruducts 

Uniform Distribution  

GA

PSO

0

20000

40000

60000

80000

100000

120000

10 20 80 100 400 500

To
ta

l C
o

st
 S

av
in

g 
($

) 

Number of Pruducts 

Exponential  Distribution  

GA

PSO



134/ Optimizing the inventory control decisions under multiple constraints for … / Narges Mehmandost, et al.  

Table 5- The results of sensitivity analysis for uniform distribution 

Parameters 
Change 

(%) 

Values Change (%) 

QS RS T(R
*
S) QS RS T(R

*
S) 

D 

75 18.6 23.8 195.8 0.754716981 0.75 0.7497766 

50 15.9 20.4 167.8 0.500000000 0.50 0.4995532 

25 13.2 17.0 139.9 0.245283019 0.25 0.2502234 

0 10.6 13.6 111.9 0.000000000 0.00 0.0000000 

-25 7.9 10.2 83.9 -0.254716981 -0.25 -0.2502230 

-50 5.3 6.8 55.9 -0.500000000 -0.50 -0.5004470 

-75 2.6 3.4 27.9 -0.754716981 -0.75 -0.750670 

P 

75 10.6 13.6 108.7 0.000000000 0.00 -0.0285970 

50 10.6 13.6 108.8 0.000000000 0.00 -0.0277030 

25 10.6 13.6 109.1 0.000000000 0.00 -0.0250220 

0 10.6 13.6 111.9 0.000000000 0.00 0.0000000 

-25 - - - - - - 

-50 - - - - - - 

-75 - - - - - - 

hk 

75 10.6 13.6 125.1 0 0 0.1179625 

50 10.6 13.6 120.6 0 0 0.0777480 

25 10.6 13.6 116.2 0 0 0.0384272 

0 10.6 13.6 111.9 0 0 0.0000000 

-25 10.6 13.6 107.6 0 0 -0.0384270 

-50 10.6 13.6 103.5 0 0 -0.0750670 

-75 10.6 13.6 99.5 0 0 -0.1108130 

[lmin lmax] 

75 13.3 18.3 146.4 0.254716981 0.3455882 0.3083110 

50 12.4 16.7 134.5 0.169811321 0.2279412 0.2019660 

25 11.5 15.2 123 0.084905660 0.1176471 0.0991957 

0 10.6 13.6 111.9 0.000000000 0.0000000 0.0000000 

-25 9.7 11.9 101.1 -0.084905660 -0.1250000 -0.0965150 

-50 8.8 10.3 90.7 -0.169811321 -0.2426470 -0.1894550 

-75 7.9 8.6 80.7 -0.254716981 -0.3676470 -0.2788200 

θ 

75 10.7 13.5 114 0.009433962 -0.0073530 0.0187668 

50 10.6 13.5 113.3 0.000000000 -0.0073530 0.0125112 

25 10.6 13.5 112.6 0.000000000 -0.0073530 0.0062556 

0 10.6 13.6 111.9 0.000000000 0.0000000 0.0000000 

-25 10.5 13.6 111.2 -0.009433962 0.0000000 -0.0062560 

-50 10.5 13.6 110.5 -0.009433962 0.0000000 -0.0125110 

-75 10.5 13.7 109.9 -0.009433962 0.0073529 -0.0178730 
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In figure 5, a comparison is made for the sensitivity results of changing demand rates in 

uniform distribution. 

 

 

Fig. 5- The sensitivity results in changes in the Demand rate 

 

Table 6- The results of sensitivity analysis for exponential distribution 

Parameters Change (%) 
Values Change (%) 

QS RS T(R
*

S) QS RS T(R
*
S) 

D 

75 25.1 71.4 317.50 0.755245 0.750000 0.751241 

50 21.5 61.2 272.10 0.503497 0.500000 0.500827 

25 17.9 51.0 226.70 0.251748 0.250000 0.250414 

0 14.3 40.8 181.30 0.000000 0.000000 0.000000 

-25 10.7 30.6 135.90 -0.251750 -0.250000 -0.250410 

-50 7.1 20.4 90.50 -0.503500 -0.500000 -0.500830 

-75 3.5 10.2 45.10 -0.755240 -0.750000 -0.751240 

p 

75 14.3 40.8 135.60 0.000000 0.000000 -0.252070 

50 14.3 40.9 141.20 0.000000 0.002451 -0.221180 

25 14.3 40.9 152.10 0.000000 0.002451 -0.161060 

0 14.3 40.8 181.30 0.000000 0.000000 0.000000 

-25 - - - - - - 

-50 - - - - - - 

-75 - - - - - - 

hk 

75 14.3 40.9 225.30 0.000000 0.002451 0.242692 

50 14.3 40.9 211.70 0.000000 0.002451 0.167678 

25 14.3 40.9 197.10 0.000000 0.002451 0.087148 

0 14.3 40.8 181.30 0.000000 0.000000 0.000000 

-25 14.3 40.8 164.20 0.000000 0.000000 -0.094320 
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Parameters Change (%) 
Values Change (%) 

QS RS T(R
*

S) QS RS T(R
*
S) 

-50 14.3 40.7 145.70 0.000000 -0.002450 -0.196360 

-75 14.3 40.6 125.40 0.000000 -0.004900 -0.308330 

λ 

75 8.1 27.6 96.560 -0.433570 -0.323530 -0.467400 

50 9.5 30.8 114.81 -0.335660 -0.245100 -0.366740 

25 11.4 35.0 140.99 -0.202800 -0.142160 -0.222340 

0 14.3 40.8 181.35 0.000000 0.000000 0.000276 

-25 19.1 49.4 250.46 0.335664 0.210784 0.381467 

-50 28.7 63.6 390.73 1.006993 0.558824 1.155157 

-75 56.9 93.6 784.20 2.979021 1.294118 3.325427 

θ 

75 14.5 37.2 185.30 0.013986 -0.088240 0.022063 

50 14.5 38.3 184.10 0.013986 -0.061270 0.015444 

25 14.4 39.5 182.80 0.006993 -0.031860 0.008274 

0 14.3 40.8 181.30 0.000000 0.000000 0.000000 

-25 14.2 42.3 179.70 -0.006990 0.036765 -0.008830 

-50 14.1 44.0 178.00 -0.013990 0.078431 -0.018200 

-75 14 45.9 176.20 -0.020980 0.125000 -0.028130 

 

In Figure 6, a comparison is made for the sensitivity results of changing λ in the 

exponential distribution.  
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According to tables 5, and 6, when the demand rate (D) increases, the replenishment level 

(Rs), total saving T(Rs), and order quantity (Qs) increase too. In other words, the 

replenishment level, order quantity, and total saving are highly sensitive to the demand rate. 

