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Abstract— Devices that are connected on the internet and 

are exchanging data with internet brokers to receive 

requested services are a significant part of internet users. In 

order to manage and account well to IoT requests maximum 

processing power, speed in data transfer, and proper 

combining services in minimum time is needed. Since there is 

a large number of IoT devices which have a large scale, we 

have to use the abilities and services of cloud environment in 

order to solve its problems. So, service composition in a cloud 

environment is paid attention recently. We want to suggest an 

algorithm with the approach in this research, of improving 

factors propounded in the service composition problem like 

the number of clouds involved in service, number of services 

examined before responding to users’ requests SP and load 

balance between clouds. In this paper, the factor, similarity 

measure, is introduced and used to find the best cloud and 

composition plan in each phase which in addition to 

improving QoS metrics propounded in previous papers, it 

caused improving QoS metric of load balancing between 

clouds, prevention of formation of a bottleneck in clouds 

entrance. These changes, besides the proper load balancing, 

have avoided the clouds stop working suddenly and satisfied 

the users by presenting the services faster. 

Keywords— Service Composition, Multi-Cloud 

Environment, Internet Of Things, Load Balancing, Quality Of 

Service 

1. INTRODUCTION 

The Internet has influenced communication between 

humans in the recent century and with attention to the easy 

access and variety of services provided, is influencing 

communication between human and things and in some 

cases, things communicating with each other. Internet of 

things (IoT) is a new subject that millions of smart things 

are connected through it. IoT is spreading in our personal 

and social life. Intelligent transportation network, 

Intelligent phones and wearing gadgets, intelligent health 

networks and homes, smart city and smart grid, are some 

examples of IoT applications in our personal and social 

life. By growing the number of these devices every day 

even from the population of the Earth, the new main 

problem is how to manage these things, keeping and 

processing collected data by them and responding to their 

requests on time [1]. Scientists and researchers of 

corporations are being persuaded by spreading these 

technologies in order to enhance performance and fix the 

challenges in IoT. 

In this century, data volume available in the human 

hand is too much. This data made their owners 

uncompetitive in a class of most valuable companies in the 

world. IoT is made dependent to cloud environment 

because of the delirious growth of data volume in modern 

ages and IoT should use all of the advantages of the cloud, 

including unlimited virtual resources and powers along 

with prevalence against its limits and challenge. From 

particular and distinct attributes of cloud computing can 

express elasticity, scalability, and fast configuration of 

services. Intelligent devices are somehow smart computers. 

The development of these devices created the expectation 

in users to access various and instantaneous services so 

that it is required that a cloud environment can provide 

these kinds of compound requests real-time. 

It put an interesting comparison for contrast and the 

possibility of cloud cooperation and internet objects in [2]. 

With a cursory look at table mentioned in this article, we 

can quickly answer the question: Why merging these two 

concepts occurred so fast, and why is that increasing every 

single day ? 

1-IoT, including the objects that spread all over the world 

and moving permanently; cloud resources also reachable 

all over the earth. 2-Objects of IoT space exist physically, 

whereas cloud objects define virtual . 3-Reachable 

computational sources for internet objects are limited and 

specified whereas computational sources of cloud 

environment are unlimited because any source would be 

accommodated for the user in necessity and take back in 

other times and with this procedure, the best utilization will 

occur. 4-Memory space of IoT is so limited that it can be 

overlooked whereas memory space of cloud unlimited. 5-

Internet in IoT has an essential role in communication and 

collecting devices; clouds also do clouds. They use the 

internet for delivering required services. 6-IoT devices are 

making a large amount of information that should be saved 

and processed all the time. Clouds are the best choice for 

being with IoT devices because of their unlimited spaces 

[2]. 

It is not an easy task for a broker to satisfy the user’s 

request in a multi-cloud environment, and the problem 

appears because of the structural attributes and nature of a 

multi-cloud environment. The problem is because 

sometimes, the user’s request is not responsible by only 

one provider. Data and services available, in different 



International Journal of Web Research, Vol. 2, No. 1, Spring-Summer, 2019 

 

13 

servers, are widespread, and it is possible that we are 

forced to receive and combine various services from 

different providers to respond to a user’s/thing’s request. 
On the other hand, combining the least services, to 

minimize data transfer and energy consumption, required 

its particular mechanism and algorithm. Based on what we 

said previously, it seems our ability in determining what 

pair (service/set of services, cloud) we use to respond to 

user’s requests, is determinant for our success in speeding 
responses and successively acquiring user’s satisfaction 

[1]. Therefore, receiving service from clouds settled in 

different providers and combining them, enforces a load of 

data transfer on network, in this paper we are trying to find 

a useful algorithm, that it can find a combination of 

services in an integrative environment of cloud and internet 

of things in optimum time, which has the least addition 

overhead for cloud environment in addition to fulfilling 

user’s requests. 

We know that the cloud environment has specific 

characteristics and categories and isn’t specified as one 
aspect or type, and also according to the evolution of 

science and existing tools, improving devices and their 

capabilities, and varied user requirements through times, 

we’re notllimited to any particular form in the field of IoT 

and thus numerous forms of communication type and 

requested services are propounded. However, this variety 

does not matter to our research case as we have supposed 

solving the problem be in general condition. The 

considerable point for us, is that, regarding extension of 

IoT and its undeniable demand for cloud environment to 

deliver requested services, it’s necessary to recognize 
quality of service (QoS) metrics in service composition in 

the cloud environment besides utilizing existing tools and 

standard data to simulate the problem according to these 

factors and try to introduce an algorithm outperforming the 

previous similar ones in one or more quality factors. It is 

desired in this analysis to decrease the required time for the 

intermediate layer to combine different providers’ services 
in order to meet user requested services, the number of 

services examined before responding to users’ requests and 

also the number of used clouds. 

Several approaches in the literature focus on the IoT 

devices energy consuming challenges at the hardware level 

[3][4][5][6]. For example, sensor nodes can switch their 

radios off when not in use, to save power and can wake up 

only when they are needed to operate. These techniques are 

not efficient when the IoT devices are exposed as software 

components and are deployed in the cloud environment to 

be accessible to their users [7]. 

A. Problem Statement 

Our problem is defined in space, including numerous 

devices with the ability to connect to the internet and 

receive services from a cloud environment. In this 

environment, each user's request is sent to the broker layer. 

In many cases, fulfilling the user’s request requires 

obtaining several clouds services. This scenario is the main 

reason of services composition problem [8]. We know that 

the services presented by each provider do not necessarily 

include all existing services. Because of that, the middle 

layer must manage and based on services provided by 

every provider, find a collection of providers and clouds 

that contains all of the user's requested services. In other 

words, this problem is concentrating on establishing a new 

value-added cloud service, which uses a previously 

existing combination of cloud services [9].  

In more formal word interpretation, a web service is a 

self-contained, self-describing, and web-accessible 

software unit in a more formal statement that is presentable 

by the service provider and is recalled by service requests 

all over the internet [10]. These days data transfer is 

simplified around the world through internet and web-

based services [11]. Cloud computing provides dynamic, 

scalable and virtual resources, as services as a web and 

Internet-based computing model [12].  

While using the virtual sources of the cloud 

environment, we should pay attention to the cost that 

should be paid for the usage of it. It means that if a user 

needs a source for a particular time or continuously in 

some time, he does not need to buy it, and he can use it 

whenever it is needed and can return it when it is not 

needed then it will be available for other users. This 

algorithm makes it possible to use the sources not only 

with amortized cost but also in a faster way, and we know 

that the amortized costs of resources certainly enhance 

efficiency. This kind of service giving that is called on-

demand, includes different hardware and software services 

[13].  

Apart from the type of the provided service for the 

user, a cloud computing architecture provided services can 

be one of the three models containing: Infrastructure as 

Service, Platform as a Service, Software as a Service [14]. 

