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 ABSTRACT 

 

This study, attempts to estimate and compare four different models of jump-
diffusion class combined with stochastic volatility that are based on stochastic 
differential equations, and their parameters latent variables are estimated by Mar-
kov chain Monte Carlo (MCMC) methods. In the Stochastic Volatility with Corre-
lated Jumps (SVCJ) model, volatilities are scholastic, and the term jump is added 
to both scholastic prices and volatilities. The results of this study showed that this 
model is more efficient than the others are, as it provides a significantly better fit 
to the data, and therefore, corrects the shortcomings of the previous models and 
that it is closer to the actual market prices. Therefore, our estimating model under 
the Monte Carlo simulation allows an analysis on oil prices during certain times in 
the periods of tension and shock in the oil market.  

 

1 Introduction 
 

Focus is on efficient estimation of a dynamic space-time panel data model that incorporates spatial 
dependence, temporal dependence, as well as space-time covariance and can be implemented in large 
N and T situations, where N is the number of spatial units and T the number of time periods. Quasi-
maximum likelihood (QML) estimation in cases involving large N and T poses computational chal-
lenges because optimizing the (log) likelihood requires: 1) evaluating the log-determinant of an NT x 
NT matrix that appears in the likelihood, 2) imposing stability restrictions on parameters reflecting 
space-time dynamics, as well as 3) simulations to produce an empirical distribution of the partial de-
rivatives used to interpret model estimates that require numerous inversions of large matrices [32]. 
Hence, Crude oil price as one of the major global economic metrics are of vital importance to policy-
makers, producers, and consumers of financial markets and is constantly studied by them. Crude oil is 
not only a major input into the production sector, but it also is used as an asset base for the large and 
growing segments of the financial market.  
It is also clear that oil prices do vary, and undergo severe shocks. Some periods when oil prices expe-
rienced sudden volatilities include Iraq's invasion of Kuwait and the Persian Gulf War in 1990-1991, 
the invasion of Iraq in 2003, the financial crisis in the Asia and Russian markets in 1997-1998 and the 
recent financial crisis in 2008. Therefore, in the analysis of financial issues and the prediction of eco-
nomic time series, the dynamics of asset base are determined through using jump-diffusion stochastic 
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differential equations. In jump-diffusion models, in addition to term “diffusion” which is a geometric 
Brownian diffusion model with a Wiener random process, the term “jump” is also included with a 
Poisson process which is dependent on the type of market and plays an important and effective role in 
modeling. Jump models react to and explain sudden changes in the market [1-4]. These models show 
high activities of small price changes using diffusion process that is of Brownian motion and persist-
ing along the horizontal axis of behavior. It shows low activities of big price changes using jump pro-
cess, and stated that the big price changes and volatilities such as sudden increase and decrease of 
prices are merely done through jumps. In this regard, we compare four different models based on sto-
chastic differential equations of a certain jump-diffusion model with random volatilities. These mod-
els include pure jump-diffusion model (JD) [22], pure stochastic volatility model (SV) [21], stochastic 
volatility with jumps in prices (SVJ) [1], and stochastic volatility model with correlated jumps (SVCJ) 
where the jumps are supported in both random prices and volatilities and presented as our most com-
mon model compared against the other three jump-diffusion models.  
Experimental results show that the random jumps and volatilities would not be enough to adequately 
show the oil prices, however, when combined to fit the data, they are significantly optimized. The 
only model that gives a satisfactory representation of the price series and jumps in volatilities is SVCJ 
model [15, 24, 25, 26]. In addition, as jump-diffusion stochastic differential equation usually has no 
explicit solution, we need to use numerical methods. Monte Carlo simulation approach is one of the 
most versatile and widely used numerical methods simulated based on random sampling for estimat-
ing parameters. Since the unknown parameters are estimated through random samples of population, 
obviously, according to the principle of consistency, a larger sample size will lead the estimator to a 
closer true value of the parameter [38, 40]. Therefore, this framework provides effective estimations 
on model parameters and the process of random volatilities, jump times and sizes. This method that is 
based on repeated calculations and random or pseudo-random numbers also helps build simulated 
economic models to predict changes in the price of the market.  
In addition, in programming with MATLAB, listed in the appendix, directories simulation techniques 
that are another step of the Monte Carlo simulation algorithm, is applied and implemented for each 
geometric Brownian and jump-diffusion models introduced in Section 2. This provides a much better 
understating to the asset base dynamics through using such models. The article is therefore organized 
as below. Section 2, presents an introduction and description of the four models for the asset base 
designed to correct the shortcoming and improve the financial market model called Black-Scholes [7, 
8], that is modeled under the dynamics of scholastics jumps and volatilities. Section 3 presents a nu-
merical example in accordance with real financial markets, and discusses and analyzes oil prices dur-
ing the period of intense market tensions, including the Persian Gulf War and the recent financial cri-
sis. Then in Section 4, programming the aforementioned models based on Monte Carlo simulation in a 
certain period and to analyze the models, we examine and compare the simulated average prices to 
actual market prices. Conclusions and recommendations for further studies are presented at the end of 
the article. 
 

