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Abstract— A workflow consists of a set of independent 

tasks, while workflow scheduling in a cloud environment is a 

proper permutation of these tasks involving virtual machines. 

Selecting the permutation with minimum completion time 

from among all of the arrangements, in which the requests 

and diversity of virtual machines increase, is an NP-hard 

problem. Given that, in addition to the makespan, other 

objectives should be considered in the scheduling problem in 

a real environment, which, in most cases, are conflicting 

objectives, the scheduling problem becomes more 

complicated. Therefore, multi-objective heuristic algorithms 

represent the perfect solution to these problems. 

To this end, we extended a recent heuristic algorithm 

known as black hole optimization (BHO) and presented a 

multi-objective scheduling method for a workflow application 

based on the Pareto optimizer algorithm. Since multi-

objective algorithms select a set of permutations with an 

optimal trade-off from among conflicting objectives, we use a 

decision-making method – the weighted aggregated sum 

product assessment (WASPAS) – in the following and select a 

solution that offers suitable permutation from among all 

solutions of the Pareto optimal set. Our proposed method is 

able to consider user requirements, as well as the interests of 

service providers. Using a balanced and unbalanced 

workflow, we compare our proposed method with the SPEA2 

and NSGA2 algorithms based on conflicting objectives: (1) 

makespan, (2) cost and (3) resource efficiency. 

Keywords—cloud; makespan; Cost; effeciency; WASPAS. 

1.  INTRODUCTION  

Cloud environment provides a huge context of servers 
in the data center, so that when users request resources, 
provides them in shared mode [1]. Benefiting from a "pay 
as you go" model has made cloud services ubiquitous. 
Cloud computing architecture consists of three different 
layers namely Infrastructure as a Service (IaaS), Platform as 
a Service (PaaS), and Software as a Service (SaaS). Cloud 
providers, Service Providers and users are three distinct 
entities incorporating in SaaS level service provisioning. 

A workflow is a common approach to modeling the 
most scientific applications in distributed systems. 
Typically, a workflow is displayed as a directed acyclic 
graph, where each task is associated with a node, while the 
connection between tasks is displayed using edges. Given 
the importance of workflow applications, extensive 
research has been carried out in recent years on the 

scheduling of the workflow in a cloud environment. The 
workflow scheduling on the resources is to choose the 
appropriate resource for a task as it dependent tasks have 
been already run. This resource selection and task allocation 
on them depends on the desired quality of service 
requirements for different users, so that the scheduling is a 
nondeterministic polynomial time (NP)-hard problem [2]. 

Most previous works on these issues have considered 
one of the requirements concerning the quality of service; 
for example, in most makespan cases, the completion time 
of the workflow is considered. In addition to the makespan, 
which is one of the most important factors in the task 
scheduling of workflows, there are some important factors 
concerning service quality, such as cost, performance, 
reliability and security in a cloud environment. Therefore, 
an appropriate task-scheduling algorithm should strike a 
balance between some of the objectives relating to the 
quality of service. This issue is known as multi-objective 
task-scheduling; there are different approaches to solving it. 
One of these methods is to use Pareto-based optimizer 
algorithms, which allow users to select their best outcomes 
from a proper solution set. 

In this paper, we have proposed a multi-objective 
workflow scheduling algorithm using black hole heuristic 
algorithm [3]. As the proposed method, it can 
simultaneously consider the quality of service requirements 
on the part of both the service provider and the customer. 
The aim of the proposed algorithm is to use the Pareto 
optimizer to satisfy the following requirements: 1. reducing 
the time to complete the workflow (makespan); 2. Reducing 
the cost for the customer; and 3. Increasing resource 
efficiency. To achieve an optimal solution for the three 
above objectives, we present a Pareto-based BHO 
algorithm. 

A single solution (trade-off), which simultaneously 
optimizes such conflicting objectives, is called a Pareto 
optimal solution. When there is a set of candidates for the 
optimal solution, the set is called the Pareto front. 
Regarding the Pareto front, no solution can dominate 
another. Since the output of heuristic algorithms, rather than 
a proper permutation of requests made to virtual machines, 
involves a set of solutions, selecting the proper permutation 
for service providers becomes difficult [4]. In this article, 
we use one of the most recognized processes in the area of 
decision-making, that is, the WASPAS. This process allows 
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service providers to express their semantic requirements 
and gives an accurate weight to objectives based on user 
preferences, thus selecting the best solution from the Pareto 
optimal set with the help of given priorities. 

The WorkflowSim tool [5] has been used to evaluate the 
proposed method, which is a CloudSim open-source 
development tool [6]. We have extended the initial core of 
this tool to provide our algorithm, as well as compared the 
proposed method with previous Pareto-based algorithms, 
such as SPEA2 [7] and NSGA2 [8].  