IaaS: Cloud infrastructure-based services are self-service 

access, monitoring, and remote data centers infrastructure 

administration models like calculating, memory, and web 

services. In the other term, the user could utilize the virtual 

machines instead of purchasing the needed hardware and 

only pay the costs of used service, similar to electricity and 

other services which are provided widely and everyone 

pays the cost according to the using amount.  

PaaS: This servicing model provides the software 

developing framework for users and helps them through 

creating, developing, managing and executing their 

applications without struggling with the system software 

and hardware's complexities SaaS: In this servicing model, 

the presented service is a software, and the user should 

apply through the given user interface to connect to the 

requested software. Most SaaS applications can be 

executed without downloading or installing software and 

only by a browser and at most with a plugin. 

In many cases, the user's request can be fulfilled with 

several resource combinations called service composition. 

In (Figure 1) that is gotten from paper [7], places in a 

multi-cloud environment are conceptually shown. As we 

see, on the costumer layer that is also called the highest 

level, the user stands. The smart things in our problem are 

users that are in a two-way connection to cloud 

environment and request a set of services and receive 
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services analogously to give different kinds of services to 

the final user namely human. As we see, costumer and 

provider are connected within a go-between that is mostly 

called the broker layer. The connection part between 

request responding space and the user is the given 

algorithm. We see in this picture that the algorithm in the 

broker layer is settled on top of the pyramid and other 

components in the cloud environment we mentioned 

before, include other parts. 

In our problem, we consider that we have some 

services called si. Our problem is difficult, and that is that 

each of these services is not accessible by itself. It means 

that whenever we need a service si, after finding a 

composition plan, by the algorithm that contains our 

service, we have to expend for all the services in that 

composition plan f; because services are given in multiple 

packages (not alone) in the form of composition plan. 

Although in a cloud environment, optimality of serving 

needs providers giving their composition plans based on 

accurate computing and clustering requested services, for 

most of these services that are given in a composition plan 

be probably required for the user. However, some other 

factors like resource proper distribution and hardware 

regard sometimes make providers put services together that 

besides being an acceptable correlation, be easier and less 

expend. 

In (Figure 2) that is gotten from paper [8] a view 

similar to what has recently been a reference to papers, is 

represented. In this picture, we see that each of MCPs 

(Multiple Cloud service Providers), has some service 

packages. In each package, there are some services, and if 

you want to receive any of these services, you should 

expend for all the services in the package. In this picture, 

each of f’s is equivalent to a composition plan that has 

been expressed in (Figure 1) and represented by π. 

B. Necessity and Importance of the Research 

In the statement of importance and necessity of 

investigation of service composition in the cloud, at least 

two reasons can be counted. First, the statement of the 

relation between the cloud and internet of things is close 

and should be investigated and second that the service 

composition in the cloud has its difficulties [1]. 

Increasing growth of cloud application in the 

persistence of IoT and boosted several Internet-connected 

devices around the world are proved by a thorough look at 

global statistics. Based on Gartner prediction, in 2020, 

there will be about 20 billion Internet-connected devices 

[15].  

In [7], defining the best combination of services from 

different providers that adjust to user requirements, 

environmental expectations, and the broker layer has been 

considered as the primary challenge of IoT provision in the 

multi-cloud environment because of these reasons: 1. How 

should be the function of the middle layer to combine the 

various services in a condition that none of them lonely can 

satisfy the user's request? 2. Reducing the energy 

consumed is one of the most important quality factors of 

this problem. Which one of the providers should the 

middle layer get the services from, in a way that fewer 

clouds and providers are involved and also less data is 

transferred? 

Service composition is an NP-hard optimization problem 

[16]; i.e., It is more complicated than the most complex 

problems of NP class, and if it can be solved in polynomial 

time, then all of the NP-class problems will be soluble. The 

solution to this problem is a challenge because it is not 

only service composition but also a combinatorial 

optimization [10]. This field still needs to be paid attention 

and also needs time to be devoted to, since [17] has pointed 

in his research which was conducted in 2017, that there has 

not been any systematic and comprehensive analysis on the 

service composition problem in the cloud environment 

before. 

The article attempted to resolve the gap in this field by 

expressing anatomy and categorization of limited research 

in this case and highlighted key points for improving 

methods of service composition. 

 

Fig. 1. A representation of a multi-cloud environment. 

 
Fig. 2. Another representation of MCE. 
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The article attempted to resolve the gap in this field by 

expressing anatomy and categorization of limited research 

in this case and highlighted key points for improving 

methods of service composition. 

C. Article Structure 

In this part, we studied the preliminary statement, the 

importance, and necessity of research, and the research 

goals. In the second part, we will explain the formal form 

of the problem. We will list the previous studies, and we 

will outline the goals and the positive and negative aspects 

of each of them in the third part. In part 4, we will express 

our proposed algorithm, and the steps taken in this study. 

Also, the challenges and solutions to solve the problem 

will be described. Moreover, in the fifth part, we will list 

the results of the proposed algorithm. A comparison 

between the present and previous methods and providing 

solutions to enhance the results of future researches with 

some suggestions that consist of the topics discussed in the 

last section. 

2. PROBLEM STATEMENT 

In this section and the next, we are going to describe 

the detail of the problem, explaining the definitions, and 

presenting the previous studies .Talking about previous 

studies will necessarily clarify the need for this study, and 

we can find a bright idea for the question "How do you 

solve this problem?" by examining the styles and patterns 

used in. During the discussion of previous works, 

algorithms will be proposed for this problem that they have 

the appropriate solution and not necessarily optimal. We 

will explain more about the meaning of the keyword 

«quality factors» that is mentioned in the abstract part of 

the article and will describe the comparison standards of 

different methods .Finally, we will explain our approaches 

in the next section after clarifying the problem space in 

these two sections. 

In multi-cloud, various QoS metrics are essential in the 

field of service. Time, cost, scalability, optimality, and 

efficiency are some of the most important of these. Time is 

the length of the waiting period of the user, or we can say 

that the distance between sending a user request to the 

server until it receives an answer. Scalability represents the 

ability to modify and adapt to other variables in the cloud 

environment. Price is the total amount charged for 

responding to a request. Optimization is to find the best or 

most useful combination of service that comes with the 

right methods. Efficiency is also a returns rate; how 

satisfied is the response to a given amount of time and cost. 

The issue that we are discussing, in a multi-cloud 

environment has been presented, and several solutions 

have been suggested for it. Multi-cloud solutions are 

mechanisms that there exist multi-suppliers for providing 

clouds [18]. 

A. Formal Description 

In this part, we will explain the names and terms used 

in the problem space and also in the algorithm 

Definition 1. Web Service: A pair of <I, O> both of which 

are service interfaces. 

Definition 2. Web Service Composition (WSC): It is a 

dual <I, S>, which I is the initial service interface that is 

specified in the user request, and S is the set of web 

services offered. Assuming that we have a web service 

composition problem <I, S> the answer to this issue is f 

composition plan. Specifically, f is a set of services: f ⊆ S. 

Definition 3. Cloud: A set of f composition plans that are 

distinct and formed at least from one service. 

Definition 4. Multiple Cloud Provider (MCP): A set of 

distinct clouds and each cloud contains at least one 

composition plan. 

Definition 5. Cloud Web Service Composition problem 

(Cloud WSC): The pair is the <I, MCP>, As I indicated to 

the service user requests and MCP multi-cloud provider or 

simply as suppliers are concerned. The answer is a set of 

pairs <service, cloud> similar to W = {<si, cp>, <si, sq>, ...} 

to the extent that the conditions are met: 

 

 
 

To show the subject and the problem space, we need to 

give an example. All of the former algorithms that are 

going be mentioned in the next part use this framework and 

express and compare their possible results about this 

example. Assume that we have a multi-cloud environment 

that contains 5 MCPs called MCP1, MCP2, MCP3, MCP4, 

and each MCP consists of 4 clouds that are called C1, C2, 

C3, C4. Each of these <MCP, Cloud> pairs include some 

subset services S = {S1, S2, ..., S19} in the form of 

composition plans which are F = {f1, f2, f3, f4, f5}. Each of 

these 'f's in the OWLS-XPlan [19] standard project dataset 

which under the name Health-SCALLOPS [19][20] 

automatically composite services, represents several 

services in the Emergency Medical Assistance (EMA). 