It means that it is more profitable to place an order when the demand increases. From tables 5 

and 6 we can understand that when the price increases, the replenishment level, and order 

quantity doesn't change but saving cost decreases slightly, so, total saving and price are to 

some extent sensitive to each other. It is clear that after a price increase, the holding cost does 

not change replenishment level and order quantity, but directly affects the total saving. It 

means that the replenishment level and order quantity are not sanative but the total saving 

value is slightly sensitive to the changes in holding cost. According to Table 6, when the λ 

(mean number/year) in exponential distribution increases the replenishment level, order 

quantity, and total saving decrease. In other words, all three items are moderately sensitive to 

λ. Table 5 shows direct but little interaction between the maximum and the minimum 

amounts of allowable time in uniform distribution and replenishment level, order quantity, 

and total saving. Finally, according to Table 5,6, we can see that there are positive effects of 

deteriorating rate on profit and order quantity level but negative effects on replenishment 

level. It is worth noting that in all cases, the effects are low. Therefore, it must be said that the 

customer should use a special-order policy when the orders include high-deterioration rate 

products. 

6.1 Theoretical implications 

According to previous research, including Taleizadeh et al. (2013c), Yang et al. (2015), 

Karimi-Nasab & Wee (2015), and Taleizadeh, Zarei, & Sarker (2016), it can be found that 

they did not include real-world constraints and more attention has been paid to the increase in 

price over time due to a random delivery period and a motivational policy. In several studies, 

there are no limitations and the problem is modeled and solved with integer decision 

variables and linear programming (Zeballos, Seifert & Protopappa-Sieke, 2013; Sarkar & 

Moon, 2014; Giri & Sharma, 2016; Braglia, Castellano & Frosolini, 2016; Braglia, 

Castellano, & Song, 2017). Therefore, in studies that focus exclusively on known price 

increases, the gap is quite evident when a study is aimed at getting a better understanding of 

the real-world conditions (Cimen & Kirkbride, 2017). Therefore, this research seeks to 

consider goods that do not have a stable lifespan, as well as storage space limitations and 

problem-solving by using meta-heuristics algorithms. 

Meta-hubristic algorithms such as Genetic Algorithm (GA) and Particle Swarm 

Optimization (PSO) can be used in inventory control to obtain optimal reorder points (Dye, 

2012; Mousavi et al., 2014; Buhnia, Shaikh & Gupta, 2015; Bhunia & Shaikh, 2015; 
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Vandani, Niaki, & Aslanzade, 2017; Akbari Kaasgari, Imani, & Mahmoodjanloo, 2017; 

Azadeh, 2017; Hiassat, Diabat & Rahwan, 2017; Tiwari, 2017). In general, scholars suggest 

that hybrid meta-heuristic algorithms have gained considerable attention for their capability 

to solve difficult problems in different fields of science especially solving inventory 

problems. Due to the non-linearity of the proposed model of this study, particle swarm 

optimization (PSO) and genetic algorithm (GA), were implemented as optimizing solvers 

instead of analytical methods (Talezadeh et al., 2013b; Alejo-Reyes et al., 2020). 

 

7. Conclusions 

The models presented in this study were solved with consideration of the relevant 

assumptions along with numerical examples. The derivation method was used to solve the 

unconstrained problem, and both the genetic algorithm and particle swarm optimization 

algorithm were used for the constrained problem. Accordingly, the optimum value of the 

model was calculated. Changes in profits, replenishment level, and order quantities were 

examined for some of the parameters, including demand, purchase price, and holding cost. 

Sensitivity analysis indicated that an increase in deterioration and demand rates leads to 

increased total profits. Also, the fewer the number of replenishment periods in one year, the 

more is cost-effective it. It has also been shown that the genetic algorithm has the best ability 

to converge in comparison with the particle swarm algorithm, and in less time, it becomes 

more desirable.  

In general, based on the findings of this research, managers and retailers would be able to 

have more effective plans for their inventory and replenishment levels under changing 

circumstances. The research model is a real-world inventory control problem that has been 

observed in many cases, such as small supermarkets, pharmacies, grocery stores, and so on. 

This model helps the suppliers decide when to visit and replenish the retail inventory. Hence, 

suppliers can visit retailers at irregular intervals. The purpose of this study was to determine 

the retailer’s optimal order quantity and maximize the benefits. 

 

7.1 Research limitations and future study agenda 

In this research, some parameters such as delay in payment, pre-payment policies, and also 

financial constraints were not considered effective variables, hence they should be noted as 

the limitations of this study. The proposed model of this study could be extended in several 

ways. It may deal with the demand rate as a function of price, time, stock, etc., considering 

the delayed payment and advanced payment policy. It is also possible to use other meta-

heuristic algorithms, hybrid algorithms, considering fuzzy parameters, and adding more 
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constraints to the model including limitations on order quantities and also financial 

constraints. 

 

References 

Abad, P.L. (2008).Optimal price and order size under partial backordering incorporating shortage, 

backorder and lost sale costs, International Journal of Production Economics, 114, 179-186. 

Akbari Kaasgari, M., Imani, D.M., & Mahmoodjanloo, M. (2017). Optimizing a vendor-managed 

inventory (VMI) supply chain for perishable products by considering discount: Two calibrated 

meta-heuristic algorithms. Computers & Industrial Engineering, 103, 227-241. 

Alejo-Reyes.A., Olivares-Benitez.E., Mendoza, A., & Rodriguez, A. (2020). Inventory replenishment 

decision model for the supplier selection problem using metaheuristic algorithms. Mathematical 

Biosciences & Engineering, 17(3), 2016-2036. 