Various efficiency metrics have been proposed to 
measure the quality of the Pareto optimal set. In turn, they 
have been used to compare the efficacy of different multi-
objective optimization algorithms. Ideally, the Pareto 
optimal solutions must be accurate, well distributed and 
widely spread [9]. These three common efficacy metrics 
(distance-based distribution, coverage ratio and maximum 
spread ratio) have been used to compare the archive 
collections (Pareto front) obtained from the proposed 
algorithm and other algorithms. In summary, our main 
motivations in this article are as follows: 

1. Presenting a multi-objective scheduling method 

based on the black hole algorithm for scheduling 

the workflow in a cloud environment. 

2. Converting the single-objective algorithm of the 

black hole into a multi-objective algorithm by 

using Pareto optimization.  

3. Considering the interests of service providers and 

users simultaneously by defining a fitness function 

to decrease makespan and cost and increase the 

resource efficiency. 

4. Using a weighted aggregated sum product 

assessment (WASPAS) decision-making process 

for selecting an optimal solution from among the 

Pareto optimal set based on the preferences of 

users. 

5. Evaluating through performance metrics on the 

different workflow for ensuring efficiency of 

result which obtained through the proposed 

method. 

The rest of the paper consists of the following sections: 
In Section 2, related work is expressed in terms of 
workflow scheduling, in Section 3, the mathematical model 
of workflow scheduling and details of optimization 
purposes used have been investigated. The forth section 
expressed the details of the proposed method in single-
objective and Pareto-based multi objective. Section 5 
introduces a decision-making method for finding optimal 
solution in Pareto-individuals named WASPAS. Section 6 
demonstrates simulation results and evaluation of the 
proposed method and Section 7 concludes the paper and 
discusses some future work. 

2. RELATED WORK 

Workflow scheduling in distributed systems has been 
given much attention in recent years. Finding fully 
optimized solutions for task scheduling issues is almost 

impossible due to the NP-hardness. The purpose of the 
existing algorithms is to provide proper solutions which are 
close to the optimal state. Many algorithms have been 
provided aimed at finding appropriate solutions to meet the 
quality of service. Each of these solutions provides one or 
more of the requirements of the quality of service. In the 
following, some of the solutions presented in recent years 
using heuristic algorithms are discussed, considering two 
categories: single-objective and multi-objective algorithms. 

2.1. Single-Objective Heuristic Algorithms: 

The main aim of the single-objective algorithm is to 
provide one of the requirements of the quality of service for 
users or service providers. Pandey et al. [10] presented a 
PSO-based workflow scheduling method aimed at reducing 
executive costs for the workflow. Load balancing methods 
were also used in this algorithm to balance the workloads 
on virtual machines. Yu et al. [11] used a genetic algorithm 
for workflow scheduling in the grid environment. The 
purpose of this algorithm was to reduce task completion 
mmm  by oonsddernng hh  consrrann  of hh  user’s budgtt . 
Keshanchi et al. [12] used a genetic algorithm for workflow 
scheduling in the cloud environment using priority queues. 
The purpose of the proposed algorithm was to reduce the 
makespan by considering a heuristic-based HEFT search to 
assign subtasks to processors. 

2.2. Multi-Objective Heuristic Algorithms: 

In multi-objective scheduling algorithms, several 
objectives are considered at the same time in order to 
provide an efficient scheduling method. Bligaiyan et al. 
[13] presented a workflow scheduling algorithm using a cat 
swarm optimization algorithm for workflow in the cloud 
environment. The purpose of the presented algorithm was 
to reduce makespan, cost and the idle time of the processor. 
The authors compared the proposed method with a MOPSO 
algorithm, and simulation results in MATLAB showed that 
the proposed method was better than MOPSO. 
Udomkasemsub et al. [14] presented a multi-objective 
scheduling method using an ABC algorithm with respect to 
objectives such as cost and makespan, using a Pareto 
optimizer algorithm. Wu et al. [15] proposed a multi-
objective scheduling method using an RDPSO algorithm 
for scheduling workflow in the cloud, aimed at reducing the 
cost and makespan. Yassa et al. [16] presented a multi-
objective workflow scheduling method using a MODPSO 
algorithm to reduce costs, energy and makespan. These 
authors used a DVFS technique to reduce the cost and then 
compared the proposed method with HEFT. Most previous 
studies have used the cost and makespan as two important 
factors in scheduling. Kaur et al. [17] presented a workflow 
scheduling method using an augmented shuffled frog-
leaping algorithm to reduce execution cost while meeting 
the specified deadline. The proposed method was compared 
with a PSO algorithm, and simulation results in 
WorkflowSim showed that this method was better than the 
PSO method for reducing the overall execution cost of the 
considered workflows. 