This explanation of the existential nature of 'f's is found in 

the context of the problem of other environments and 

become exciting. In (Table 1) [21], the characteristics of 

these components can be seen. Each service is provided 

only in one of the 'f's and the collection of 'f's results in the 

S set as expected. Since the community of each of the four 

clouds in each MCP contains all the 'f's and subsequently 

includes all services, each MCP can respond to any 

combination of 19 services independently. 

TABLE 1. MCP SETTING FOR ASSESSMENT. 

C4 C3 C2 C1 MCPNo/CNo 

f1, f2, f3, f5 f3, f4 f4, f5 f1, f2, f3 MCP1 

f1, f4, f5 f2, f5 f3 f1, f2 MCP2 

f3, f4 f1, f2 f5 f1, f3, f5 MCP3 

f4, f5 f1, f2, f3 f3, f4 f2, f3, f5 MCP4 

f1, f4, f5 f3 f2, f3 f1, f2 MCP5 
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TABLE 2. THE CLOUD SERVICES IN EACH COMPOSITION PLAN F. 

Services Composition Plan 

s1,  s6 f1 

s9,  s10,  s11 f2 

s3,  s5,  s8,  s12,  s14,  s15,  s16,  s17 f3 

s2,  s4,  s18 f4 

s7,  s13,  s19 f5 

3. PREVIOUS WORK 

There have been several methods of combining 

multiple services in the cloud computing environment [22] 

since 2009, that often assumed that all of the requested 

services were accessible from a cloud and that their 

concentration was only on the satisfaction of the user's 

request and the cost factor was ignored [7]. Studies have 

been conducted to enhance the performance of these 

methods according to different criteria such as cost, 

usefulness, energy consumption, response accuracy, and 

security [9] after finding a way to find the combination of 

service responses. 

One of the most important studies in this area has been 

made by [23]. In this research, different quality of service 

(QoS) metrics, including accuracy, delay, reliability, cost, 

and availability, are analyzed. This review also contains a 

detailed categorization based on the different parameters 

which are related and dependent on existing techniques 

analysis. Based on this, research done by 2013, based on 

the techniques used in their studies, it has been divided into 

four classical and graph-based classes, machine-based 

approaches, combined methods, and framework-based 

approaches.  

The result of the idea of using the path with the best 

QoS and lowest cost is a method to find composite service 

in [24] The method is based on the Dijkstra's search path 

which assumes that QoS attributes such as duration and 

throughput are additive . Based on multi-agent 

reinforcement learning [25] has explained a model for the 

dynamic optimization of service composition. By using 

reinforcement learning algorithms, the agent can interact 

with the environment in real time. This article used 

distribution to process tasks. Every task consists of some 

smaller tasks, each of the agents concentrates on its 

corresponding sub-task, and by using this distributed  

Q-learning algorithm, the process would converge fast. 

Also, in order to permit the composite service to be 

dynamically fitted a variable environment, an experience 

sharing strategy is suggested. As a result, the features of 

the component services may change. The mechanism is 

highly scalable and efficient, but its complexity is very 

high. Most recent studies concentrate on applying 

intelligent optimization algorithms to find the optimal 

solution of the nonlinear integer programming problem, 

but the low rate of convergence and the high probability of 

falling into the local optima are bottlenecks of these 

algorithms [26]. 

In [27], the author also referred to the different 

mechanisms of service composition in a single-cloud 

environment. Article [28] also assesses different challenges 

for example language, tool support, knowledge reuse, 

executive framework, and target users, and reviewed some 

articles that examined service composition problem from 

the perspective of these challenges, but there are still some 

difficulties in modeling the problem of service 

composition, the analysis of QoS metrics and also open 

issues in this area. The review [17] considers all articles 

from 2012 to 2016 and provides a complete overview of 

the methods suggested for the composition of the service. 

All related articles have been extracted from 9 valid and 

highly referenced sources in this article by using three 

available combination search terms, and only useful and 

practical articles from these 942 articles remain. Filtering 

articles based on the keywords of the main title of the 

articles, deleting conference papers, reviewing and pre-

2012, deleting the articles without sufficient explanation 

about the method of work, QoS metrics, and datasets, are 

the steps taken in this review and 20 achieved articles is 

the result. From the author of this article, the resulting 

articles are divided into three, framework-based, agent-

based, and heuristic- based. In each of these categories, 7, 

6, and 7 of the 20 selected papers selected for the final 

review in [17] included. 

In short, we can say that framework-based methods are 

less burdened by a weakness such as high calculation time 

than other methods and are suitable for usage in various 

environments, whether it be single-cloud or multi-cloud. 

Agent-based methods have better handling of scale and are 

especially suitable for use in a multi-cloud environment. In 

contrast, although heuristic-based methods do offer 

optimized solutions at a lower cost, they are only suited to 

single-cloud environmentsff 

After studying over 50 articles on the methods that was 

used for service composition in cloud environment, we 

arrived at the idea of improving the load balance factor for 

the first time and simultaneously, we try to optimize other 

QoS metrics in the previous studies, the number of services 

examined before responding to users’�requests and number 

of clouds involved. Some of the other algorithms 

overwhelm one of the clouds and their algorithms aim at 

minimizing the number of services examined, send all of 

the requests firstly to the provider and cloud that have 

more composition plans than others wishing that higher 

probability of responding to their demand, While in real-

world conditions and also in simulations which are close to 

the fact that many environmental factors are considered 

and enforced, this policy is not useful and is the reason of 

bottlenecks and long queues, since the number of requests 

received is not limited, and they are added daily while our 

processing resources are limited. The result of this 

prolongation of the queue is not run time merely when the 

user receives the service, and also it is when the cloud has 

high traffic, and as a result, the user’s request is waiting for 
the supplier to respond. 

It is entirely predictable that several services only 

provide from one of the clouds. This is where the second 

dilemma arises for these algorithms; providing a service 
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only in clouds that provide many services. As an example, 

when the hypothetical service S1 in the MCP1 provider is 

provided only by C1, in the general look we see that the 

users that request to get S1 service, they will regret that 

because of two reasons. The first is that the service is 

provided by one cloud and doesn't have the capacity to 

capture its intended service, and the second one is that the 

service provider cloud is a crowded cloud, since the cloud 

always enters a long queue of requests, and it makes 

serving services like S1 well, much harder and unlikely. In 

(Table 3) [29], it is concluded that the debate on the 

workload of clouds on this issue has been ignored and few 

articles have been published in this area. 

[10] is a detailed article that uses three applied 

algorithms with straightforward ideas, and each algorithm 

concentrates on some of the QoS metrics. All three of the 

algorithms of this article, known as the All Cloud, Base 

Cloud, and Smart Cloud hybrid algorithms, are non-

distributed and centralized. All the clouds are considered 

as an option in the first algorithm, "All Clouds", in a fixed 

MCP that combines them to count all possible states and 

reports the optimal state. This primitive algorithm that is 

the first solution that comes to mind finds a near-optimal 

list of 'f's, but the number of clouds in this method is not 

optimal at all, and to reach an answer, a large number of 

services examined. As a result, the algorithm does not have 

enough QoS metrics. 

All cloud combination possibilities in increasing order 

are enumerated by the Base Cloud algorithm recursively 

until an optimal solution is identified. It begins by 

analyzing all singleton sets of clouds and stop searching if 

the required combination can be found utilizing a single 

cloud. Otherwise, it extends its search to cloud sets of size 

two, then three to find the required combination. It 

produces an optimal composition solution with a few 

clouds, even though this method has one of the QoS 

metrics, it has a lot of time to run, and a lot of services are 

checked in order to get the answer. 

