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Abstract  

Given the lack of a specific approach to the explanation of values of optimal 

portfolio weights in the portfolio optimization, the present study aimed to 

examine large-scale portfolio optimization according to both stock weighting 

and utilization of SCAD function to minimize the portfolio risk based on the 

"weight-modified conditional value at risk (CVaR)" and its comparison with 
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the "conditional value at risk (CVaR)" method in the Tehran Stock Exchange. 

Therefore, the price information of companies listed in the Tehran Stock 

Exchange and Over-the-counter (OTC) from 2012 to the end of September 

2020 was collected, screened, and analyzed daily, and then the risk and return 

of the portfolios were examined by forming optimal portfolios. The results 

indicated that the efficiency limit of the stock portfolio and also the ranks of 

different companies were different according to the types of the optimization 

method. Based on the behavior of the TEDPIX, the investors' degrees of risk-

taking, and the risk management, diversification, and computational 

complexity of each method, the weight-modified CVaR had a better 

performance due to better diversification and risk management. Furthermore, 

the SCAD function added computational complexity to this method. 

Keywords: Portfolio Optimization; Conditional value at risk (CVaR); 
Smoothly-clipped absolute deviation (SCAD) penalty function. 
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Introduction                                                                          

There are several ways to choose the optimal portfolio. According to the 

Modern Portfolio Theory, the investors select their portfolios based on the two 

criteria, namely the expected return and the standard deviation of return. 

Identifying the factors affecting the selection of the portfolio with a high rate of 

return and controlled risk has been a topic of interest to researchers. The 

present research aimed to minimize risk using the conditional value at risk 

(CVaR), and the CVaR based on the SCAD penalty function that was the 

weight-modification of the CVaR method. When it comes to risk minimization, 

there are several approaches to choosing the optimal portfolio, including 

Markowitz and Value at Risk (VaR) models. The mean-variance optimization 

model (MVO) obtains the optimal risk values based on minimizing the 

variance of total assets in the portfolio based on a certain level of return values 

(Markowitz, 1952). Markowitz was the founder of a well-known structure 

called modern portfolio theory. The problem-solving model for choosing an 

optimal financial portfolio was first proposed by Markowitz (Mohamed, 2005). 

By defining investment risk quantitatively, Markowitz provided a 

mathematical approach for investors in asset selection and portfolio 

management, but as Markowitz and William Sharp acknowledged there are 

significant constraints on the basic formula in modern portfolio theory. 

https://doi.org/10.30699/IJF.2021.311328.1281
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Suppose that when the number of shares in the portfolio is large, it will be very 

difficult or impossible to use the Markowitz method. An important 

optimization constraint in Markowitz's work is that the sum of the portfolio 

weights is maximally one that is also called the budget constraint. However, 

these weights may be extreme and the risk of the portfolio may be high. To 

eliminate this shortcoming, the present study used the modified CVaR to 

prevent extreme weights. The model of optimal portfolio determination within 

the framework of value at risk is the most important in the sub-branch of Post-

Modern Portfolio Theory (Estrada, 2007). A constraint of the risk-value 

method is that its approach differs from what we see in real-world portfolio 

investment assuming the normal risk distribution. In this regard, the method of 

measuring the conditional value at risk for portfolio optimization has been 

considered more so that the model seeks to minimize the conditional values at 

risk in most portfolio optimization functions. Experimental results of various 

studies in this field also indicate that the conditional value at risk approach 

offers better performance than traditional approaches such as the Markowitz 

approach (Karmakar, 2017). As mentioned earlier, the main large-scale 

optimization problem is the lack of high control over the values of weights, 

resulting in extreme weights. To control these weights and avoid calculating 

the extreme weights in portfolio optimization, first, Jagannathan and Ma (2003) 

sought to control this issue by modifying the proposed approach by Green and 

Hollifield (1992) and adding a constraint on the extreme values of stock 

weights in the portfolio. In this way, a SCAD penalty function was added to the 

portfolio constraint, for instance, studies by Fan & Li (2001) and Brodie et al. 

(2009) who tried to reduce this problem by considering the penalty function 

and adding it to the budget constraint of portfolio optimization for certain 

extreme weights. To improve this issue in the existing literature, Rockafellar et 

al. (2014) proposed the generalized least squares regression in the conditional 

value at risk minimization approach in portfolio optimization problems to 

reduce problems in extreme weights. Recent studies, such as Xu et al. (2015) 

also indicated that using the Quantile Regression approach to optimize the 

Markowitz mean-variance portfolio and the conditional value at risk, unlike the 

least-squares approach, could take into account different quantiles, operate 

beyond the mean regression, and provide better results.  