Khalili et al. [18], in addition to taking into account the 
interests of users, considered the requirements of quality 
service for service providers. Using a GWO algorithm and a 
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Pareto optimizer, a multi-objective scheduling algorithm 
was developed with the aim of reducing makespan, time 
and costs and increasing throughput, and compared with an 
SPEA2 algorithm. We have used a black hole heuristic 
algorithm in our proposed method; this algorithm has not 
previously been used for workflow scheduling problems. 
We formed this algorithm as a multi-objective algorithm 
using a Pareto optimizer function. Using this, we have 
provided a proper method to investigate the problem of task 
scheduling in the cloud environment to reduce costs and 
makespan and to increase the efficiency of resources. 

3. PROBLEM FORMULATION 

A workflow application is indicated by W = (T, E) as a 
discrete acyclic graph where T = {t1, t2, …, tn} is a set of 
tasks and E is a set of edges. If there is an edge eij between 
two tasks t1 and t2, then ti is the parent and tj is the child. 
According to this definition, a child may not be run unless 
the parent is running. Figure 1 shows an example workflow, 
where each node represents a task and each edge shows the 
connection between tasks. The numbers on the edges are 
the costs of the connections between each pair of nodes. In 
the following, the quality of service objectives that we have 
applied to the scheduling problem will be explained. 

 

 

 

 

 

 

 

Fig. 1. The workflow sample 

Makespan 

Suppose VM = {VM1, VM2, ...., VMm} is a set of 
virtual machines and Task = {t1, t2, ..., tn} is a set of tasks 
which can be run on the resources. If the request 

completion time ti on VMj is indicated by j

ti

VM
CT   , the 

makespan is defined by Equation (1). 

1 1

max j

ti
j m

n
VM

ij

i

Makespan CT x
≤ ≤ =

= ×∑         (1) 

If the request ti is run on VMj, the value of xij is equal to 
one, otherwise it is zero. For example, if there are three 
virtual machines and requests are run on the machines 
according to Figure 2, the makespan is determined as 
follows. 

 

 

 

 

 

 

 

Fig. 2.  Completion time of a typical workflow 

Since the worst value of makespan is given by the FCFS 
algorithm [19], we consider the upper limit of makespan as 
its value in the FCFS algorithm. 

Cost 

In task scheduling problems in the cloud, the 
computational cost for each customer is determined based 
on his use of the resources at any time. The cloud provider 
takes into account three types of costs for each request, as 
follows. 

3.1. Computational Cost:  

This cost is calculated based on the number of millions 
of instructions per second (MIPS) for each request. For 
example, for request ti, the computational cost is calculated 
using Equation (2). 

( ) Cos Pr sinVMj

p i tiC t ET tPer occes ginVmj= ×     (2) 

Here, 
VMj

tiET is the execution time of the request ti on 

the virtual machine VMj, which is calculated using Equation 
(3): 

( )

( )

j

i

VM i
t

j

MI t
ET

MIPS VM
=        (3) 

where MI (ti) is the number of instructions for request i 
and MIPS (VMj) is the number of instructions that machine j 
runs in one second. 

3.2.  Hosting Time per Second: 

This cost is calculated based on the duration of tasks on 
the virtual machine, according to Equation (4): 

( ) ( ) Cos
i

VMj VMj

s i ti t
C t ET WT tPerStoragInVMj= + × (4) 

where 
i

VMj

tWT  is the waiting time of request ti on the 

virtual machine VMj, which depends on the provision of the 
required files from its parent and is calculated according to 
Equation (5). 

max ( )VMj i
ti

input t
WT

BW
=                     (5) 

3.3.  The Cost of Data Transmission:  

The cost that request ti must pay for transfer of its file 
set to the children is calculated according to Equation (6).  

( )
( ) Cos

i

T i

Output t
C t tPerTransfer

BW
= ×∑       (6) 

The total cost is calculated using Equation (7). 

( ) ( ) ( ) ( )total i p i s i T iC t C t C t C t= + +       (7) 

The cloud provider calculates the operating cost of 

request ti based on the total cost mentioned above. To find 
the upper limit of the cost, it has been assumed that all the 
requests are assigned to machines with high processing 

Task1 
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Task4 

Task3 Task5 

Task6 

1 
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2 0 t
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t
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t
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t

3 
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power, high-speed memory storage and high-power 
transmission. 

Resource Efficiency 

For each virtual machine, resource efficiency is defined 
according to Equation (8). If request ti is run on VMj, xij is 
equal to one, otherwise it is zero. 