Smart cloud is the final algorithm of this article, which 

is designed to find an approximate solution. This algorithm 

imagines the problem space as a tree form, and by 

searching, finds a near-optimal answer that consists of 

fewer clouds, but still has a high execution time and is not 

cost-effective. 

The next article [8] was released in 2015 and presented 

COM2 algorithm with better results. This article that gets 

its name from the Combinatorial Composition shortcut 

suggests a combinatorial optimization algorithm for the 

problem which has fewer run time and cloud compositions, 

and it is more efficient than the former algorithms. The 

latest article in this area [7], published in 2017 that tries to 

provide a better servicing with a simple exploratory 

algorithm. In this algorithm which is called E2C2 in each 

executive loop (as long as the intended user services are 

adequately provided), the cloud which has a more 

significant number of composition plans f and has not been  

TABLE 3. AN OVERVIEW OF SOME SERVICE COMPOSITION 

TECHNIQUES AND THEIR MAIN FEATURES. 

Algorithm Method  Multi-

Cloud? 

QoS Load 

Balancing 

Ant Colony 

Optimization 

[30]  ✓ ✘ ✘ 

[31]  ✘ ✓ ✘ 

[32]  ✘ ✓ ✘ 

[33][32]  ✓ ✓ ✘ 

[34][33]  ✓ ✘ ✓ 

Bee Colony 

Optimization 

[35]  ✘ ✓ ✘ 

[36]  ✘ ✘ ✘ 

[37][36]  ✘ ✓ ✘ 

[38]  ✘ ✓ ✘ 

Genetic 

Algorithm 

[39]  ✘ ✓ ✘ 

[40]  ✘ ✓ ✘ 

[41]  ✘ ✓ ✘ 

[42]  ✘ ✓ ✘ 

Particle Swarm 

Optimization 

[43]  ✘ ✓ ✘ 

[44]  ✘ ✓ ✘ 

[45]  ✘ ✓ ✘ 

Cuckoo 

Optimization 

Algorithm 

[46]  ✓ ✓ ✘ 

Bat Algorithm [47]  ✘ ✓ ✘ 

Greedy 

Algorithm 

[30]  ✓ ✘ ✘ 

[48]  ✓ ✓ ✘ 

Hybrid 

Algorithm 

[49][48]  ✘ ✓ ✘ 

[50]  ✘ ✓ ✘ 

[26]  ✘ ✓ ✘ 

[51]  ✘ ✓ ✘ 
 

used before is chosen. The algorithm also assumes that in 

all MCPs, the clouds are adjusted in a single form in terms 

of the number of 'f's and will not be paid for sorting out the 

cost. As outlined below and in the comparison table of the 

algorithms of this section, before the service is presented 

and provides excellent results the algorithm succeeds in 

reducing the number of tested services, but this algorithm 

uses the assumption of regularity and also its load 

balancing is not that good. In the next chapter, it will be 

shown that for random inputs that are similar to the 

problem's input, this algorithm will distribute bad loads 

and cause bottlenecks and slower servicing. 

The recent algorithm, which is called E2C2, takes a 

simple approach and sends the input request first to a cloud 

with a more significant number of composition plans, with 

the hope that the cloud will occur with a higher probability 

of successful servicing, of course, this algorithm assumes 

that clouds have already been arranged based on the 

number of their composition plans. This method has good 

experimental results compared to previous algorithms 

although it is simple and can be implemented quickly, but 

it causes the traffic flow of one of the clouds to be 

increased and is not careful to the load balancing factor. 

4. CLOUD COMBINATION ALGORITHMS 

A. TSM Algorithm 

Earlier, we discussed the QoS metrics that have been 
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discussed in other articles, and in particular, the articles 

that are going to be mentioned in the next part and are 

directly comparable to our algorithm. Reducing the number 

of clouds involved in the process of fulfilling user requests, 

the execution time, as well as reducing the number of 

services examined before responding to users’ requests in 

previous studies. In this study, we intend to set the system's 

workload, in addition to enhancing or sustaining the above 

factors. 

In a situation where the algorithm often leads us to use 

a specific cloud and, in a sense, does not program a regular 

usage of the clouds, we are faced with a considerable 

number of requests at the input of that cloud that is waiting 

to be analyzed. Since we assume that the algorithm 

produces the most optimized result, then the forming of a 

queue at the input and a bottleneck in the system which 

will directly impact the request response time and cause 

dissatisfaction for the user is not acceptable. We have 

implemented a uniform usage of each specific MCP, or in 

other words, we have added the factor of load balance to 

the factors considered in our problem and have designed 

the algorithm in a way that this factor remains in an 

approximate uniform state. To measure this factor, we use 

the standard deviation index between the number of times 

each of the clouds used in a specific MCP. As the number 

of clouds is closer, the standard deviation is smaller and 

assuming that in the process of receiving and answering 

100 requests, if the first cloud is used 70 times, then the 

rest of the clouds are not only used 30 times. 

The TSM stands for "tree-based similarity measure". In 
this algorithm, the components of the problem, which are 
MCPs and clouds, are assumed to be roots of a tree which, 
at its root, our algorithm lies. For the beginning, we start 
with the zero time of the simulation. At first, there is not 
any information on the amount and services provided in 
each of the clouds or suppliers, and we only assume that the 
components of the problem in the tree structure are 
applicable. Each MCP node has several children, 
corresponds to clouds of the system, and each cloud can 
provide several composition plan f. The Data1, ..., Data5 
parameter was used to simulate whether each of the 'f's has 
existed in the cloud. Each of these parameters is 19-bit 
strings, which 19 can be any other number equal to the 
number of unique services that were provided in the 
problem. Each bi bit of this string for the Dataj parameter 
means the presence or absence of the number i service in 
the composition plan fj in the specified <cloud, supplier> 
pair. The Data parameter which was defined for the 
specified <cloud, supplier> pair is aggregation of these five 
Datai parameters, and as said earlier, all the 19 parameters 
should be all 1 in the MCPs, since each service is at least 
included in one of the composition plans and each 
composition plan f is shown at least in one of the clouds in 
that particular MCP. 

The algorithm's methodology is something that the set 
of user-requested services are given in the form of a bit 
string and is given to the algorithm, or we can say that, 
being given to the root of the tree. Based on said MCP, the 
request is sent to one of the child's of root, and after the 

similarity factor of this input string with the child clouds of 
the MCP gets calculated, the cloud and composition plan 
with maximum similarity get selected and during a loop, 
efficient resources to satisfy the requested services is found. 
In the routine of TSM algorithm, the algorithm regularly 
calculates the similarity factor of two bit strings and this 
method is useful to reduce the cost of the algorithm because 
bitwise operations can be run in parallel at the time o(1) 
with accessible hardware requirements and Low cost. 

1) Initial Launch Phase 

The assumptions for the first phase of the simulation 

were mentioned in the previous segment. In this section, 

the goal is to achieve an understanding of the structure, 

quality, and quantity of the services provided in their 

environment. Therefore, we do not have optimization in 

the presentation of our services; instead, we merely offer 

the first random answer that is satisfying to the user. In this 

part, user requests are received and routed to a randomly 

ordered list of clouds, and each cloud uses all of its 

existing 'f's to satisfy the request. The algorithm stops 

whenever all requested services satisfied, and the response 

returns. That means the system works, user requests are 

answered, and we will identify the details of our multi-

cloud environment concurrently. After requesting each sk 

request service from a couple of < MCPi, Cj, fp >, all the 

services provided to the user in this package get 

summarized, resulting in a 19-bit binary number called f, 

that we use from some of its services, but the information 

of all services provided in this service package in our data 

tree can be used. This value initializes one of the Data 

parameters of the jth child of an ith child of the root. This 

way, during the servicing of the initial phase requests, our 

multi-cloud information tree is set up and ready for the 

next steps. Our experimental results demonstrate that after 

processing about 50 requests, the tree is wholly initialized 

and is ready to go to the next phase. In (Figure 3) [1], we 

see the pseudocode of the initial phase. 