Innovations and initiatives of this research include a different 

mathematical approach in which the explicit solution of the objective function 

and the conversion of a non-convex problem into a disciplined problem are 

done. Diversification diagrams also provide a managerial perspective for 

investors, fund managers, or investment managers that are not considered by 
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the researcher in similar research. Comparing the conditional value at risk 

method and its modified method in the Iranian capital market provides an 

examination of the ability of each method according to the characteristics of 

the Iranian financial market and also helps to complete the investment 

decision-making view. We examined the portfolio optimization with the above 

two methods among the stocks of the Tehran Stock Exchange and OTC from 

2012 to the end of September 2020. 

Literature Review 

This section starts with the theoretical bases and then reviews the research 

literature. Theoretical bases refer to the optimization, Markowitz's method as 

the creator of the scientific expression of optimization, the introduction of 

standard deviation as a measure of risk assessment, and limitations of this 

method, which led to the introduction of value at risk method, shortcomings of 

the value at risk method, and introduction of conditional value at risk method, 

and the weight-modified conditional value at risk method, and then examines 

the research background inside and outside Iran. 

The selection of an optimal set of assets is of great importance in 

economic issues, and the growth and development of this domain. Issues such 

as the way of risk measurement, the relationship between risk and return, the 

method of determining the number of shares in the portfolio, and the allocation 

of assets to companies are important issues for investors. According to modern 

financial theories, the factors which must be considered to select a suitable 

portfolio are very important. Rational investment decisions require 

simultaneous attention to many criteria and different factors (Kocadağlı & 
Keskin, 2015). Difficulty in choosing a portfolio is an important topic in 

financial research. The main purpose of choosing a portfolio is to select the 

best combination of assets, and the highest expected return and provide an 

acceptable level of risk (Mokhtar et al., 2014). Choosing the right and optimal 

portfolio is an issue that all investors, both real and legal, always face. The 

stock selection includes the creation of a portfolio that maximizes the 

desirability of the investor. The method of creating such a portfolio has always 

attracted the attention of financial researchers and analysts. For every 

investment decision made in any market, there is a very close link between the 

risk and return of each investment. Therefore, stock portfolio management is 

the study of all dimensions of stocks, including the composition of shares, the 

weight of each stock in the portfolio, and the optimal time to change the 

composition of the portfolio. In addition, stock portfolio management reduces 

risk and increases returns (Sokhgian & Valipor, 2010). In this equilibrium of 
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risk and return, identifying the efficient frontier of the portfolio of assets allows 

investors to obtain the highest expected return on their investment based on 

their utility theory, degree of risk aversion, and risk-taking. Each investor 

selects a point on the efficient frontier based on their degree of risk-taking and 

determines the composition of their portfolio to maximize returns and 

minimize risk (Raei & Alibeiki, 2010). Portfolio optimization is the selection 

of the best composition of financial assets in a way that maximizes the return 

on the investment portfolio and minimizes its risk (Markowitz, 1952).     

The problem-solving model for choosing the optimal portfolio was first 

proposed by Markowitz. The most important drawback of his model is the high 

number of estimates, leading to the high cost of using his model (Campbell, 

2000). Markowitz was the first researcher who scientifically articulated the 

portfolio and its diversification. He quantitatively proved how the creation of a 

set of stocks would reduce investment risk. Diversification is the most 

important part of securities investment management because investors are 

unsure of the future so they diversify their investments and reduce future risks 

to reduce the total risk. According to Markowitz's model risk is defined by the 

dispersion parameter and returns are assumed to be normally distributed, yet 

the distribution of returns is not always symmetric in practice. According to the 

above-mentioned cases, variance has been widely criticized as a measure of 

risk because it treats favorable returns and undesirable negative returns in the 

same way and considers all dispersions as risk. However, he found that the 

return on individual assets was more likely to be higher than what was 

predicted by a normal distribution (Fama & Roll, 1968). Therefore, the 

appropriateness of variance as a risk criterion is questionable, and the 

occurrence of abnormal gains and losses is more than what the normal 

distribution function predicts. Various criteria have been proposed for risk, 

many of which are more efficient in measuring risk than variance when the 

return distribution function is asymmetric. Pedersen et al. (2021) conducted a 

paper titled "Extended Portfolio Optimization" and pointed out that the average 

variance method worked much poorly for investors so that investors did not 

perform the optimization. In the mentioned research, he performed the 

operational identification of the classical optimization problems and sought to 

solve them with a simplification and model development approach. 

The concept of value at risk was first introduced by Baumol (1963) as a 

new risk assessment model (Alexander & Baptistab, 2002), but it has been 

widely used as a tool for measuring risk since the 1990s. The popularity of this 

method was due to its simplicity in creating a summary statistical form of 

potential losses over a time horizon (Mohamed, 2005). The value at risk seeks 
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to estimate the reduction of portfolio value from the perspective of market risk. 