1

1

( )

j

j

i

n

i ij

i
VM n

VM

t ij

i

MI t x

TH

CT x

=

=

×
=

×

∑

∑
      (8) 

4. THE PROPOSED APPROACH 

This section first introduces standard black hole 
algorithms, and then discusses how they are used to solve 
the multi-objective scheduling problem using a Pareto 
optimizer algorithm for the workflow. 

-Standard Black Hole Algorithm 

The black hole algorithm was first presented in 2013 by 
Hemmatloo [3]. A black hole algorithm is a population-
based method that has some features in common with other 
population-based methods. Like other population-based 
algorithms, a community is produced via a candidate 
solution for the problem and is distributed randomly in the 
search space. Population-based algorithms include the 
populations generated toward the optimal solution via 
certain mechanisms. In the black hole algorithm, the 
evolution of the population is achieved by moving all the 
candidates toward the best candidate, called the black hole, 
in each iteration. Those candidates which come within the 
scope of black holes will be replaced by new candidates 
produced in the search space. 

Like other population-based algorithms, in the proposed 
black hole algorithm, a population produced by the 
candidate solutions (stars) is generated randomly in the 
search space. After initialization, the population fitness is 
assessed and the best candidate in the population (the 
candidate with the best fitness) is selected as the black hole. 
The other candidates are normal stars. After setting the 
black holes and stars, the black holes begin to attract the 
stars around them, and all the stars start moving towards a 
black hole. Stars move towards a black hole, according to 
Equation (9): 

( 1) ( ) ( ( )) 1,2,...,i i BH ix t x t rand x x t i N+ = + × − =

          
(9) 

 where ix  is the i
th
 star at time t and t + 1, BHx  is the 

posiiion of hh  blcck ho   nn hh  saarhh spcc,,  “rnnd  ss a 
random number in the interval [0,1] and N is the number of 
stars (candidate solutions). 

Moving towards the black hole, a star may obtain a 
place at a lower cost than a black hole. In this case, the 
baakk hol  mov   oowrrd hh  srrr’s posiiion nnd vcc  vrr s..  
Then the black hole algorithm will continue from a new 
position and stars will move towards this new position. 

The possibility of passing the horizon also exists during 
the movement of the stars toward black holes. Each star that 
passes the horizon of a black hole will be sucked in by the 
black hole. When a star dies, (i.e., is sucked in by the black 
hole), a new star is born and is randomly distributed in the 
search space, and a new search is started. This action is 
performed in order to keep the number of candidate 
solutions constant. The next iteration begins after all the 
stars have moved. The radius of the horizon in the black 
hole algorithm is calculated using Equation (10). 

1

BH

n

i

i

f
R

f
=

=

∑
                                                                    (10) 

FBH is the fitness of the black hole, fi represents the 
fitness of the i

th
 star and N is the number of stars. When the 

distance between a candidate solution (star) and a black 
hole is less than R, that candidate falls in and a new 
candidate will be created and randomly distributed in the 
search space. The steps of black hole algorithm can be 
summarized in the form of pseudocode as shown in 
Algorithm 1. 

Algorithm1: The black hole algorithm pseudo code [3] 

-Pareto-Based Black Hole Algorithm 

For solving workflow multi-objective scheduling 
problems, we have extended the black hole algorithm using 
a Pareto optimizer algorithm, thus producing the proposed 
PBHO algorithm. For transforming BH to PBHO for each 
star, two merit values, R and S, are considered. According 
to the number of stars which dominate in the population and 
the archive set, the power S is assigned, and the R-value is 
assigned according to Equation (11) for each star based on 
the merit value S of stars which dominate it. If the star 
overruns the upper limit of the runtime and the upper limit 
of the cost, its value of R is a large number. 

1

( ) ( )
n

j

j
j p a
j i

R i S
=
∈ +

= ∑        (11) 

j> i in the above equation is called Pareto overcome 

symbol. 
In the equation, stars with a lower R-value have higher 

fitness, because they are dominated by stars with less 
power. The star with the lowest value of R is considered to 
be the BH. Based on the BH position in each stage, the 

Initialize a population of stars with random locations in the search space 

Loop 

For each star, evaluate the objective function 

Select the best star that has the best fitness value as the black hole 

Change the location of each star according to Eq. (9) 

If a star reaches a location with lower cost than the black hole, exchange 

their locations 

If a star crosses the event horizon of the black hole, replace it with a new 

star in a random location in the search space 

If a termination criterion (a maximum number of iterations or a 

sufficiently good fitness) is met, exit the loop 

End loop 
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position of all the stars of the initial population are updated 
and then merged with the archive set, and the merit values 
of S and R are calculated for all members of the archive and 
initial population sets. Members of the newly formed 
population are sorted in terms of R in ascending order. 
Members of the population that have the same R-value are 
sorted in terms of S. The archive and population set 
members are thus primarily sorted based on R and at the 
second level in terms of S. At the next stage, a number of 
members equal to the number of archive members are 
selected from the above sorted list and transferred to the 
archive set. This cycle of steps is iterated until the ending 
conditions are fulfilled. 