2) Main Phase 
 In this phase, for each request, the cloud Ck is selected 
by algorithm which its Data variable value is the most 
similar factor with the input string, and in the next step, the 
composition plan fp that be more similar to the requested 
input string and, if necessary, then other composition plans 
of Ck will be selected. After the task of the cloud Ck is 
completed, the required services parameter is updated, and 
the next cloud is selected if the parameter is still opposed to 
zero. This approach means maximum similarity 
measurement is the heuristic that we have suggested solving 
this problem and to find a proper approximate answer. 

Although the calculations in this part are just the 

calculation of the similarity factor and binary operations, 

that both of them have a fixed run time, but in order to 

speed up responding to requests and in the case that the 

multi-cloud environment has a relative stability and is not 

continuously changing, as an example, clouds will not go 

up, or the services provided will not change in each <C, f> 

pair; in an optional phase during the second phase, the 

answer for each input that has a maximum 2 ^ | s | distinct 
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case can be saved in cache after calculation, because both 

the access is fast and it prevents additional calculations. 

Whenever a new entry arrives, if the ordered list of optimal 

clouds for that specific request was available, the list will 

be used otherwise we will pass the similarity measure 

phase, and after that, save it in the cache until the same 

request arrives. As an example, with the assumptions of 

this issue, approximately 512k was the number of storage 

space rows per presence/absence of the desired service in 

the user's request. In each row, there are five variables per 

MCP, and in order to determine the order of the clouds, 

each variable needs up to 8 bits. For example, in the 

58963rd row of this array, we have four variables and the 

value of the second one is "100010011000", it means that 

in order to satisfy the request with the byte code of 

"0001110011001010011"=58963 requesting the services 

with numbers of 1, 2, 5, 7, 10, 11, 14, 15, 16 from the 

MCP2, it is necessary to choose the cloud 4="100" first and 

then the cloud 2="010" and finally the cloud 3="011". 

There is no need to use the cloud of 1 at all. The maximum 

memory that is needed in this mode is only 3.75KB. In 

(Figure 5) [1], we see the pseudocode of the main phase. 

This phase is after the construction of the full 

information tree, which stores the properties of the services 

provided in each one of the composition plans f, 

corresponding to each <mcp, c> pair. In this phase, based 

on the provider that is supposed to provide the service, the 

request is given to a cloud that has the most similarity to 

the requested service based on the data value. This 

maximum similarity is a heuristic approach which we have 

provided as a means to an approximate solution. Each 

service, after being given to an optimized cloud, is 

analyzed again and similarity factor of all of f's of the 

clouds are calculated with the requested service,  

and like the previous section, allocation priority is given to 

maximum similarity. When the service is fully provided, 

the algorithm will finish. As we have mentioned before, a 

simple way to avoid unnecessary calculations in this 

method is to use a hidden memory to store the optimized 

results for each specific requested service and provider 

pair. In the last sentence of the algorithm, this method has 

been implemented. The implementation of the calculation 

of the similarity factor for choosing the selection priority 

of the clouds and the composition plans have been 

provided in (Figure 4) [1]. 

3) Similarity Factor 

In this part, multiple simple and propounded similarity 

factors which are widely applied are examined. After all 

these similarity factors were applied, the number of clouds 

used in response to a request and also the number of tested 

services before coming to a final result in average and for a 

random input was the same, but since primacy of selected 

clouds are directly affected by the factors and each of the 

factors had a different impact on the third QoS metrics i.e. 

load distribution. 

All of the tested similarity factors were a combination of 

likeness and contrast of input variables, which are byte 

codes of requested services and composition plans. How to 

combine either of these amounts in conclusion and name 

the two byte strings similar or different, was the main 

challenge. Our desirable outcome was making a balanced 

load distribution than former methods, that was why we 

chose similarity factors which brought us equal value to 

several likenesses and differences in the two byte strings 

measured by "bitwise and" and "bitwise or". With this 

calculation formula, it forces a more balanced work-load 

on each of the clouds. The similarity factor you see in 

(Figure 4) is reducing the number of differences in the two 

byte strings from the number of likenesses and for 

avoiding negative variable, it is added with a constant 

value. Other formulas that we used to calculate this factor 

are 1. The inverse of the number of mismatches between 

two bit string means "bitwise xor" operator, 2. The number 

of similarities between two bit strings means "bitwise and" 

operator, 3. Subtractive linear combination of similarities 

and differences between two bit strings in which the 

difference is multiplied by coefficients 1/4, 1/3, and 1/2; 

e.g. (similarities - differences/3); i.e., in this formulas the 

“similarities in having 1” is twice, three, or four times 
more significanty than “lacking differences.” The final 

formula is a subtractive linear combination of similarities 

and differences in a two bit string with the difference 

having the coefficient 1; i.e. (similarities - differences) 

meaning thatbthe significance of “similarity in having 1” 
and “lacking difference” is considered the same. In (Figure 

4), the pseudocode of similarity measure procedures of 

TSM is shown. 

To clarify the concept, we have an example here. 

Assume that we have these strings: a = "100110000100000 

1000" and b = "0001100000000001000" and c = 

"1001100001011101001". Both strings 'a' and 'b' have the 

value of "1" in the three corresponding positions and have 

different values in the two other corresponding positions. 

In this case, the number of similarities between 'a' and 'b' is 

3-2=1. If both the string 'a' and the assumed string 'c' have 

the value of "1" in the five corresponding positions and 

have counter-values of "1" and "0" in the four 

corresponding positions, the number of the similarity will 

be still 5-4=1, i.e., the strings 'b', 'c' have the same (number 

of) similarity to the string 'a'. The reason why the worth of 

having "1" in the corresponding position was equal with 

the worth of not having different numbers is easily 

explainable by analyzing the problem. In the previous 

example of the given byte numbers 'a', 'b', 'c', it is assumed 

that 'a' is a user request and 'b', 'c' are composition plans. 

The composition plan 'c' is higher than 'b' in the number of 

commons of 'a'; which means, it can provide more of the 

services demanded by 'a'. Meanwhile, this composition 

plan provides a large number of services that 'a' does not 

need to receive. Moreover, these unfunctional services 

increase the cost factor |SP| and reduce the efficiency of 

the algorithm. 

B. A simple huristic SIHU 

As we mentioned earlier, there are various heuristics for 
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Fig. 3. Pseudocode of the initial phase of TSM. 

 

 
Fig. 4. Similarity measurement in TSM 

 

for solving service composition problem in multi-cloud 

environment, which most of them use simple and common 

ideas. If the service provider clouds and MCPs properties 

are not variable, simpler ideas can be used. In this section, 

we present a simple idea for a quick assignment and 

mention simulation results of it. 

In this method, the pre-processing phase is first 

implemented, so, according to the cloud’s properties and 

the provided services in each of them, it forms 4 classes for 

input services. At first, requested services are checked and 

classified into one of these 4 classes. In the first executive 

loop, according to the fact that to which class a received 

service belongs (based on the simple 'analyze' algorithm), 

it is sent to the cloud corresponding to that class to satisfy 

its request. Then, the algorithm continues according to the 

E2C2 algorithm. This loop will run until all the requested 

services are fulfilled and each time the new cloud with the 

most composition plans is chosen. 