Amorim, P., Costa, A., Almada-Lobo, M. B. (2013). Innocence of consumer purchasing behavior on 

the production planning of perishable food. OR Spectrum, 36(3), 669-692. 

Asif, I. M. &, Biswajit .S (2018). Optimizing a Multi-Product Continuous-Review Inventory Model 

With Uncertain Demand, Quality Improvement, Setup Cost Reduction, and Variation Control in 

Lead Time. IEEE Access,6, 36176-36187. 

Azadeh, A., (2017). A genetic algorithm-Taguchi-based approach to inventory routing problem of a 

single perishable product with transshipment. Computers & Industrial Engineering, 104, 124-133. 

Babangida, B & Baraya, Y. (2020). An inventory model for non-instantaneous deteriorating items 

with time-dependent quadratic demand, International Journal of Modelling in Operations 

Management, 8(1),1-44 

Babangida, B. & Baraya, Y. (2020). An inventory model for non-instantaneous deteriorating items 

with time-dependent quadratic demand, two storage facilities and shortages under trade credit 

policy. International Journal of Modelling in Operations Management, 8, 1-44.  

Banerjee, S. & S. Agrawal. (2017). Inventory model for deteriorating items with freshness and price 

dependent demand: Optimal discounting and ordering policies. Applied Mathematical Modelling, 

52, 53-64. 

Bhunia, A.K. & Shaikh, A.A. (2015), An application of PSO in a two-warehouse inventory model for 

the deteriorating item under permissible delay in payment with different inventory policies. 

Applied Mathematics & Computation,256 ,  831-850. 

Bhunia, A.K., Shaikh, A.A., & Gupta, R.K. (2015). A study on two-warehouse partially backlogged 

deteriorating inventory models under inflation via particle swarm optimization. International 

Journal of Systems Science, 46 (6), 1036-1050. 

Bischak, D.P., Robb, D.J., Silver, E.A., & Blackburn, J.D. (2014). The analysis and management of 

periodic review, order-up-to-level inventory systems with order crossover. Production & 

Operations Management, 23, 762-772. 

Bounkhel, M.; Tadj, L.; Benhadid, Y & Hedjar, R. (2019). Optimal Control of Nonsmooth Production 

Systems with Deteriorating Items Stock-Dependent Demand, with or without Backorders.  

Symmetry, 11(2), 183.  

Bradley, Stephen P., Hax, Arnoldo C., Magnanti, & Thomas, L. (1977). Applied Mathematical 

Programming, Addison-Wesley, Chapter 13.  

Braglia, M., Castellano, D., & Frosolini, M. (2016). Joint-replenishment problem under stochastic 

demands with backorders-lost sales mixtures, controllable lead times, and investment to reduce the 

major ordering cost. Journal of Operational Research Society, 67(8), 1108-1120. 

Braglia, M., Castellano, D., & Song .D. (2017). Distribution-free approach for a stochastic joint-

replenishment problem with backorders-lost sales mixtures, and controllable major ordering cost 

and lead times. Compute & Operation Research, 79, 161-173. 

https://dblp.org/pid/230/4784.html
https://dblp.org/pid/71/3232.html
https://dblp.org/db/journals/access/access6.html#MalikS18
https://www.inderscienceonline.com/journal/ijmom
https://www.inderscienceonline.com/journal/ijmom


140/ Optimizing the inventory control decisions under multiple constraints for … / Narges Mehmandost, et al.  

Caloieroa, G., Strozzia, F., Comenges, J.-M.Z. (2008). A supply chain as a series of filters or 

amplifiers of the bullwhip effect. International Journal of Production Economics, 114 (2), 631-

645. 

Chen, W., J. Li, & X. Jin (2016). The replenishment policy of agri-products with stochastic demand in 

integrated agricultural supply chains. Expert Systems with Applications, 48, 55-66. 

Chiang, C. (2013). A note on periodic review inventory models with stochastic supplier’s visit 
intervals and fixed ordering cost, International Journal of Production Economics, 146, 662- 666. 

Çimen, M., & Kirkbride, C. (2017). Approximate dynamic programming algorithms for 

multidimensional flexible production-inventory problems. International Journal of Production 

Research, 55(7), 2034-2050. 

Diabat, A., Taleizadeh, A.A., & Lashgari .M. (2017). A lot-sizing model with partial downstream 

delayed payment, partial upstream advance payment, and partial backordering for deteriorating 

items. Journal of Manufacturing Systems, 45, 322-342. 

Dye, C.-Y., A (2012). finite horizon deteriorating inventory model with two-phase pricing and time-

varying demand and cost under trade credit financing using particle swarm optimization. Swarm & 

Evolutionary Computation, 5, 37-53. 

Ghosh, A.K. (2003). On some inventory models involving shortages under an announced price 

increase, International Journal of Systems Science, 34(2), 129-137. 

Giri, B. C. & Sharma, S (2016). Optimal ordering policy for an inventory system with linearly 

increasing demand and allowable shortages under two levels trade credit financing. Operational 

Research., 16(1), 25-50. 

Goyal, S.K., Giri, B.C. (2001). Recent trends in modeling of deteriorating inventory. European 

Journal of Operational Research, 134(1), 1–6. 

Herbon, A (2017). A non-cooperative game model for managing a multiple-aged expiring inventory 

under consumers’ heterogeneity to price and time. Applied Mathematical Modelling, 51,  38-57. 

Herbon, A. & Khmelnitsky, E. (2017). Optimal dynamic pricing and ordering of a perishable product 

under additive effects of price and time on demand. European Journal of Operational Research, 

260 (2), 546-556. 

Hiassat, A, Diabat A, Rahwan I (2017) A genetic algorithm approach for location-inventory-routing 

problem with perishable products. Journal of Manufacturing Systems, 42, 93-103. 

Hong, S., Kim, Y.H. (2009). A genetic algorithm for joint replenishment based on the exact inventory 

cost. Compute & Operation Research, 36,167–175. 