The market risk includes uncertainties about future revenues due to market 

changes in prices (Kormas, 1998). Even though the value at risk is a very 

common criterion for calculating risk, it lacks a series of mathematical 

properties such as addition and convexity and is an inherent criterion of risk 

only when it is based on a standard deviation from the normal distribution, but 

the distribution of losses is often not normal in the real world because loss 

functions tend to show empirical discretization. 

The conditional value at risk method was introduced due to the progress 

of research, and the shortcomings of the above method. Conditional value at 

risk is the average risk that is greater than the value at risk. In other words, α% 
of the mean distribution of the return on the random variable is greater than the 

value at risk (Rockfellar et al., 2014). Rockafellar & Uryasev (2002) succeeded 

in defining the conditional value at risk for general distributions (including 

discrete distributions) containing a continuous and convex function of portfolio 

positions. The convexity of this function was an important property of this 

measure that made the conditional value at risk superior to measures such as 

value at risk in terms of optimization. More importantly, they found that the 

uncertain decision-making model decreased to linear programming by 

describing the behavior of the rate of return on assets in the model by a set of 

scenarios. Due to the definition and nature of this measure, the conditional 

value at risk properly observes and estimates the desired risk when faced with 

skewed and wide-sequence distributions. In addition, it is consistent with the 

first- and second-order stochastic dominance models for the conditional value 

at risk (Roman & Mitra, 2009). 

Optimal properties of the conditional value at risk, such as sub-

aggregation, diversification, and coherence capability, significant facilitation of 

optimization calculations, and control of severe losses have led to the 

increasing use of this measure in various applications of financial management, 

for instance, the VaR models introduced by Bogentoft et al. (2002) to manage 

the assets and liabilities of pension funds, Krokhmal et al. (2002) for risk hedge 

funds, and Anderson et al. (2002) to optimize credit risk; research also 

indicates that models based on the conditional value at risk are effective in 

modeling credit risk and considering the probability of a decline in distribution 

sequences (Jobst & Zenios, 2001). This measure has also been used in 

international portfolio management issues to consider asymmetries of currency 

rate distribution, and return on assets (Topaloglou et al., 2002). Conditional 

value at risk is the expected loss of investment provided losses beyond the 

value at risk (Mohammadi & Raei, 2008). CVaR is being used in other markets 
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such as cryptocurrency to form optimal portfolios, for instance, Pradhan et al. 

(2021) have used the same method to optimize the market risk of major 

cryptocurrencies mixed with copula simulation, in which the sample data 

covers nine cryptocurrencies covering the period of two years and the results 

using the eiffcient frontier indicated that if a minimum variance portfolio i��
constructed using chosen cryptocurrencies, investment in Bitcoin is preferred 

being the least risky currency on the bottom of the efficient frontier. These 

results find prime importance for investors and risk managers (Pradhan et al., 

2021). The non- assumption of normal risk distribution is the main difference 

between this method and the value at risk. Giacometti et al. (2021) studied the 

risk of skewness in large portfolios and used models, which examined the 

penalty function in quantiles and minimal deviations and proposed quadratic 

programming to solve optimization problems, and mentioned that real-world 

analyses on different datasets made it possible to discuss the pros and cons of 

different optimization methods. The results indicate that the use of the penalty 

function in linear regression allocations such as Ridge and Elastic Net is more 

effective in improving the performance of out-of-sample portfolios, especially 

in large portfolios, compared to those that did not have any penalty function. 

Based on the above-mentioned cases and the theoretical and practical 

success of conditional value at risk on measures such as value at risk, the 

present research utilizes conditional value at risk as an appropriate risk 

estimator that has the penalty function in its model function. In addition to 

measuring its effectiveness, we hope to examine whether, in addition to better 

measurement of risks in the portfolio of investors active in the Tehran Stock 

Exchange and OTC, there is evidence of a new and effective measure to 

financial literature in Iran? Combining this method with the simple conditional 

value at risk method will provide a better measure of the performance of 

common methods in the portfolio optimization literature, as tested and 

reviewed in detail below. 

Considering the breadth of experimental literature on portfolio 

optimization, this section presents the research background based on the 

objectives. Jagannathan & Ma (2003) reviewed portfolio optimization by 

focusing on the extreme values of stock weights in the portfolio. In terms of 

budget constraints on extreme weights, they found that the constraint in the 

mean-variance optimization function improved the performance of the mean-

variance approach for daily data. Fan & Li (2001) sought to alleviate problems 

of extreme weights in large-scale portfolio optimization by considering the 

penalty function based on the maximum likelihood approach for extreme 

weights in the portfolio optimization problem. Their studies on this subject led 
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to a penalty function called SCAD that acted with better performance than 