Our purpose in this method is improving load balancing 

in using the clouds, rather than E2C2 algorithm. To get to  
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Fig. 5. Pseudocode of the main phase of TSM 

 

this goal, we considered a computational section called 

pre-process. This section is designed independent to the 

properties of provided services in clouds and the clouds of 

every provider. For each MCPi provider, a mi1 table will be 

created. Each mi1[n,p] entry is a fraction representing the 

number of pth category provided services in Cn cloud of the 

MCPi provider, divided by total numbers of provided 

services in pth category. We will express this method in 

details for MCP3 which mentioned its properties in Tables 

1 and 2 (Table 4). We have considered s1 to s5 as the first 

category, s6 to s10 as the second, s11 to s15 as the third, and 

s16 to s19 as the last category. 

Since our goal is to achieve a uniform load distribution, 

we seek to classify input requests into four categories 

(equal to the number of clouds). We give each request to 

the cloud that can withstand it with higher probability in 

order to improve other qualitative factors too. For this 

purpose, according to the values of the mi1 table, we 

determine the values of corresponding entries in the mi2 

table too. Each entry in the first table is converted to a 

number in the rage of 0 to 4 and inserted in the second 

table. We have four numbers in each column of the first 

table. Each number of 0 is considered 0 in the second table 

too. The smallest non-zero number is considered 1, and so 

the larger numbers are considered in the same manner. 

Below in the (Table 5), we see the second corresponding 

table to MCP3. 

After doing all these steps for all MCPs, we will have 5 

tables that by summing up the values of each 

corresponding entry, we will have a summed up 4*4 table. 

TABLE 4. PERCENT OF PROVIDED SERVICES IN CLOUDS OF 

THE MCP3  

s16 - s19 s11 - s15 s6 - s10 s1 - s5  

3/4=0.75 4/5=0.8 3/5=0.6 3/5=0.6 C1 

1/4=0.25 1/5=0.2 1/5=0.2 0/5=0 C2 

0/4=0 1/5=0.2 3/5=0.6 1/5=0.2 C3 

3/4=0.75 3/5=0.6 1/5=0.2 4/5=0.8 C4 

 
TABLE 5. SIMPLIFICATION OF TABLE 4 

2 3 2 2 C1 

1 1 1 0 C2 
0 1 2 1 C3 
2 2 1 3 C4 
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This table indicates how possible it is to satisfy an 

appointed service, which most of its requests are from 

classes 1 to 4, to correspond class; for each of the clouds in 

summation of all the providers. In the assumed example, 

the final summed up table is mentioned in (Table 6). 

The final processing is done in accordance with the 

table above. We must decide what is the optimal 

permutation for the clouds from first to fourth categories of 

services. We want to find a permutation to satisfy 

requested services faster while keeping the load 

distribution balanced. to achieve this, first we consider a 

random permutation and then we optimize it. Optimizing 

the initial response is based on the standard deviation 

between numbers of the entries of the table and the sum of 

their values. It means that the optimized permutation is the 

one that numbers of its entries of the table have larger 

values and are closer to each other. For example, if we 

choose the yellow highlight with 7, 7, 10, 10 values as the 

initialfanswer,uit’susumeofrthekvaluesoisg34aandntheestandardf
deviation is 1.78. And so, for the green highlight with 12, 

8, 8, 9 values have 37 as sum, and 1.64 as standard 

deviation. The green highlight has a larger sum and less 

standard deviation. So, it's a better permutation. According 

to this calculation, the optimum permutation is [4, 1, 3, 2] 

which means the request that most of its services fall into 

the first, second, third and fourth categories are 

respectively given to the fourth, first, third and second 

clouds in the first running loop, independent of 

corresponding MCP. 

5. IMPLEMENTATION RESULTS 

All algorithms which are defined precisely in 

accordance to our problem and were considered in the 

previous part applied the problem structure with mentioned 

characteristics in chapter 4 in their simulations; for 

example, we have 19 services that each exist precisely in 

one of the composition plan f1, ..., f5; the problem space 

includes five providers that all of them have four clouds 

and the composition plans presented is the difference 

between every “cloud, provider” pair and the other is in the 

composition plans presented in them.  

In order to test the way of responding to input requests, 

all algorithms mentioned earlier, only used the input string  

UR= {S1, S5, S9, S11, S14, S15, S18} and calculated and their 

QoS metrics is merely stated based on this input string. But 

in this part, the designed algorithm for 1000 random inputs 

all having a size of 7 is tested, equal to that of above input, 

to demonstrate algorithm's independence from the input 

and that generally leads to optimum results. The 

experimental results of other algorithms for assumed inputs 

are shown in (Table 7) and (Figure 6). We can observe that 

for the input request UR= {S1, S5, S9, S11, S14, S15, S18}, 

fewer clouds have been involved by our proposed 

algorithm TSM, and the CC factor is equal or less than that 

of other methods, and before coming to the response it has 

fewer tested services called SP factor in both of algorithms. 

Also, in (Figure 7) [1], a comparison between the 

efficiency of algorithms in the first QoS metric, i.e., the 

number of involved clouds have been made and clearly 

shows the improvement in the TSM algorithms. 

    In this paper, for a more reliable comparing and more 

accurate analysis, we implemented the E2C2 algorithm 

exactly as the corresponding paper. We compare the 

produced results obtained in the same conditions with the 

TSM and SIHU algorithms. The input of this step of the 

simulation is 1000 service requests produced randomly and 

the (Table 8) and the (Figure 8) show the independence of 

the algorithm from inputs and also the fair load balancing 

of our algorithms. In processing and service delivery to 

1000 service requests, each been sent to 5 providers, i.e., 

totally 5000 distinct commands, clouds the TSM algorithm 

has used one to 4 2692, 3047, 2952, 3621 times 

respectively. If we divide them by the number of inputs, 

we come to 0.538, 0.609, 0.590, 0.724. 

     In this article to measure the optimality of the load 

balancing factor in algorithms, we used the standard 

deviation factor. The standard deviation of usage of clouds 

in TSM is 0.0679. Also, for the E2C2 algorithm which 

TABLE 6. SUMMED UP VALUES OF ALL MCP'S CORRESPOND 

TABLES 

6 12 13 7 C1 

8 10 7 8 C2 
7 10 10 8 C3 

10 9 9 12 C4 

TABLE 7. EXPERIMENTAL RESULTS FOR THE MCP 
Smart Clouds COM2 QSC_MCD E2C2 TSM SIHU Algorithms 

CC SP CC SP CC SP CC SP CC SP CC SP MCPs 

C1 C3 70 C4 C2 35 C4 C2 C1 35 C4 C2 35 C1 C2 19 C3 C4 19 MCP1 

C1 C2 C4 48 C4 C2 C3 45 C4 C1 C2 27 C4 C1 C2 26 C1 C2 C4 21 C3 C4 C1 27 MCP2 

C3 C4 48 C1 C4 C3 50 C1 C4 C3 29 C1 C3 C4 29 C3 C4 16 C3 C1 C4 29 MCP3 

C2 C3 140 C1 C3 C2 49 C1 C3 C4 38 C1 C3 C2 38 C3 C4 19 C3 C1 C2 35 MCP4 

C1 C2 C4 56 C2 C4 30 C2 C4 19 C4 C2 24 C1 C3 C4 21 C3 C4 C1 21 MCP5 

12 362 13 209 148 14 13 152 12 96 14 131 Sum 
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Fig. 6. Comparison between |SP| of algorithms

 
Fig. 7. Comparison between |C| of algorithms 

 
Fig. 8. The usage of each of clouds for 1000 random inputs. 

 

implemented accurately, we run the simulation. Clouds 

has been used by this algorithm to 4 4773, 3530, 2875, 

3773 times respectively. If we divide them by the 

number of inputs, we come to 0.95, 0.706, 0.575, 0.755 

and the standard deviation of them is 0.1364 that is twice 

larger than our algorithm’s as shown in (Figure 9). The 

load distribution helps to shorten the entrance queue of 

the clouds and prevent the bottleneck. Also, with the 

balanced distribution of the workload on the clouds, the 

possibility of failure of the clouds becomes less. 