Hsu, W.K. & Yu, H.F. (2011). An EOQ model with imperfective quality items under an announced 

price increase. Journal of the Chinese Institute of Industrial Engineers, 28, 34-44. 

Huang, W., Kulkarni, V.G. & Swaminathan, J.M. (2003). Optimal EOQ for announced price increase 

in Infinite Horizon. Operations Research, 51, 336-339. 

Jaggi, C.K., Tiwari, S., & Goel, S.K. (2017). Credit financing in economic ordering policies for non-

instantaneous deteriorating items with price dependent demand and two storage facilities. Annals 

of Operations Research,248 (1-2), 253-280. 

Janssen, L. (2018a), A stochastic micro-periodic age-based inventory replenishment policy for 

perishable goods, Transportation Research Part E-Logistics & Transportation Review, 118, 445-

465. 

Janssen, L. (2018b). Development and simulation analysis of a new perishable inventory model with a 

closing days constraint under non-stationary stochastic demand. Computers & Industrial 

Engineering, 118, 9-22. 

Karimi-Nasab, M., & Wee, H.M. (2015). An inventory model with truncated exponential 

replenishment intervals and special sale offer. Journal of Manufacturing Systems, 35, 246-250. 

Kaya, O. & Ghahroodi S.R. (2018). Inventory control and pricing for perishable products under age 

and price dependent stochastic demand. Mathematical Methods of Operations Research, 88 (1), 1-

35. 



Journal of Production and Operations Management, Vol. 11, Issue 4, No. 23, Winter 2021/141 

 
Lashgari, M., Taleizadeh A.A., & Sadjadi, S.J. (2018). Ordering policies for non-instantaneous 

deteriorating items under hybrid partial prepayment, partial trade credit, and partial back-ordering. 

Journal of the Operational Research Society, 69 (8), 1167-1196. 

Li, R. & Teng, J.T. (2018). Pricing and lot-sizing decisions for perishable goods when demand 

depends on selling price, reference price, product freshness, and displayed stocks. European 

Journal of Operational Research, 270 (3), 1099-1108. 

Maihami, R., Karimi, B. (2014). Optimizing the pricing and replenishment policy for non-

instantaneous deteriorating items with stochastic demand and promotional efforts. Computers & 

Operations Research, 51, 302-312. 

Malik, A.I.; Sarkar, B (2018). Optimizing a multi-product continuous-review inventory model with 

uncertain demand, quality improvement, setup cost reduction, and variation control in lead time. 

IEEE Access , 6, 36176–36187. 

Moon, I., Giri, B.C., Ko, B. (2005). Economic order quantity models for ameliorating/deteriorating 

items under inflation and time discounting. European Journal of Operational Research, 162(3), 

773–785. 

Mousavi, S. M., Sadeghi, J., Niaki, S. T., Alika .A., Bahreininejad .N., & Metselaar .H. S. C. (2014). 

Two parameter-tuned meta-heuristics for a discounted inventory control problem in a fuzzy 

environment. Information Sciences, 276,  42-62. 

Muthuraman, K., Seshadri, S., & Wu, Q. (2014). Inventory management with stochastic lead times. 

Mathematics of Operations Research, 40, 302-32. 

Naddor, E. (1966), Inventory systems. New York: John Wiley & sons (Chapter 1).  

Neeraj K. & Kumar.S (2017). An inventory model for deteriorating items with partial backlogging 

using linear demand in fuzzy environment. Cogent Business & Management, 4(1), 1307687, 

https://doi.org/10.1080/23311975.2017.1307687.  

Ouyang, L. Y. Teng, J. T., Goyal, S. K. & Yang, C. T (2008). An economic order quantity model for 

deteriorating items with partially permissible delay in payments linked to order quantity. European 

Journal of Operational Research, 194(2), 418-431. 

Ouyang, L.Y (2016). Optimal order policy in response to an announced price increase for 

deteriorating items with limited special-order quantity, International Journal of Systems Science, 

47 (3), 718-729. 

Pal, H., Bardhan .S., & Giri, B.C (2018). Optimal replenishment policy for non-instantaneously 

perishable items with preservation technology and random deterioration start time. International 

Journal of Management Science & Engineering Management, 13 (3), 188-199. 

Palak, G., Sioglu, S.D. & Geunes, J. (2018). Heuristic algorithms for inventory replenishment with 

perishable products and multiple transportation modes. IISE Transactions, 50 (4), 345-365. 

Palanivel, M., Uthayakumar & Finite, R. (2015). Horizon EOQ model for non-instantaneous 

deteriorating items with price and advertisement dependent demand and partial backlogging under 

inflation. International Journal of Systems Science,46 (10), 1762-1773. 

Pan, W. (2017). Medical resource inventory model for emergency preparation with uncertain demand 

and stochastic occurrence time under considering different risk preferences at the airport. Plos 

One, 12(9), 16. 

Prekopa, A. (2006). On the Hungarian inventory control model. European Journal of Operational 

Research, 171 (3), 894-914. 

Rabbani, M., Pourmohammad, N., & Rafiei, H. (2016). Joint optimal dynamic pricing and 

replenishment policies for items with simultaneous quality and physical quantity deterioration. 

Applied Mathematics & Computation, 287-288, 149-160. 

Sarkar B. & Moon, I. (2014). Improved quality, setup cost reduction, and variable backorder costs in 

an imperfect production process. International Journal of Production Economics, 155, 204-213. 

Sarker, B.R., & Kindi, M. (2006). Optimal ordering policies in response to a discount offer. 

International Journal of Production Economics, 100, 195-211. 



142/ Optimizing the inventory control decisions under multiple constraints for … / Narges Mehmandost, et al.  

Sazavar, Z., Mirzapour Al-e-hashem .S.M.J., Govindan,K and  Bahli, B (2016). A novel mathematical 

model for a multi-period, multi-product optimal ordering problem considering expiry dates in a 

FEFO system. Transportation Research Part E-Logistics & Transportation Review, 93, 232-261. 

Sharma, S. (2009). On price increase and temporary price reduction with partial back-ordering. 

European Journal of Industrial Engineering, 3, 70-89. 