similar optimization approaches. Consistent with the approach proposed by Fan 

& Li (2001), Brodie et al. (2001) sought to explain the portfolio optimization 

using the mean-variance approach considering the penalty function in using 

linear regression based on penalties. Their results based on the Sharp ratio for 

comparing different approaches indicated that the use of regression and 

application of the penalty function had a better performance in the optimization 

function (Brodie et al., 2001). Instead of explaining the penalty for the 

optimization problem, Xu et al. (2015) used the quantile regression approach in 

the mean-variance models and the conditional value at risk to estimate the 

optimal weights. Their results for the Chinese stock market on a large scale 

indicated that the use of the quantum regression approach in optimizing 

Markowitz's mean-variance portfolio, and the conditional value at risk had 

better results than the conventional least-squares approach. Ghandehari et al. 

(2017) introduced conditional value at risk as a criterion for calculating risk in 

a non-parametric framework and provided an optimal stock portfolio for a 

certain return and compared the method with the linear programming method. 

The data in this article consisted of monthly returns of 15 companies selected 

from the top 50 companies of the Tehran Stock Exchange in the winter of 

2013, and they were considered in a period from April 2009 to June 2014. 

Finally, an optimal portfolio was provided resulting from the use of non-

parametric and linear programming methods and their values at risk were 

compared. It indicated the superiority of the non-parametric method over linear 

programming. Rostamian et al. (2018) conducted a study titled "Applying the 

conditional value at risk model in the management of banks' operational risk in 

the Extreme Value Theory. The results of operational risk calculation indicate 

that a higher level of confidence increases the conditional value at risk index, 

and the generalized Pareto distribution (GPD) index provides more reliable 

results than GEV. Hekmati et al. (2018) examined systematic risk in the 

financial sector of the Iranian economy (conditional value at risk approach). 

The results of Quantile regression analysis and previous tests indicated a 

significant difference between systemic risk and the algebraic sum of the 

specific risk of each financial sub-sector, including the bank, insurance, and 

stock exchange. Furthermore, the results of the Friedman test indicated that the 

insurance industry had the highest share and the banking system had the lowest 

share in creating systemic risk.  

As shown, there are few studies on this field, and they often consider the 

simple conditional value at risk in the portfolio. Value at risk has also been 

used frequently in the Iranian financial literature but has shortcomings. This 

research adds to the literature a more developed measure of what we call the 
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weight-modified conditional value at risk, and it solves problems of the 

conditional value at risk model and tries to improve the model and explicitly 

solve it, and we then compare it with the value at risk method, which is a well-

known method in the optimization financial literature. As mentioned in other 

domestic studies, most of the models used to calculate the portfolio risk and 

optimization approaches have been based on neural networks and genetic 

algorithms. Many studies can be mentioned in this regard. Therefore, the 

present study not only sought to fill the existing gap due to the shortcomings of 

the above-mentioned methods, but also the conditional value at risk was a basis 

for the research on improved weights, the penalty function was added to the 

model, and then the investment risk in the portfolio was minimized while 

explicitly solving the model. Numerous foreign studies also used portfolio 

constraint approaches, and most of the algorithms were fixed or they used the 

genetic algorithms and Monte Carlo simulations. A few studies have examined 

the specific combination of these models with the DE algorithm, and used 

constraints on the portfolio, especially on weights, for instance, studies by Xu 

et al. (2016) as mentioned earlier in the present research. 

Research methodology 

The present study was descriptive (non-experimental) due to collecting data 

realistically without manipulation. Since optimization was examined, it had a 

survey and exploratory type based on the nature and method. The research used 

both field and library methods to collect data. To collect the necessary data, it 

used sources such as documents and library information sources, Internet 

databases and information portals, Persian and English books, and articles, as 

well as collecting data from the stock exchange website, and Rahavard Novin 

software. The subject domain of the research included the stock portfolio 

optimization based on the modified conditional value at risk method and its 

simple type. The time-domain of the research was from 2012 to September 

2020, and its spatial domain consisted of all companies listed on the Tehran 

Stock Exchange, and OTC. Due to the wide number of shares in the portfolio, 

the sample was considered among all Tehran Stock Exchange and OTC 

companies with the condition that they had more than 215 trading days per 

year. The lack of share price data for reasons such as blocking or stopping the 

share should not be more than five months per year. Symbols, which have been 

closed or stopped for a short period, or their data have not been included in the 

trading board for any reason, have been approximated and interpolated by the 

Gaussian second-order interpolation method.    
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Therefore, the steps are as follows: 1- Monitoring, summarizing, 

reviewing, and selecting the sample among the companies listed on the Tehran 

Stock Exchange and OTC (during the 102 review periods and 231 screened 

shares); 2- Aggregating the sample stock prices, and dividing by periods to 

explain and calculate the return vector; 3- Specifying the optimization problem 

for the two optimization models introduced in the research; 4- Calculating the 

covariance matrix by NumPy package in Python; 5- Calculating the optimal 

stock weight based on the The Gurobi Optimizer in Python; 6- Average return 

as the input to the model, and its multiplication by weights; 7- Explaining and 

calculating the penalty function for optimal weights in the modified conditional 

value at risk model, and then solving it and also the conditional value at risk 

model without modified weights; 8- Drawing the Pareto front or efficient 

frontier based on both optimization methods; 9- Drawing the diversification 

diagram based on each optimization method; 10- Comparing and evaluating the 

efficiency of the models introduced for the portfolio optimization. 