Non-dominated answers obtained from solving multi-
objective optimization problems (archived) are often known 
as the Pareto front. Depending on the conditions each can 
be considered as the optimal decision, and none of the 
answers on the other side of the Pareto front is considered a 
priority. Algorithm 2 displays the pseudocode of the PBHO 
algorithm. 

Algorithm2: PBHO algorithm 

5. APPLICATIONS OF WASPAS METHOD IN MULTI-

CRITERION DECISION-MAKING 

Multi-objective scheduling methods provide a set of 
optimal solutions. Each of these solutions represents a 
trade-off between conflicting objectives. In such cases, the 
user should make proper choices from among the Pareto 
optimal set based on his or her preferences and 
requirements. Hence, a mechanism is required for 
weighting the criteria based on priorities. Weighted 
aggregated sum product assessment (WASPAS) is one of 
the most efficient methods in the field of decision-making. 
This method was first developed by Zavadskas et al. [20] 
and it has the capability of accurately ranking the 
alternatives in all the considered selection problems. 

-WASPAS Method 

The main steps of WASPAS include determining 
attributes and alternatives, performing calculations to 
determine the weights of attributes, decision-making and 
selecting the definitive solution.  

Determining Attributes and Alternatives: 

Every multi-criterion decision-making problem starts 
with the following decision matrix: 

11 12 1

21 21 2

1 2

....

....

....

n

n

m m mn

x x x

x x x
A

x x x

 
 
 =
 
 
 

  

where n is the number of attributes that should be 
optimized (in this case study the three objectives of 
makespan, cost and resource efficiency) and m represents 
candidate alternatives (in this study the members of the 
Pareto front) from which one alternative should be selected. 

Weight Calculation: 

Weights (wi) of attributes are calculated using Equation 
(12). 

1

j

j n

j

j

S
W

S
=

=

∑
      (12) 

Here, Sj is the degree of importance of the jth attribute, 
and j is number of attributes. In this paper we consider three 
attributes. Therefore, n = 3 and the value of Sj can be 
between one and three where three is the highest degree of 
importance. Therefore, the attribute with Sj = 3 has the 
highest degree of impact in finding the optimal solution and 
that with Sj = 1 is the least preferable attribute. 

 Decision-Making and Selecting a Definitive Solution: 

The final step of WASPAS involves determining the 
rank of each decision-making alternative. In the initial step 
for determining the rank of each alternative, we apply the 
normalizer function for the values of each of the attributes 
in accordance with Equation (13) if maxi xij is preferable, 
or using Equation (14) if this is not the case. 

ij

ij

ij

i

x
x

Max x
=       (13) 

ij

i
ij

ij

Min x

x
x

=         (14) 

The WASPAS method is a combination of two well-
known MCDM approaches. The first criterion of optimality 
is a weighted sum model (WSM), calculated using Equation 
(15) for all alternatives. The other criterion is a weighted 
product model (WPM), calculated using Equation (16). 

1

1

n

ij j

j

Q x w
=

= ×∑         (15) 

Where wj is weight of of j
th

 attribute. 

PBHO Algorithm: 

Initialize the population of star and create an empty archive 

       While (t< Max number of iterations) 

Calculate the fitness vector of all stars based on objective functions 

by Eq.(1), (7),(8) 

Calculate fitness of Pareto based on Eq. (11) 

 Copy top ten non-dominated stars in population to the archive 

 Select Black hole from the archive 

For each star 

Update the position of current star using Eqs.(9) 

Calculate fitness of Pareto based on Eq. (11) 

If a star crosses the event horizon of the black hole, replace it 

with a new star in a random location in the search space 

End while 

Return the archive 
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2

1

( )
jwn

ij

j

Q x
=

=∏      (16) 

Therefore, the final equation of WASPAS is Equation 
(17). 

1 20.5 0.5iQ Q Q= +        (17) 

Now, the candidate alternatives are ranked based on the 
Q-values, and the member that has the highest Q-value has 
higher priority among the group members. 

6. EVALUATION OF RESULTS 

We have used open-source, WorkflowSim tools to 
evaluate the proposed methods, and compared our results 
with three known radiation optimizer-based algorithms 
NSGA2 [8], SPEA2 [7] and PGWO [18]. 