Shu, M.H., Huang, J.C., & Fu, Y.C. (2015). A production-delivery lot-sizing policy with stochastic 

delivery time and in consideration of transportation cost. Applied Mathematical Modeling, 39, 

2981-2993. 

Singh, S. R., Kumar, N. and Kumari, R (2011). Two-ware house fuzzy inventory model under the 

conditions of permissible delay in payments. International Journal of Operations Research, 11, 

78-99. 

Soni, N.H. & Suthar, D.N. (2020). Optimal pricing and replenishment policy for non-instantaneous 

deteriorating items with varying rate of demand and partial backlogging. Operational Research, 

57, 986-1021. 

Taleizadeh A. A., Akhavan Niaki. S. T and, Makui. A (2012). Multiproduct multiple-buyer single-

vendor supply chain problem with stochastic demand, variable lead-time, and multi-chance 

constraint, Expert Systems with Applications, 39(5), 5338-5348. 

Taleizadeh A.A., Pentico.D. , Jabalameli .M  & Aryanezhada, M. (2013a), An economic order 

quantity model with multiple partial prepayments and partial back-ordering, Mathematical & 

Computer Modelling, 57,311–323. 

Taleizadeh A.A., Pentico D.W., Jabalameli M.S. & Aryanezhad M.B. (2013b). An Economic Order 

Quantity Model with Multiple Partial Prepayments and Partial Backordering, Mathematical & 

Computer Modeling, 57 (3-4), 311–323. 

Taleizadeh, A.A (2014). An EOQ model with partial back-ordering and advance payments for an 

evaporating item. International Journal of Production Economics. 155, 185–193.  

Taleizadeh, A.A., Akhavan Niaki, S.T., & Jalali Naini, G., (2013c). Optimizing multiproduct multi-

constraint inventory control systems with stochastic period length and emergency order, Journal of 

Uncertain Systems, 7, 58-71. 

Taleizadeh, A.A., Khanbaglo, M.P.S. & Cárdenas-Barrón, L.E (2020), Replenishment of imperfect 

items in an EOQ inventory model with partial backordering, Rairo Operations Research, 54, 413–
434. 

Taleizadeh, A.A., Zarei, & Sarker, B.R. (2016). An optimal control of inventory under probabilistic 

replenishment intervals and known price increase. European Journal of Operational Research, 

257(3), 777-791. 

Taleizadeh, A.A., Pentico D.W., Aryanezhad M.B & Jabalameli M.S (2013). An EOQ Problem under 

Partial Delayed Payment and Partial Backordering. Omega, 41(2), 354-368 

Tashakkor, N., Mirmohammadi, S.H., & Iranpoor, M. (2018). Joint optimization of dynamic pricing 

and replenishment cycle considering variable non-instantaneous deterioration and stock-dependent 

demand. Computers & Industrial Engineering, 123, 232-241. 

Tiwari, S. (2017). Two-warehouse inventory model for non-instantaneous deteriorating items with 

stock dependent demand and inflation using particle swarm optimization. Annals of Operations 

Research, 254 (1-2), 401-423. 

Tiwari, S., Cárdenas-Barrón, L.E., Goh, M & Shaikh, A.A (2018). Joint pricing and inventory model 

for deteriorating items with expiration dates and partial backlogging under two-level partial trade 

credits in the supply chain. International Journal of Production Economics, 200, 16–36. 

Tsao, Y.C. & Linh, V.T. (2016). Supply Chain Network Designs Developed for Deteriorating Items 

Under Conditions of Trade Credit and Partial Backordering. Networks & Spatial Economics, 16 

(3), 933- 956. 



Journal of Production and Operations Management, Vol. 11, Issue 4, No. 23, Winter 2021/143 

 
Vandani, B., Niaki, S.T.A. & Aslanzade, S. (2017). Production-inventory-routing coordination with 

capacity and time window constraints for perishable products: Heuristic and meta-heuristic 

algorithms. Journal of Cleaner Production, 161, 598-618. 

Wang, W.T., Wee, H.M., Cheng, Y.L., Wen, C.L. & Cárdenas-Barrón, L.E. (2015). EOQ model for 

imperfect quality items with partial backorders & screening constraint. European Journal of 

Industrial Engineering, 9, 744. 

Yang, H.L. (2006). Two-warehouse partial backlogging inventory models for deteriorating items 

under inflation, International Journal of Production Economics, 103, 362-370. 

Yang, C. T., C. Y. Dye, and J.F. Ding (2015). Optimal dynamic trade credit and preservation 

technology allocation for a deteriorating inventory model. Computers & Industrial Engineering, 

87, 356-369. 

Yang, P. C., Wee, H. M. (2003). An integrated multi-lot-size production inventory model for the 

deteriorating item. Computers  & Operations Research, 30(5), 671-682. 

Yu, Y., Wang, Z. and Liang, L. A (2012). vendor managed inventory supply chain with deteriorating 

raw materials and products, International Journal of Production Economics, 136(2), 266-274. 

Yao M.J, Chu W.M. (2008), A genetic algorithm for determining optimal replenishment cycles to 

minimize maximum warehouse space requirements, Omega, 36, 619–631. 

Zeballos, A., Seifert, R. & Protopappa-Sieke, M. (2013). Single product, finite horizon, periodic 

review inventory model with working capital requirements and short-term debt. Computers & 

Operations Research, 40(12), 2940-2949.  

Zhang, H.N., X.L. Chao, & Shi.C. (2018). perishable inventory systems: convexity results for base-

stock policies and learning algorithms under censored demand. Operations Research, 66 (5), 1276-

1286. 

  



144/ Optimizing the inventory control decisions under multiple constraints for … / Narges Mehmandost, et al.  

Appendix: 

 

1- Calculating the value of 𝑅𝑖 (optimal decision variables before special order) 

(a) Uniform distribution: 

(A1) 
𝑇𝑆𝑖 = ∑(

𝑛

𝑖=1

𝑃𝑖𝑄2𝑖 − [𝐶𝑖𝑄1𝑖 + ℎ𝑖𝐼𝑖 + 𝜋′
𝑖𝐿𝑖 + 𝜋𝑖𝐵𝑖 + 𝐴𝑖] ) 

 

Where 𝑄1𝑖, 𝑄2𝑖, 𝐵𝑖, 𝐿𝑖, 𝐼𝑖are defined in Equations 23-27. 