The risk minimization approach is usually performed to optimize the 

portfolio as follows. 
 

{
          ∑                                                                                 

                                                                                                                 
          (1) 

Where the value of the variance-covariance matrix should be considered 

according to the sum of the weights of the total portfolio assets equal to 1, and 

the specified amount of return. In the modern portfolio approach, it is possible 

to minimize the portfolio risk based on the conditional value at risk method. To 

this end, we first define the conditional value at risk model as follows.   

         [  |       ]      ∫    ( )  
 

 
                                      (2) 

Where the conditional value at risk is for quantile τ of the portfolio. The 

conditional value at risk is operationally equal to                  (  
 )     in which the amount of    of Quantile τ is equal to Y and   ( )  
 (   (   ). Therefore, the mean values less than the value at risk are 

equal to the conditional value at risk. Furthermore,       . To apply the 

penalty function in optimal weights and prevent extreme weights, the following 

penalty function was obtained according to the study by Xu et al. (2016). 

∑    (  )    
    where the amount of s refers to extreme values in portfolio 

weighting leading to penalties. Accordingly, this function with the penalty 

parameter (λ) leads to the minimization of the conditional value at risk model 
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that is the basis of the difference between this approach and studies conducted 

in this field in Iran. 

{
             ( )   ∑    (  )   

 
                                         

                                                                                                    
                        (3) 

Therefore, extreme values in the weights of each portfolio are added to 

the value of penalty for the conditional value at risk. The sum of these two 

cases must be minimized in the optimization. The amount of this penalty can 

be measured according to the SCAD approach introduced by Fan & Li (2001) 

as follows: 

 ∑    (  )  ∑ ⟨ |  |  (|  |   ⟩  ((   
     |  |

 
   

 
      )  (  

 ))    (  |  |    )  ((   )    )  (   |  |)                                 (4) 

Where, I(.) is an indicator function that takes a value of 1 whenever an 

argument in parentheses is established, otherwise, it is zero. The parameters λ 
and α are explained based on the Bayesian-Schwarz information criterion 

according to studies by Li & Xu (2013). Therefore, the portfolio maximization 

can be estimated by considering the minimum conditional risk, and in terms of 

weight constraint and based on the penalty function. (the same) 

{
           (   ∑       )   ∑    (  )    

   
 
                

                                                                                                     
                   (5) 

The constraints in the present study include the constraint-based on 

optimal weights and conventional models based on the minimization of 

conditional value at risk. Mathematical models take the values of zero and 1 

with their indicator functions and are converted from continuous space to 

discontinuous and discrete (non-convex) space. The non-convex optimization 

is the mathematical model of optimization in this method. In the field of non-

convex problems, the Integer linear programming method (ILP) is an 

appropriate approach to find the answer to the optimization model. To 

explicitly solve the model, the problem modeling is as follows: 

             ( )   ∑    (  )    
      St.                                                 (6) 

    ∑     
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∑  

 

   

             {
∑    
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i=1. 2,…,s 
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Where i refers to periods, and j is the number of shares. If we consider the 

objective function as the delta in this method, then the delta is equal to the sum 

of the conditional value at risk model with the penalty function.  F is also 

described in detail mathematically: 

    
 

   
∑   

 
                                                                                        (7) 

   ∑   (  )  ∑⟨ |  |  (|  |   ⟩  ((   
     |  |

 

   

 

   

   )  ( 

  ))    (  |  |    )  ((   )    )  (   |  |) 

Where,   
  is the formation of a bend or a conical space to get rid of the 

simplex state and a point of answer and reach a set of answers. It causes 

portfolio diversification (in mathematics, portfolio diversification is not 

possible with linear functions). Furthermore,  (|  |   ) is an indicator 

function; and indicator functions are binary or boolean. In other words, they 

can have values of zero and one for different limits. Therefore, we consider the 

whole equation of  (|  |   ) to simplify and help solve  
 (1). We assume the 

second indicator function of  (  |  |    ) to be   ( ), and the third 

indicator function of   (   |  |) to be   ( )  as shown in the following 

modeling. Now we have to connect the binary variables to   . Therefore, we 

assume a constraint for   , in which M is a positive number greater than 1, to 

simulate the behavior of the indicator function. We also use x instead of    for 

simplification.  s is the number of assets, and n is also the number of periods. 