We used the real workflow library presented by 
Bahraini et al. [21] to evaluate the proposed method. This 
library enables the structure of five real workflows to be 
studied: 1. Montage (astronomy), 2. Cybershake 
(seismology), 3. Epigenomics (biological sciences), 4. 
LIGO (gravitational physics) and 5. Sipht (biology). We 
used two workloads: The Epigenomics balanced workload 
and the Montage unbalanced workload. Figure 3 shows a 
small sample of these two workflows. 

Our experiment environment includes a data center that 
consists of twenty similar hosts with virtualization 
capability. In fact, it is assumed that virtualizers like Xen 
are installed on them that they can share sources. Host 
specifications are according to Table 1. 

We have put 60 virtual machines on this data center; 
characteristics of this virtual machine are given in Table 2. 
Parameters for simulation for each of the algorithms PBHO, 
NSGA2 and SPEA2 are also given in Table 3. 

We evaluated the proposed method in two parts. Firstly, 
the proposed method was evaluated on the basis of metrics 
which evaluate multi-objective algorithms. Secondly, the 
proposed method was evaluated based on makespan, cost, 
and resource efficiency objectives. 

-Evaluation Using Metrics: 

There are various metrics for assessing the quality of the 
Pareto optimal set in multi-objective algorithms enabling 
multi-objective algorithms to be compared with each other 
[23-25]. The three metrics used for most multi-objective 
algorithms are: 1. the coverage ratio, 2. the maximum 
spread and 3. the distance-based distribution. Therefore, we 
have also used these metrics to evaluate the quality of the 
Pareto optimal set in the NSGA2, PBHO, SPEA2 and 
PGWO [18] algorithms. We explain the results and give 
further details in the following sections. 

Coverage Ratio: 

The coverage ratio is used to compare two Pareto fronts 
and is defined as the fraction of solutions in the PBHO 
Pareto front that dominate other solutions in the other 
algorithms. It is calculated using Equation (18). 

 
Fig. 3. The structure of realistic scientific workflows[22] 

TABLE 1:HOSTS' TECHNICAL SPECIFICATIONS TABLE 1 HOSTS' TECHNICAL 

SPECIFICATIONS 

Bandwidth 

(Mbps) 

Hard 

(MB) 

Ram 

(MB) 

Processin

g speed 

(Mips) 

Number of 

processing 

Cores 

Host 

ID 

10000 1000000 2048000000 2000000 8 1-20 

TABLE 2 VIRTUAL MACHINE' TECHNICAL SPECIFICATIONS 

Bandwidth 

(Mbps) 

Hard 

(MB) 

Ram 

(MB) 

Processing 

speed 

(Mips) 

Number of 

processing 

Cores 

Host 

ID 

1000 10000 512 1000 1 1-15 

1000 10000 512 1000 1 
16-

30 

2000 20000 1024 1000 2 
31-

45 

2000 20000 1024 2000 4 
46-

60 

TABLE 3- THE ALGORITHM PARAMETERS 

Parameter Value 

Population Size (PBHO, 

NSGA2,SPEA2) 

50 

Archive Size  

(PBHO ,NSGA2,SPEA2) 

10 

Maximum Iteration 
(PBHO ,NSGA2,SPEA2) 

20 

Maximum Generation (SPEA2, 

NSGA2)  

100 

Mutation Probability 

(SPEA2, NSGA2)  

0.5 

Crossover Probability 

(SPEA2, NSGA2) 

0.9 

2 2 1 1 1 2

1 2

2

; :
( , )

s S s S S S
c S S

S

∀ ∈ ∃ ∈
=      (18) 

C (S1, S2) = 1 indicates that all solutions of S1 dominate 
solutions of S2 and C (S1, S2) = 0 indicates that no solution 
of S1 dominates a solution of S2. Figure 4 shows coverage 
ratio values for the Epigenomics and the Montage 
workflows for three sizes: small, medium and large. A 
larger coverage ratio value indicates better performance. 
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Fig. 4.a. The Coverage ratio values for Epigenomics 

 
Fig. 4.b. The Coverage ratio values for Montage 

According to the coverage ratio values for both the 
Epigenomics and the Montage workflows in the three sizes, 
we conclude that the values of C (PBHO, SPEA2) and C 
(PBHO, NSGA2) were better than the values of C (SPEA2, 
PBHO) and C (NSGA2, PBHO). This means that the Pareto 
optimal set obtained from the PBHO algorithm could 
dominate optimal solutions obtained from the SPEA2 and 
NSGA2 algorithms. 

 Maximum Spread 

The maximum spread of the Pareto front S is the 
distance between solutions of the front (Equation (19)). A 
higher value of this index indicates that the border points 
have been well covered, and hence the algorithm is more 
efficient in selecting the optimal solution. 