By replacing and simplifying such equations, the profit function is rewritten as follows: 

(A2) 

𝑇𝑆(𝑅𝑖) = [{
𝑃𝑖

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
{(1 − 𝛼𝑖)𝑅𝑖𝑡𝑚𝑎𝑥𝑖 +

𝐷𝑖

2
(𝛼𝑖𝑡𝑚𝑎𝑥𝑖

2 − 𝑡𝑚𝑖𝑛𝑖
2 )

−
𝑅𝑖

2

2𝐷𝑖

(1 − 𝛼𝑖)} } 

−𝐶𝑖

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
{(1 − 𝛼𝑖)𝑅𝑖𝑡𝑚𝑎𝑥𝑖 +

𝐷𝑖

2
(𝛼𝑖𝑡𝑚𝑎𝑥𝑖

2 − 𝑡𝑚𝑖𝑛𝑖
2 ) +

𝑅𝑠𝑖
2

2𝐷𝑖
𝜃𝑖(𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖)

−
𝑅𝑖

2

2𝐷𝑖

(1 − 𝛼𝑖) } 

−
ℎ𝑖

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
{

𝑅𝑖
2

2𝐷𝑖

(𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖)} 

−
(1 − 𝛼𝑖)𝜋𝑖

′

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
{

𝐷𝑖𝑡𝑚𝑎𝑥𝑖
2

2
+

𝑅𝑠𝑖
2

2𝐷𝑖
−𝑅𝑖𝑡𝑚𝑎𝑥𝑖} 

−
𝛼𝑖𝜋𝑖

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
{

𝐷𝑖𝑡𝑚𝑎𝑥𝑖
2

2
+

𝑅𝑠𝑖
2

2𝐷𝑖
−𝑅𝑖𝑡𝑚𝑎𝑥𝑖} − 𝐴𝑖] 

 

The first and second derivatives of the above term are calculated for obtainingRi as follows: 

 

(A3) 

𝑑𝑇𝑆(𝑅𝑖) 

𝑑𝑅𝑖
= [  

𝑃𝑖  

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
((1 − 𝛼𝑖)𝑡𝑚𝑎𝑥𝑖 − (1 − 𝛼𝑖)

𝑅𝑖

𝐷𝑖
) 

−𝐶𝑖

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
((1 − 𝛼𝑖)𝑡𝑚𝑎𝑥𝑖 −

𝑅𝑖

𝐷𝑖

(1 − 𝛼𝑖) +
𝑅𝑖

𝐷𝑖
𝜃𝑖 (𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖)) 

−
ℎ𝑖

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
(

𝑅𝑖

𝐷𝑖

(𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖) ) −
(1 − 𝛼𝑖)𝜋𝑖

′

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
(

𝑅𝑖

𝐷𝑖
− 𝑡𝑚𝑎𝑥𝑖)

−
𝛼𝑖𝜋𝑖

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
(

𝑅𝑖

𝐷𝑖
− 𝑡𝑚𝑎𝑥𝑖) 

 

It is obvious that to determine the optimal value of R, the concavity of the function must be 

proved in the second derivation, as follows: 
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(A4) 

𝑑2𝑇𝑆(𝑅𝑖)

𝑑𝑅𝑖
=

−𝑃𝑖(1 − 𝛼𝑖) 

(𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖)𝐷𝑖
+

𝐶𝑖(1 − 𝛼𝑖) 

(𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖)𝐷𝑖
−

𝜃𝑖 𝐶𝑖

𝐷𝑖
−

ℎ𝑖 

𝐷𝑖

−
(1 − 𝛼𝑖)𝜋𝑖

′

(𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖)𝐷𝑖
 

−
𝛼𝑖𝜋𝑖

(𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖)𝐷𝑖
 

 

Given that 𝑃𝑖> 𝐶𝑖, the concavity of the function is proved and the optimal value for the 

function is obtained as follows: 

(A5) 

𝑅𝑖
∗

=
−(1 − 𝛼𝑖)𝑡𝑚𝑎𝑥𝑖(𝑃𝑖 − 𝐶𝑖) − 𝑡𝑚𝑎𝑥𝑖(1 − 𝛼𝑖)𝜋𝑖

′ − 𝑡𝑚𝑎𝑥𝑖𝛼𝑖𝜋𝑖

1
𝐷𝑖

{(1 − 𝛼𝑖)𝑡𝑚𝑎𝑥𝑖(𝑃𝑖 − 𝐶𝑖) − 𝜃𝑖 (𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖)(𝐶𝑖) − (1 − 𝛼𝑖)𝜋𝑖
′ − 𝛼𝑖𝜋𝑖 − (𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖)ℎ𝑖}

 

 

 

(b) Exponential distribution: 

Similarly, after some simplifications by using 𝑄1𝑖, 𝑄2𝑖, 𝐵𝑖, 𝐿𝑖, 𝐼𝑖 that are defined in Eq39 to 43 

TS(Ri) it transforms to: 

(A6) 

𝑇𝑆(𝑅𝑖) = 𝑃𝑖 {
𝐷𝑖

𝜆𝑖
𝑒

−𝜆𝑖
𝑅𝑖
𝐷𝑖

 
(𝛼𝑖 − 1) +

𝐷𝑖

𝜆𝑖
} 

−𝐶𝑖 {
𝐷𝑖

𝜃𝑖
𝑒

−𝜆𝑖
𝑅𝑖
𝐷𝑖 (

𝛼𝑖𝜃𝑖

𝜆𝑖
−

𝜃𝑖

𝜃𝑖 + 𝜆𝑖
) +

𝐷𝑖

𝜃𝑖
𝑒

𝜃𝑖
𝑅𝑖
𝐷𝑖  (

𝜃𝑖

𝜃𝑖 + 𝜆𝑖
)} 

−ℎ𝑖 {
𝑒

𝜃𝑖
𝑅𝑖
𝐷𝑖𝐷𝑖

𝜃𝑖  (𝜃𝑖 + 𝜆𝑖)
+

𝐷𝑖𝑒
−𝜆𝑖

𝑅𝑖
𝐷𝑖

 
 