The SCAD function is defined as follows:  

   ∑    (  )  ∑ (  
 (1)
 

 

   
 (  

 ( )
      

 ( )
  

 
    

 ( )
 )  

 
   

( (   ))  ((   )    ( ))   )                                                                     (8) 
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The SCAD function in Equation (8) of the present research is the same 

penalty function because it prevents the creation of portfolios with extreme 

weights that are not well allocated (Xu et al., 2016). λ is a penalty factor. As 
lambda (λ) decreases in a function, which aims to minimize the penalty, 
portfolio diversification increases. In this method, the problem can be solved 

by converting it into a disciplined non-convex model with the integer linear 

programming method in Python. The above constraints can be defined as 

follows:  

   

      (    (1))                                               

    (    (1)) ,          

     (   )   (   
 ( )) ,          

     (   ) (    ( )) ,          

          ( )             

           ( )             

 
 (1)
      (    (1)) ,                                                                    (9) 

 
 (1)
    (1) ,          

 
 (1)
     ,          

 
 ( )
    

 
 
  (    ( )) ,          

 
 ( )
    ( ) ,          

 
 ( )
    

  ,          

 
 ( )
       (    ( )) ,          

 
 ( )
     ( ) ,          

 
 ( )
      ,          

   {   }                

 
 (1)
   

 ( )
   

 ( )
  {   } 

  (1)    ( )    ( )  {   } 
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CVaR model is common in optimization literature, where    is a variable 

that calculates the lower limit for the mean return minus η. It should be noted 
that since the function is linear and has no curves, the model finds the extreme 

points and based on which performs the calculations. But in the modified 

CVaR model, by converting these extreme points in the polyhedral to curves 

(convex composition), all points that are in line with the target function 

gradient will be selectable, in which case the optimal solution will not be 

limited to one, two, three and/or a limited number of shares, but a vector of 

shares. This is what is done in the mathematical concept of a modified CVaR 

on weights, somewhat different from the simple CVaR method. Also, when 

coding in Python in the portfolio optimization domain, the expression 

∑   
 
      is not exactly equal to one to avoid solver face problems. This 

expression, as follows, is divided into two categories, larger and smaller equal 

to one, which is considered as a functional constraint so that solver will not 

have trouble satisfying equal constraints and will find the answer with a 

difference of one epsilon. The last limitation solves the model in Python by 

increasing different   , and different answers will be obtained in different 

iterations (test times) for the minimum and higher   . 

             
 

   
∑   

 
                                                                                    

St.  

    ∑    

 

   

   

∑   
 
                {

∑    
∑      

                                                                 (10) 

i=1. 2,…,s  

∑    

 

   

    

        

Data Analysis and results 

Each of the methods has a computational Excel file, a Pareto front or efficient 

frontier table, and a portfolio diversification table based on risk-return balance 

preferences. The Excel file, which contains the information extracted from 

Python software, has 231 symbols as the input of the model. The numbers 
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inside the Excel file cells are weights. The sum of the columns observes the 

condition that the sum of the weights of the portfolio is equal to 1. We obtain 

the weights by adding the constraints in a way that the sum of the weights is 

equal to 1. Our optimization engine is an American software package called the 

Gurobi Optimizer, which provides academic access and has libraries on Python 

software and is used to gain weights and optimize along with Python software 

codes. A mathematical contribution of this research is to explicitly solve the 

weight-modified conditional value at risk model, while Xu et al. (2015) 

simulated and solved a pathway using the Monte Carlo simulation method for 

each Lambda in the original model. It is noteworthy that the value at risk and 

conditional value at risk models are classified as stochastic programming and 

cannot be explicitly solved, and will be solved either by simulation or, like the 

present research, by converting these models into disciplined models by 

linearization or graded models. Another creativity of the research is to draw a 

portfolio diversification chart for each method, which is not found in any 

similar work, while this chart can give a managerial insight into what stocks 

will be selected at each level of risk and return. The table below illustrates the 

Pareto front or the efficient frontier in the weight-modified conditional value 

risk method. As shown, this method shows the behavior of the model by 

providing two diagrams of the Pareto front, and consequently the portfolio 

diversification diagram.          