2

11
1

(max min )
M

i i

m m
i to si to s

m

MS f f
==

=

= −∑      (19) 

S is the Pareto front, M is the number of objectives and 
fm is the m

th
 objective function for solution i. 

Figure 5 shows maximum spread values for the 
Epigenomics and Montage workflows in three sizes: small, 
medium and large.  

According to the maximum spread values for the 
Epigenomics and the Montage workflows in the three sizes, 
we conclude that the PBHO algorithm has higher maximum 
spread values compared to the SPEA2 and NSGA2 
algorithms. In other words, the PBHO algorithm is able to  

 
Fig. 5.a.The maximum spread values for Epigenomics 

 
Fig. 5.b.The maximum spread values  for Montage 

cover more border points compared to the NSGA2 and 
SPEA2 algorithms. This is due to the ability of the black 
hole algorithm to remove solutions within a given radius of 
the optimal points and  replace them with new random 
solutions. This ability enables he proposed method to avoid 
getting stuck at local optimal points and enables it to seek 
borders well. 

 Distance-Based Distribution (DBD) 

One of the performance evaluation metrics for the 
Pareto optimal set is the distribution of the solutions 
obtained in the search space of the problem. One index of 
distribution is the distance-based distribution, as indicated 
by the value of SP. The distance di for the i

th
 solution of the 

optimal set S is equal to the lowest total difference between 
that solution and other solutions in line with each axis. The 
distance-based distribution reflects the diversity or accuracy 
rate in the Pareto optimal set and is obtained from Equation 
(20). Performance and efficiency are better when this metric 
has a lower value. 

21
( )

1
iSP d d

S
= −

−
     (20) 

   
1

min ( ) ( )
M

i m i m k

m

d f s f S
=

= −∑   

k k iS S and S S∈ ≠   

Figure 6 shows Distance Based Distribution (DBD) 
values for Epigenomics and Montage workflows in three 
sizes, small, medium and large. 
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Fig. 6.a. Distance Based Distribution (DBD) Values  For Montage 

 

 
Fig. 6.b. Distance Based Distribution (DBD) Values  For epegenomic 

The value of SP shows the diversity and accuracy of the 
chosen solution, and the SP shows that fewer algorithms are 
more efficient. The simulation results show that the 
diversity rate of solutions in the PBHO algorithm for the 
Montage workload (unbalanced workflow) for the medium 
and large sizes, has more precision and diversity compared 
to the other algorithms, but in the Epigenomics workflow 
(balanced workload) SP for the SPEA2 and NSGA2 
algorithms is better than for the PBHO algorithm, and 
therefore the diversity of solutions is greater in these 
algorithms. 

-Evaluation Using Objectives 

There is no scalar assessment method for investigating a 
multi-objective optimization algorithm which can sort the 
obtained results and choose the best answer. In such cases, 
the user should make proper choices from among Pareto 
optimal set based on preferences and requirements. We 
have introduced two scenarios to evaluate the results using 
objectives. In one scenario, different weights have been 
considered for the objectives of cost, resource efficiency 
and makespan, and in the other scenario the same weights 
were used for all the objectives. We obtained the optimal 
solution from the Pareto front according to these weights 
with the help of WASPAS. We repeated our experiments 10 
times and calculated the average of the results for the three 
factors of makespan, cost and throughput for the two 
Epigenomics and Montage workloads in small, medium and 
large sizes. 

A. The First Scenario: Objectives with the Same Weight: 

If each objective is of equal importance, the weights of the 

objectives are equal, i.e., W = (0.33, 0.33, 0.33). We 

obtained the optimal solution from each Pareto front 

according to the weight vector W using Equation (17) and 

calculated the average of the values of the objective 

functions for those solutions. Table 4 shows the objective 

function values for two workloads in scenario 1 for three 

sizes: small, medium and large. 

According to the values of the objective function for the 
unbalanced Montage workflow (Table 4-a) and the 
balanced Epigenomics workflow (Table 4-b) the following 
conclusions can be drawn. 

For the Epigenomics workload in the large, medium and 

small states and the Montage workload in the medium and 

large states, the makespan in the black hole algorithm is 

lower than in the other algorithms. In the Montage 

workload in the small state, the makespan value in the 

NSGA2 algorithm is lower than in the other algorithms. 

In the Epigenomics workload in large and medium 

states and in the Montage workload in the large state, the 

cost of the PBHO algorithm is lower than that of the other 

algorithms. In the other cases, there is little difference in the 

cost between the optimal value and the near-optimal states. 

The efficiency for both Montage and Epigenomics 

workloads in large, medium and small states in the PBHO 

algorithm is greater than in the other algorithms. 