𝜆𝑖 (𝜃𝑖 + 𝜆𝑖)
−

𝐷𝑖

𝜆𝑖 𝜃𝑖
} − 𝜋𝑖

′ {(1 − 𝛼𝑖 )
𝐷𝑖

𝜆𝑖
𝑒

−𝜆𝑖
𝑅𝑖
𝐷𝑖}

− 𝜋𝑖 {𝛼𝑖 

𝐷𝑖

𝜆𝑖
𝑒

−𝜆𝑖
𝑅𝑖
𝐷𝑖} 

 

The first derivative is equal to: 

 

(A7) 

𝑑𝑇𝑆(𝑅𝑖)

𝑑𝑅𝑖
= 𝑃𝑖 {−𝑒

−𝜆𝑖
𝑅𝑖
𝐷𝑖

 
(𝛼𝑖 − 1)} 

−𝐶𝑖 {
−𝜆𝑖 

𝜃𝑖
𝑒

−𝜆𝑖
𝑅𝑖
𝐷𝑖 (

𝛼𝑖𝜃𝑖

𝜆𝑖
−

𝜃𝑖

𝜃𝑖 + 𝜆𝑖
) + 𝑒

𝜃𝑖
𝑅𝑖
𝐷𝑖  (

𝜃𝑖

𝜃𝑖 + 𝜆𝑖
)} 

−𝐻𝑖 {
𝑒

𝜃𝑖
𝑅𝑖
𝐷𝑖

 (𝜃𝑖 + 𝜆𝑖)
−

𝑒
−𝜆𝑖

𝑅𝑖
𝐷𝑖

 
 

 (𝜃𝑖 + 𝜆𝑖)
} − 𝜋𝑖

′ {−(1 − 𝛼𝑖 )𝑒
−𝜆𝑖

𝑅𝑖
𝐷𝑖} − 𝜋𝑖

 {−(𝛼𝑖 )𝑒
−𝜆𝑖

𝑅𝑖
𝐷𝑖} 
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and the second derivative is as follows: 

 

(A8) 

𝑑2𝑇𝑆(𝑅𝑖)

𝑑𝑅𝑖
= 𝑃𝑖 {𝑒

−𝜆𝑖
𝑅𝑖
𝐷𝑖

 
(𝛼𝑖 − 1)

𝜆𝑖

𝐷𝑖
}

− 𝐶𝑖 {
𝜆𝑖

2
 

𝐷𝑖𝜃𝑖
𝑒

−𝜆𝑖
𝑅𝑖
𝐷𝑖 (

𝛼𝑖𝜃𝑖

𝜆𝑖
−

𝜃𝑖

𝜃𝑖 + 𝜆𝑖
) + 𝑒

𝜃𝑖
𝑅𝑖
𝐷𝑖  (

𝜃𝑖
2

𝐷𝑖(𝜃𝑖 + 𝜆𝑖)
)} 

 

−
ℎ𝑖

𝐷𝑖
{

𝜃𝑖𝑒
𝜃𝑖

𝑅𝑖
𝐷𝑖

 (𝜃𝑖 + 𝜆𝑖)
+

𝜆𝑖𝑒
−𝜆𝑖

𝑅𝑖
𝐷𝑖

 
 

 (𝜃𝑖 + 𝜆𝑖)
} 

−
𝜆𝑖𝜋𝑖

′

𝐷𝑖
{(1 − 𝛼𝑖 )𝑒

−𝜆𝑖
𝑅𝑖
𝐷𝑖} −

𝜆𝑖𝜋𝑖
 

𝐷𝑖
{(𝛼𝑖 )𝑒

−𝜆𝑖
𝑅𝑖
𝐷𝑖} 

 

According to the definition and type of setting to problem parameters, the above function is 

always negative. Therefore, the optimal value of the function that is the root of the first 

derivative is calculated as: 

 

(A9) 

Ri
*

=

𝐷𝑖{𝑙𝑛 ((
(𝐶𝑖)𝜃𝑖

𝜃𝑖 + 𝜆𝑖
) + (

ℎ𝑖  
 (𝜃𝑖 + 𝜆𝑖)

)) − 𝑙𝑛 ((
(𝐶𝑖)𝜆𝑖  

𝜃𝑖
(

𝛼𝑖𝜃𝑖

𝜆𝑖
−

𝜃𝑖

𝜃𝑖 + 𝜆𝑖
)) + (

ℎ𝑖  
 (𝜃𝑖 + 𝜆𝑖)

) + 𝜋𝑖
′(1 − 𝛼𝑖 ) + 𝜋𝑖

 𝛼𝑖 − 𝑃𝑖(𝛼𝑖 − 1))

(−𝜃𝑖 − 𝜆𝑖)
 

 

2- Calculating the value of 𝑅𝑘𝑖 (optimal decision variables after special order) 

(a) Uniform distribution 

In this situation the profit is: 

(A10) T𝑆 = ∑(

𝑛

𝑖=1

𝑃𝑖𝑄2𝑘𝑖 − [𝐶𝑘𝑖𝑄1𝑘𝑖 + 𝐼𝑘𝑖ℎ𝑘𝑖 + 𝜋′
𝑘𝑖𝐿𝑘𝑖 + 𝜋𝑖𝐵𝑘𝑖 + 𝐴𝑖 ) 

 

The same as the upper concavity of the function is proved, the maximum value of the optimal 

inventory level is as follows: 

(A11) 
𝑅𝑘𝑖

∗ =
−(1 − 𝛼𝑖)𝑡𝑚𝑎𝑥𝑖(𝑃𝑖 − 𝐶𝑘𝑖) − 𝑡𝑚𝑎𝑥𝑖(1 − 𝛼𝑖)𝜋𝑖

′ − 𝑡𝑚𝑎𝑥𝑖𝛼𝑖𝜋𝑖

1
𝐷𝑖

{(1 − 𝛼𝑖)𝑡𝑚𝑎𝑥𝑖(𝑃𝑖 − 𝐶𝑘𝑖) − 𝜃𝑖 (𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖)(𝐶𝑘𝑖) − (1 − 𝛼𝑖)𝜋𝑘𝑖
′ − 𝛼𝑖𝜋𝑖 − (𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖)ℎ𝑘𝑖}