6. CONCLUSION AND FUTURE WORK 

In this chapter, the results of TSM algorithms and other 

algorithms were compared. In case of each of the factors 

concerning the number of involved clouds in service 

production, the number of inspected services before 

responding to request and the workload between the clouds 

 

Fig.  9. Improvement of load balancing for 1000 random inputs. 

TABLE 8. QOS METRICS FOR 1000 RANDOM INPUTS 

Clouds C1 C2 C3 C4 SUM |SP| 

E2C2 3.773 2.875 3.530 4.773 14.971 142.271 

TSM 2.692 3.047 2.952 3.621 12.321 100.838 

SIHU 3.376 3.021 3.006 3.716 13.119 120.194 

of the system, TSM was remarkably enhanced and have 

improved 17%, 29%, and 50% respectively, compared to 

the best results before. The significance of load balance 

in every problem is clear to everyone but in this special 

case, the abundance of inputs and the user's expectations 

of the system to respond in real time makes it necessary 

that the algorithms be defined in a way to avoid 

bottlenecks and long ques at the entrance of the cloud. 

By this change applied, besides avoidance of early 

depreciation of the system and thus one of the clouds 

being out of reach, the user's satisfaction will be more. 

REFRENCES 

[1] Z. Nazari, A. Kamandi, andd M. Shabankhah, “An Optimal 
Service Composition Algorithm in Multi-Cloud Environment,” 
2019, pp. 141–151. 

[2] A. Botta, W. De Donato, V. Persico, and A. Pescapé, “On the 
Integration of Cloud Computing and Internet of Things,” in 
International Conference on Future Internet of Things and Cloud 
(FiCloud), 2014, pp. 23–30. 

[3] J. Huang, Y. Meng, X. Gong, Y. Liu, and Q. Duan, “A Novel 
Deployment Scheme for�Green Internet of Things,” IEEE 
Internet Things J., vol. 1, no. 2, pp. 196–205, Apr. 2014. 



A QoS Aware Multi-Cloud Service Composition Algorithm 

24 

[4] M. Taneja, “A framework for power saving in IoT networks,” in 
2014 International Conference on Advances in Computing, 
Communications and Informatics (ICACCI), 2014, pp. 369–375. 

[5] Z. Abbas, W. Yoon, Z. Abbas, and W. Yoon, “A Survey on 
Energy Conserving Mechanisms for the Internet of Things: 
Wireless Networking Aspects,” Sensors, vol. 15, no. 10, pp. 
24818–24847, Sep. 2015. 

[6] J.-M. Liang, J.-J. Chen, H.-H. Cheng, and Y.-C. Tseng, “An 
Energy-Efficient Sleep Scheduling With QoS Consideration in 
3GPP LTE-Advanced Networks for Internet of Things,” IEEE J. 
Emerg. Sel. Top. Circuits Syst., vol. 3, no. 1, pp. 13–22, Mar. 
2013. 

[7] T. Baker, M. Asim, H. Tawfik, B. Aldawsari, and R.bBuyya, “An 
energy-aware service composition algorithm for multiple cloud-
based IoT applications,” J. Netw. Comput. Appl., vol. 89, pp. 96–
108, Jul. 2017. 

[8] A. A. F. Heba Kurdi, Abeer Al-Anazi, Carlene Campbell, “A 
combinatorial optimization algorithm for multiple cloud service 
composition,” Comput. Electr. Eng., vol. 42, pp. 107–113, Feb. 
2015. 

[9] A. L. Tang M, “A hybrid genetic algorithm for the optimal 
constrained web service selection problem in web service 
composition,” in Evolutionary Computation (CEC), 2010 IEEE 
Congress on, 2010, pp. 1–8. 

[10] Y. Zou, G., Chen, Y., Xiang, Y., Huang, R., Xu, “AI Planning 
and Combinatorial Optimization for Web Service Composition in 
Cloud Computing,” in Annual International Conference on Cloud 
Computing and Virtualization, 2010. 

[11] A. A. Zahra Pooranian, Mohammad Shojafar, Bahnam Javadi, 
“Using imperialist competition algorithm for independent task 
scheduling in grid computing,” J. Intell. Fuzzy Syst. vol. 27, no. 1, 
pp. 187-199. 

[12] A. Bastia, M. Parhi, B. K. Pattanayak, and M. R. Patra, “Service 
Composition Using Efficient Multi-agents in Cloud Computing 
Environment,” in Intelligent Computing, Communication and 
Devices, Springer, 2015, pp. 357–370. 

[13] N. J. N. Mehran Ashouraie, “Priority-based task scheduling on 
heterogeneous resources in the Expert Cloud,” Kybernetes, Vol. 
44 Issue 10, pp.1455-1471, 2015. 

[14] S. K. Garg, S. Versteeg, and R. Buyya, “A framework for ranking 
of cloud computing services,” Futur. Gener. Comput. Syst., vol. 
29, no. 4, pp. 1012–1023, Jun. 2013. 

[15] Egham, “N,” Gartner. [Online]. Available: 
https://www.gartner.com/newsroom/id/3598917. 

[16] M. L. V. Gerardo Canfora, Massimiliano Di Penta, Raffaele 
Esposito, “An approach for QoS-aware service composition 
based on genetic algorithms,” in Genetic and Evolutionary 
Computation Conference, 2005. 

[17] A. Vakili and N. J. Navimipour, “Comprehensive and systematic 
review of the service composition mechanisms in the cloud 
environments,” Journal of Network and Computer Applications, 
vol. 81. Academic Press, pp. 24–36, 01-Mar-2017. 

[18] D. Ardagna et al., “MODAClouds: A model-driven approach for 
the design and execution of applications on multiple Clouds,” in 
2012 4th International Workshop on Modeling in Software 
Engineering (MISE), 2012, pp. 50–56. 

[19] M. Klusch and A. Gerber, “Fast Composition Planning of OWL-
S Services and Application,” in 2006 European Conference on 
Web Services (ECOWS’06), 2006, pp. 181–190. 

[20] A. Urbieta, A. González-Beltrán, S. Ben Mokhtar, M. Anwar 
Hossain, and L. Capra, “Adaptive and Context-Aware Service 
Composition for IoT-based Smart Cities.” 

[21] S. Bharath Bhushan and C. H. Pradeep Reddy, “A Qos aware 
cloud service composition algorithm for geo-distributed multi 
cloud domain,” Int. J. Intell. Eng. Syst., vol. 9, no. 4, pp. 147–
156, 2016. 

[22] H. Mezni and M. Sellami, “Multi-cloud service composition 
using Formal Concept Analysis,” J. Syst. Softw., vol. 134, pp. 
138–152, Dec. 2017. 

[23] A. Jula, E. Sundararajan, and Z. Othman, “Cloud computing 
service composition: A systematic literature review,” Expert Syst. 
Appl., vol. 41, no. 8, pp. 3809–3824, 2014. 

[24] J.-Z. Luo, J.-Y. Zhou, and Z.-A. Wu, “An adaptive algorithm for 
QoS-aware service composition in grid environments,” Serv. 
Oriented Comput. Appl., vol. 3, no. 3, pp. 217–226, Sep. 2009. 

[25] H. Wang, X. Wang, X. Hu, X. Zhang, and M. Gu, “A multi-agent 
reinforcement learning approach to dynamic service 
composition,” Inf. Sci. (Ny)., vol. 363, pp. 96–119, Oct. 2016. 

[26] J. Zhou and X. Yao, “Multi-objective hybrid artificial bee colony 
algorithm enhanced with Lévy flight and self-adaption for cloud 
manufacturing service composition,” Appl. Intell., vol. 47, no. 3, 
pp. 721–742, Oct. 2017. 