TABLE 4.A RESULT OF PBHO, NSGA2 AND SPEA2 FOR MONTAGE 

WORKFLOW 

TABLE 4.B: RESULT OF PBHO, NSGA2 AND SPEA2 FOR EPIGENOMICS 

WORKFLOW 

Type Algorithm Makespan Cost Troughput 

Small 

Spea2 31040 144594 757.98 

Nsga2 27656 152681 773.7 

PBHO 31380 155961 781.9 

medium 

Spea2 89363 1466098 1197.77 

Nsga2 91890 1526879 1195.47 

PBHO 85864 1499458 1208.64 

Large 

Spea2 167317 15520129 1248.68 

Nsga2 165317 17520129 1248.58 

PBHO 154077 13995587 1288.77 

Type Algorithm Makespan Cost Troughput 

Small 

Spea2 119.62 1954 909 

Nsga2 119.56 1947 907 

PBHO 95.52 1950 915.72 

medium 

Spea2 124.92 4127 1229.6 

Nsga2 125.33 4143 1246 

PBHO 104.1 4003 1266 

Large 

Spea2 401.06 45598 1246.38 

Nsga2 381.67 45102 1246.33 

PBHO 337.82 44064 1256.64 
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Generally, when objectives are not superior to each 

other, the PBHO algorithm performs better than the SPEA2 

and NSGA2 algorithms and produces better optimal values 

for the makespan, cost and throughput objectives. 

B. The Second Scenario: Objectives with Different Weights: 

If cost is more important for the user than the other 

objectives, and efficiency has the least importance, the 

weights of the objectives are given by W = (cost: 0.5, 

makespan: 0.33, efficiency: 0.16). We obtained the optimal 

solution in each Pareto front according to the weight vector 

W using Equation (17) and calculated the average of the 

values of the objective functions for those solutions. Table 

5 shows the objective function values for two workloads in 
scenario 2 in three sizes: small, medium and large. 

According to the values of the objective function for the 

unbalanced Montage workflow (Table 5-a) and the 

balanced Epigenomics workflow (Table 5-b) the following 

conclusions can be drawn. 

For the Epigenomics workload in the large, medium and 

small states and the Montage workload in the medium and 

large states, the makespan in the black hole algorithm is 

lower than in the other algorithms. In the Montage 

workload in the small state, the makespan value in the 

NSGA2 algorithm is lower than in the other algorithms. 

The cost in both the Montage and Epigenomics 

workloads in the large, medium and small states in the 

PBHO algorithm is greater than in the other algorithms. 

The throughput in both the Montage and Epigenomics 

workloads in the large, medium and small states in the 

PBHO algorithm is less than in the other algorithms and 

there is little difference between the optimal value and the 

near-optimal states. 
As is clear from the results in Tables 5-a and 5-b, the 

cost for both the workloads in all sizes in the PBHO 
algorithm is greater than in the other algorithms. The 
proposed algorithm can find solutions with the lowest cost 
from among the total possible solutions due to the fact that 
the importance of cost for the user is higher than the 
importance of the other objectives. 

7.CONCLUSIONS AND FUTURE WORK 

The main purpose of this paper was to present a new 

heuristic algorithm for solving the problem of workflow 

scheduling in the cloud environment that was able to 

opmmm    hh  usrr ’s mnnimum xxpcceed srrviee quiii yy nnd 
could also increase profitability for the service provider. We 

proposed a multi-objective Pareto-based black hole 

optimizer (PBHO) by combining the Pareto concept with 

the heuristic algorithm. The proposed method performed 

better than previous algorithms for some criteria.  

We selected an optimal solution from the Pareto optimal 

set using the WASPAS method according to user 

requirements. As the simulation results show, the diversity 

rate of solutions in the black hole algorithm for the 

balanced workload was less than in the SPEA2 and NSGA2 

algorithms. We intend to improve our technique and  
TABLE 5.A: RESULT OF PBHO, NSGA2 AND SPEA2 FOR MONTAGE 

WORKFLOW 

 
TABLE 5.B: RESULT OF PBHO, NSGA2 AND SPEA2 FOR EPIGENOMICS 

WORKFLOW 

Type Algorithm Makespan Cost Troughput 

Small 

Spea2 115.99 1924 911 

Nsga2 118 1984 906 

PBHO 94.12 1894 901 

medium 

Spea2 127.4 4234 1221.7 

Nsga2 145.4 4456 1254.2 

PBHO 108.56 4003 1201 

Large 

Spea2 421 46756 1246.87 

Nsga2 389.78 44984 1246.45 

PBHO 340.32 42134 1234.12 

increase the precision and diversity rate of solutions for the 
balanced workload in future work. In  addition, we plan to 
provide dynamic scheduling for workflow applications 
using this algorithm. 
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