 

 

(b) Exponential distribution: 

(A12) 𝑅𝑘𝑖
∗

=

𝐷𝑖{𝑙𝑛 ((
(𝐶𝑘𝑖)𝜃𝑖

𝜃𝑖 + 𝜆𝑖
) + (

ℎ𝑘𝑖  
 (𝜃𝑖 + 𝜆𝑖)

)) − 𝑙𝑛 ((
(𝐶𝑘𝑖)𝜆𝑖  

𝜃𝑖
(

𝛼𝑖𝜃𝑖

𝜆𝑖
−

𝜃𝑖

𝜃𝑖 + 𝜆𝑖
)) + (

ℎ𝑘𝑖  
 (𝜃𝑖 + 𝜆𝑖)

) + 𝜋𝑘𝑖
′ (1 − 𝛼𝑖 ) + 𝜋𝑖

 𝛼𝑖 − 𝑃𝑖(𝛼𝑖 − 1))

(−𝜃𝑖 − 𝜆𝑖)
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3- Calculating the value of 𝑅𝑠𝑖 (optimal decision variables after special order) 

(a) Uniform distribution 

The profit function is as follows: 

(A13) 𝑇𝑆 = ∑[𝑄2𝑠𝑖

𝑛

𝑖=1

 𝜑1𝑖 − 𝑄1𝑠𝑖 𝜑2𝑖 − 𝐼𝑆𝑖  𝜑3𝑖 − 𝐵𝑆𝑖 𝜑4𝑖 − 𝐿𝑠𝑖  𝜑5𝑖 − 𝐴𝑖 + 𝜑6𝑖]     

 

The values of Q1si, Lis,Bis,Iis,Q2si  are replaced with equations 12 to 16: 

(A14) 
𝑇𝑆 = ∑[(

𝜑1𝑖

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
{(1 − 𝛼𝑖)𝑅𝑠𝑖𝑡𝑚𝑎𝑥𝑖 +

𝐷𝑖

2
(𝛼𝑖𝑡𝑚𝑎𝑥𝑖

2 − 𝑡𝑚𝑖𝑛𝑖
2 )

𝑛

𝑖=1

−
𝑅𝑠𝑖

2

2𝐷𝑖

(1 − 𝛼𝑖)})   

 
-(

𝜑2𝑖

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
{(1 − 𝛼𝑖)𝑅𝑠𝑖𝑡𝑚𝑎𝑥𝑖 +

𝐷𝑖

2
(𝛼𝑖𝑡𝑚𝑎𝑥𝑖

2 − 𝑡𝑚𝑖𝑛𝑖
2 ) +

𝑅𝑠𝑖
2

2𝐷𝑖
𝜃𝑖(𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖)

−
𝑅𝑠𝑖

2

2𝐷𝑖

(1 − 𝛼𝑖) })  

−(
  𝜑3𝑖

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
{

𝑅𝑠𝑖
2

2𝐷𝑖

(𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖)}) 

−(
𝜑4𝑖 𝛼𝑖

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
{

𝐷𝑖𝑡𝑚𝑎𝑥𝑖
2

2
+

𝑅𝑠𝑖
2

2𝐷𝑖
−𝑅𝑠𝑖𝑡𝑚𝑎𝑥𝑖})  

−(
𝜑5𝑖 (1 − 𝛼𝑖)

𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖
{

𝐷𝑖𝑡𝑚𝑎𝑥𝑖
2

2
+

𝑅𝑠𝑖
2

2𝐷𝑖
−𝑅𝑠𝑖𝑡𝑚𝑎𝑥𝑖})  − 𝐴𝑖 + 𝜑6𝑖]  

 

By obtaining the values of the variables 𝑅𝑖 and 𝑅𝑘𝑖 from A5 and A11 for uniform 

distribution, A9, A11 for exponential distribution and replacing them in the internal variable 

we can obtain  φ1to φ6. It can be seen that φ1to φ6 are constant, hence the above function is 

quadratic and concave as previously proved, therefore the optimal values are as follows: 

(A15) 𝑅𝑠𝑖
∗

=
−(1 − 𝛼𝑖)𝑡𝑚𝑎𝑥𝑖(𝜑1𝑖 − 𝜑2𝑖) − 𝑡𝑚𝑎𝑥𝑖(1 − 𝛼𝑖)𝜑5𝑖 − 𝑡𝑚𝑎𝑥𝑖𝛼𝑖𝜑4𝑖

1
𝐷𝑖

{(1 − 𝛼𝑖)𝑡𝑚𝑎𝑥𝑖(𝜑1𝑖 − 𝜑2𝑖) − 𝜃𝑖 (𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖)(𝜑2𝑖) − (1 − 𝛼𝑖)𝜑5𝑖 − 𝛼𝑖𝜑4𝑖 − (𝑡𝑚𝑎𝑥𝑖 − 𝑡𝑚𝑖𝑛𝑖)𝜑3𝑖}
 

 

(b) Exponential distribution: 

(A16)  Rsi
*

=

𝐷𝑖{𝑙𝑛 ((−
𝜑2𝑖𝜃𝑖

𝜃𝑖 + 𝜆𝑖
) + (

𝜑3𝑖

 (𝜃𝑖 + 𝜆𝑖)
)) − 𝑙𝑛 ((

−𝜑2𝑖𝜆𝑖  
𝜃𝑖

(
𝛼𝑖𝜃𝑖

𝜆𝑖
−

𝜃𝑖

𝜃𝑖 + 𝜆𝑖
)) + (

𝜑3𝑖

 (𝜃𝑖 + 𝜆𝑖)
) + 𝜑5𝑖(1 − 𝛼𝑖 ) + 𝜑4𝑖𝛼𝑖 − 𝜑1𝑖(𝛼𝑖 − 1))

(−𝜃𝑖 − 𝜆𝑖)
 

 

 

 