 

 

Figure 1. The efficient frontier or Pareto front with weight-modified conditional value at risk 

method 
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Figure 1 shows the extreme state of the model behavior. In all models of 

both methods, we see that the price return is drawn from 5 to 45 thousand 

units, and if it is outside this range, the model becomes non-operational, and 

the solver encounters an error. The horizontal axis of the diagram is the same 

as the objective penalty function. In this diagram, it is noteworthy that the 

SCAD value of the model is robust based on all efficiencies. In other words, 

the risk is kept at a level, and returns change. The risk ranges from -116.45 to 

116.15 in the horizontal axis of the diagram. It can be interpreted that these 

numbers while being significant, have a significant risk or the value of SCAD 

Risk is robust for any return and does not change. Diagram 2 shows a 

magnified part of Diagram 1. If two different returns are available for the 

investor to access at a certain level of risk, it is logical that a higher level of 

return will be chosen [41]. Diagram 3, which relates to the situation in which a 

larger rate of return is considered, this model recommends selecting seven 

stocks with the lowest level of risk and rate of return. Figure 4 magnifies the 

diversification in the range of the first efficient front in which the optimal 

portfolio of the investor varies from 5 to 8 shares. 

 

 

Figure 2. Efficient frontier or magnified Pareto front 
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Figure 3. Diversification of the portfolio by the weight-modified conditional value at risk 

method 

 

 

Figure 4. Diversification of the portfolio of the same method in a magnified mode 

Figure 5 illustrates the Pareto front or the efficient frontier in the 

conditional value at risk method. As shown, the Pareto front has a linear 

behavior. We could assume the same speculation about the Pareto front of the 

value-at-risk model because its objective function was also linear. In this model 

of optimization methods, the efficiency has a range of 5 thousand to 45 

thousand units.  
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Figure 5: Efficient frontier or Pareto front with conditional value at risk method 

 

 

Figure 6: Portfolio diversification by conditional value at risk method 
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Discussion and Conclusion  

The more shares are selected in the diversified portfolio, the lower the portfolio 

risk and the lower the expected return for the investor or fund manager [42]. 

The efficient frontier between the modified conditional value at risk method 

and the conditional value at risk method is different in terms of various reasons 

but both are drawn based on the lowest rate of return, or return floor desired by 

the investor. This means that solving the optimizer model at different levels of 

risk can result in the minimum return that the investor can obtain. According to 

the test of these two methods and considering different levels of risk and 

return, we see that the diversification in each method was different from the 

other. In the weight-modified conditional value at risk method, 6 to 7 shares 

are introduced for a minimum return up to a level of 4000 units, and then in the 

riskiest case, a share is introduced to achieve 50,000 units of return considering 

the penalty function. It is pointed out that the second diversification diagram in 

the above-mentioned method is drawn in a magnified form due to the special 

mode of its efficient frontier diagram, which is not the usual mode; and it has 

the risk, and return range more limited to the oscillating part of the efficient 

frontier. In this case, pulling out a part of the efficient frontier, which has an 

extreme mode, and the diagram is magnified to a return of 1000 to 3000 units, 

the risk management and diversification are more logical than the previous 

case, and 5 to 8 selected shares are introduced while the weights are not 

extreme.  

Among the two methods, the weight-modified conditional value at risk 

method had a better performance in terms of risk management, portfolio 

diversification, and non-extreme weights. However, the computational 

complexity of this method is a problem. Combining the conditional value at 

risk method with the penalty function results in providing levels of return, 

which are robust to risk, for investors and these levels of return are more likely 

to be gained. Table 1 summarizes a comparison of the two methods. 

Table 1. Comparison of optimization methods in the present research 

 

Method 
Weight-modified conditional 

value risk method 

Conditional value risk 

method 

Risk management Above medium Medium 

Portfolio diversification Very strong Weak 

Computational complexity High Low 

 



89 

 

Portfolio Optimization based on the Risk Minimization by… 

The weight-modified conditional value at risk method has higher-than-

average risk management because it improves the conditional value at risk 

method as it has a high degree of diversification due to the penalty function, 

and consequently, the model solution has relatively high complexity. This 

computational complexity is partly related to the SCAD model conversion to 

an explicit model. As a non-convex model with the linearization method, 

SCAD is convex and can be solved directly without simulation by converting 

to disciplined models that consequently have difficult calculations. However, 

the conditional value at risk method observes and estimates the desired risk 

well due to the definition and nature of this measure when dealing with skewed 

and wide-sequence distributions of the conditional value at risk [43]. The 

results were also consistent and indicated that the risk and asset management of 

this method alone were good, but it was considered moderate in comparison 

with other methods because it was a method between the mean-variance of 

conditional value at risk method and the value at risk method. Portfolio 

diversification of this method is weak because it considers the extreme 

optimization problem, while the model function of this method is also linear 

and does not have the capabilities of more complex models that consider more 

comprehensive approaches. The low linearity of the model is its difficulty, and 

the model of this method is easier to be solved than conventional methods. To 

use these two methods in the Iranian capital market, two scenarios are 

presented about the behavior of the total index as a thermometer of the Iranian 

capital market. If the overall volatility index is high, the situation is different 

from the robust state. In the first scenario, when we see the volatility of the 

total index, it is recommended that the rational investor (not highly risk-taking/ 

risk-averse) should accept less risk and buy more symbols, and when the 

volatility of the total index is low, we can accept higher risk and fewer stocks 

to achieve higher returns. In the first scenario, it is suggested that if the 

volatility of the total index is high, the modified conditional value at risk 

method (the conditional value at risk in the second priority) should be used 

because the modified method has better risk management and diversification. 