[27] S. Asghari and N. J. Navimipour, “Service Composition 
Mechanisms in the Multi-Cloud Environments: A Survey,” Int. J. 
New Comput. Archit. their Appl., vol. 6, no. 2, pp. 40–48. 

[28] A. L. Lemos and F. Daniel, “Web Service Composition: A 
Survey of Techniques and Tools,” ACM Comput. Surv. 48, 3, 
Artic. 33, 2015. 

[29] S. Asghari and N. J. Navimipour, “Nature inspired meta-heuristic 
algorithms for solving the service composition problem in the 
cloud environments,” Int. J. Commun. Syst., vol. 31, no. 12, p. 
e3708, Aug. 2018. 

[30] Q. Yu, L. Chen, and B. Li, “Ant colony optimization applied to 
web service compositions in cloud computing,” Comput. Electr. 
Eng., vol. 41, pp. 18–27, Jan. 2015. 

[31] Z. G. Chen, “Research of Cloud Manufacturing Execution Path 
Optimization Based on Adaptive Ant Colony Algorithm on 
Hadoop Platform,” Appl. Mech. Mater., vol. 628, pp. 417–420, 
Sep. 2014. 

[32] L. Wang, J. Shen, and J. Luo, “Facilitating an ant colony 
algorithm for multi-objective data-intensive service provision,” J. 
Comput. Syst. Sci., vol. 81, no. 4, pp. 734–746, Jun. 2015. 

[33] L. Wang and J. Shen, “Multi-Phase Ant Colony System for 
Multi-Party Data-Intensive Service Provision,” IEEE Trans. Serv. 
Comput., vol. 9, no. 2, pp. 264–278, Mar. 2016. 

[34] N. J. Navimipour and S. Asghari, “Cloud service composition 
using an inverted ant colony optimisation algorithm,” Int. J. Bio-
Inspired Comput., vol. 13, no. 4, p. 257, 2019. 

[35] A. Alamri, “Nature-inspired multimedia service composition in a 
media cloud-based healthcare environment,” Cluster Comput., 
vol. 19, no. 4, pp. 2251–2260, Dec. 2016. 

[36] X. Xu, Z. Liu, Z. Wang, Q. Z. Sheng, J. Yu, and X. Wang, “S-
ABC: A paradigm of service domain-oriented artificial bee 
colony algorithms for service selection and composition,” Futur. 
Gener. Comput. Syst., vol. 68, pp. 304–319, Mar. 2017. 

[37] J. Zhou and X. Yao, “DE-caABC: differential evolution enhanced 
context-aware artificial bee colony algorithm for service 
composition and optimal selection in cloud manufacturing,” Int. 
J. Adv. Manuf. Technol., vol. 90, no. 1–4, pp. 1085–1103, Apr. 
2017. 

[38] J. Zhouoand X. Yao, “Multi-population parallel self-adaptive 
differential artificial bee colony algorithm with application in 
large-scale service composition for cloud manufacturing,” Appl. 
Soft Comput., vol. 56, pp. 379–397, Jul. 2017. 

[39] D. Wang, Y. Yang, and Z� Mi, “A genetic-based approach to web 
service composition in geo-distributed cloud environment,” 
Comput. Electr. Eng., vol. 43, pp. 129–141, Apr. 2015. 

[40] H. Jin, X. Yao, and Y. Chen, “Correlation-aware QoS modeling 
and manufacturing cloud service composition,” J. Intell. Manuf., 
vol. 28, no. 8, pp. 1947–1960, Dec. 2017. 

[41] Z.-Z. Liu, D.-H. Chu, Z.-P. Jia, J.-Q. Shen, and L. Wang, “Two-
stage approach for reliable dynamic Web service composition,” 
Knowledge-Based Syst., vol. 97, pp. 123–143, Apr. 2016. 

[42] N. Sasikaladevi and N. Sasikaladevi, “SLA based cloud service 
composition using genetic algorithm,” Int. J. Adv. Intell. 
Informatics, vol. 2, no. 2, p. 77, Jul. 2016. 

[43] S. Wang, Q. Sun, H. Zou, and F. Yang, “Particle Swarm 
Optimization with Skyline Operator for Fast Cloud-based Web 



International Journal of Web Research, Vol. 2, No. 1, Spring-Summer, 2019 

 

25 

Service Composition,” Mob. Networks Appl., vol. 18, no. 1, pp. 
116–121, Feb. 2013. 

[44] A. Zhang, H. Sun, Z. Tang, and Y. Yuan, “Service composition 
based on discrete particle swarm optimization in military 
organization cloud cooperation,” J. Syst. Eng. Electron., vol. 27, 
no. 3, pp. 590–601, Jun. 2016. 

[45] X. Hongzhen, L. Limin, X. Dehua, and L. Yanqin, “Evolution of 
service composition based on QoS under the cloud computing 
environment,” in 2016 IEEE International Conference of Online 
Analysis and Computing Science (ICOACS), 2016, pp. 66–69. 

[46] M. Ghobaei-Arani, A. A. Rahmanian, M. S. Aslanpour, and S. E. 
Dashti, “CSA-WSC: cuckoo search algorithm for web service 
composition in cloud environments,” Soft Comput., vol. 22, no. 
24, pp. 8353–8378, Dec. 2018. 

[47] B. Xu and Z. Sun, “A fuzzy operator based bat algorithm for 
cloud service composition,” Int. J. Wirel. Mob. Comput., vol. 11, 
no. 1, p. 42, 2016. 

[48] M. Torkashvan and H. Haghighi, “A greedy approach for service 
composition,” in 6th International Symposium on 
Telecommunications (IST), 2012. 

[49] V. Gaur, P. Dhyani, and O. P. Rishi, “A Multi-Objective 
Optimization of Cloud Based SLA-Violation Prediction and 
Adaptation,” Int. J. Inf. Technol. Comput. Sci., vol. 8, no. 6, pp. 
60–65, Jun. 2016. 

[50] F. Seghir and A. Khababa, “A hybrid approach using genetic and 
fruit fly optimization algorithms for QoS-aware cloud service 
composition,” J. Intell. Manuf., vol. 29, no. 8, pp. 1773–1792, 
Dec. 2018. 

[51] M. S. Azari, A. Bouyer, and N. F. Zadeh, “Service composition 
with knowledge of quality in the cloud environment using the 
cuckoo optimization and artificial bee colony algorithms,” in 
2015 2nd International Conference on Knowledge-Based 
Engineering and Innovation (KBEI), 2015, pp. 539–545. 

 

Zahra Nazari received her B.S. 

degree in Computer Software 

Engineering from Sharif 

University of Technology, Tehran, 

Iran in 2016 and her M.Sc. degree 

in Computer Engineering 

(Algorithms and Computation) 

from University of Tehran, 

Tehran, Iran in 2019. Her research 

interests include IoT, Cloud Computing, Graph 

Algorithms. 

Ali Kamandi received his B.S. and 

M.Sc. in Computer Software 

Engineering from Sharif University 

of Technology, Tehran, Iran; the 

Ph.D. in Software Engineering, from 

Sharif University of Technology, 

Tehran, Iran in 2010. He is an 

assistance professor in the 

Department of Engineering Science 

at University of Tehran. He has published more than 25 

papers in various journals and conference proceeding. 

His research interests include Data Science, Software 

Engineering, eCommerce and Distributed Systems. 

 

Mahmood Shabankhah received 

his B.S. in Electrical Engineering 

from Amirkabir University of 

Technology in 2002, an M.Sc. 

(2004) and a Ph.D. (2008) in Pure 

Mathematics both from Universit´e 

Laval, Canada. Although his main  

research interests lie in the field of 

Complex Function Theory and operators acting on such 

spaces, he is also interested in the fields of Optimization 

and Machine Learning and he has published more than 

25 papers in various journals and conference proceeding. 

In 2012, he joined the Engineering Science Department 

at the University of Tehran where he is currently an 

Assistant Professor of Mathematics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 