In the second scenario, if the market is robust, bearish or bullish, we can use 

mean-variance methods such as mean-variance of conditional value at risk that 

focuses on maximizing returns (not minimizing risk). The reason for this issue 

is visible in the Iranian capital market due to the investors' emotional 

behaviors. Whether the market is completely bullish or completely bearish over 

a period of one to three months, portfolio diversification will practically lose its 

operational nature due to the locking of the stock market in the buying and 

selling queues. The researcher believes that giving a definitive answer to a 

dynamic problem over time will not have scientific accuracy.    
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Suggestions and limitations 

The concept of portfolio optimization and diversification is the basis of 

financial market expansion and financial decision-making [44f]. In the present 

study, the penalty function is added to the weight-modified conditional value at 

risk model to improve the target model and prevent extreme weights. The 

objective function consists of two functions, the conditional value at risk and 

the penalty function, and does not have the mean return criterion. This model 

can be developed creatively. Future researchers are suggested to include the 

return element in the function F (Equation (8) in the present research) by 

observing the scientific requirements of the problem. It is common to use 

multi-objective methods in solving financial and optimization problems, but 

since risk and return are not the same things, we can achieve the model 

development by adding a value function1 to the optimization problem that 

matches the values of risk and returns. If future researchers can create a bend in 

the target function and add it to the model (previously we only had risk 

minimization in the portfolio optimization function with a weight-modified 

conditional value at risk method), and the function can provide different 

contributions for multiple returns averages by the model development, it seems 

that a significant model contribution will be made to achieve returns in the 

objective function because this model offers a different portfolio for a certain 

level of risk. 

Conducting research based on dynamic programming is the second 

research proposal, indicating limitations of the present research, and the 

mathematical optimization models. The issue of stochastic dynamic portfolio 

optimization is another topic for future research. It should be noted that the 

methods used in this study all consider all periods together, but the optimized 

portfolio can be built in the recursive functions at the end of each period (it can 

be two weeks, a month, or so on depending on the research), and the 

cumulative wealth can be calculated for each period, and we can have a 

portfolio for the next period rearranged by buying, selling, or maintaining the 

stocks.  

If future researchers can design a method for the capital market in Iran to 

add a series of known uncertainties, and a series of predetermined assumptions 

to the model, we can see in the statistics that the researcher will receive more 

realistic answers from the optimized model by limiting the range of 

                                                 
1 The value function of a problem gives the optimization of the value obtained by the objective 

function in a solution, while it depends only on the parameters of the problem. 
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fluctuations and adding default information to the time series or series being 

studied and researched because these types of defaults are not hidden in the 

model, and the researcher can make a better prediction by adding them to the 

model (e.g., the amplitude of fluctuation is between -5 and +5). Future 

researchers can increase the allowable fluctuation range on stock returns to 

determine if the model exceeds the reported number, and obtain the necessary 

resiliency model against this change. Such research on the Iranian capital 

market-focused academic environment is a state-of-the-art model that needs 

further research. None of these models takes into account the fluctuation range 

that is examined daily, which is assumed to be in the range of -5 to +5. These 

models cannot include these fluctuations as prior information in the input data, 

and it must be understood that assuming the model predicts for the next day 

does not exceed the fluctuation amplitude by entering such data into the model. 

In this regard, an approach is to use the uncertainty sets that are proposed in the 

field of robust optimization by which the data can be used as an input to the 

model in a model such as the Markowitz mean-variance model to provide real 

robustness. Therefore, the robustness of mathematical models without such 

inputs is mostly pessimistic in building uncertainty and prediction-based 

models, while the future researcher in the Iranian capital market must provide 

realistic predictions that are not in the mathematical models. The prediction is a 

key point in building uncertainty models so that the model conservatism should 

be reduced (not modeled in a way that it is extremely risk-averse), and the 

model should be parsimony, meaning that it has the least amounts of variables 

and parameters to describe the model. The convex uncertainty sets are the best 

way to do this style of research. 

The third domain for future research includes the research that researchers 

provide new researchers with the new optimization areas by adding default 

information to the model and using Bayesian mathematics and combining it 

with Markowitz's method and other optimization methods. Therefore, a part of 

the model can be developed according to Bayesian mathematics, and the 

preliminary information can be given as input to the model, and more realistic 

predictions can be provided.  
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