2 Literature Review and Background  
 

2.1 Financial Models 
 

One of the most well-known models in the field of financial markets and financial simulations is the 
Black- Scholes [6, 8] model, in which the asset base price follows a geometric Brownian motion pro-
cess where asset price volatility and mobility is assumed fixed, therefore the dynamic or random price 
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changes cannot be predicted. An important issue in the study of the dynamics observed in the market 
is simulating the impact of events such wars, operation failures, and market crash that lead to uncer-
tainty. They cannot be fully modeled by pure constant processes such as Brownian motion model, 
because the occurrence of any of such events could lead to a sudden jump in the financial markets. To 
solve this issue and to improve the Black-Scholes [6, 8] model, economic and financial modeling pays 
more attention to jump-diffusion stochastic differential equations, where in addition to the compo-
nents of Brownian diffusion, the term “jump” is also included in the model for more consistency and a 
better explanation of the market and reaction to sudden market changes. This section of the paper in-
troduces four different models developed from the basic Black-Scholes model, including Heston, 
Merton, Bates, and Stochastic volatility model with correlated jumps. 
 

2.1.1 Stochastic Volatility Model (SVM) 
 

 Understanding the stochastic properties of spot volatility is of importance for risk management in the 
emissions market. While the effectiveness of stochastic volatility models (with or without jumps) has 
been advocated by academics and practitioners in the equities market, few attempts have been made 
to apply them to the newly-developed commodities market governing CO2 emission allowances [20]. 
The Heston [21] model is a type of stochastic volatility model (SV) and describes the volatility of the 
asset as a stochastic process rather than constant. It is a certain case of a general model with jumps 
restricted to zero(dJ୲

ୱ = dJ୲
୴ = 0). In this process, asset prices (such as stocks, bonds, oil, etc.) follow 

the below diffusion process: 

dS(t) = S(t)(μdt + ඥv(t)dWୱ(t))                                                                                                       (1) 
This process is similar to the geometric Brownian process, with the exception that it has a stochastic 
volatility and its instantaneous variance applies in a CIR process: 

dv(t) = k൫θ − v(t)൯dt + εඥv(t)dW୴(t)                                                                                                           (2) 

Where ε, θ, and κ are all positive and fixed, θ is the long run average price variance, κ is the rate at 
which νt reverts to θ, and ε is time-dependent and determines the instantaneous variance W and W 
are the Brownian motion under the risk-neutral measure with the correlation of 
corr[dWୱ(t), dW(t)] = ρdt,  
where ρ is the constant correlation parameter belonging to the interval [-1,1] that can be considered 
the correlation parameter between the logarithm of the asset returns and volatility of the asset base. 
Experimental studies have shown that in some markets such as stock market, stock prices and volatili-
ty are inversely correlated. That is to say a negative correlation exists between stock prices and vola-
tility in short ρ<0.  
Typically, the correlation parameter ρ, seems negative and it suggests that the decline in prices usually 
correlates with rises in volatility, sometimes referred to as "reverse effect" [7]. Negative ρ implies that 
the conditional return distribution (on the initial stock price S୲ and volatilityV୲) skews to the left. This 
process (Equation 2) was initially proposed by Cox, Ingersoll, and Ross [37], for modeling the short-
term interest rate with non-negative property. In equation (2), κ(θ − ν(t)) is called the drift rate, 
therefore, if θ > ν(t), the drift rate is positive and for θ < ν(t), the drift rate of the variance is nega-
tive. In other words, a higher or lower variance from the long-term average θ is instantaneous and 
variance tends to return to its θ value. This characteristic of the average variance is called average rate 
of return. 
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2.1.2 Merton's Jump-Diffusion Model (MJDM) 
 

Unlike Brownian motion which is characterized by consistency of its sample directions, empirical 
evidence based on market data shows the existence of random, discrete jumps on the price movement. 
Given the skewness and elongation in the empirical distribution of oil price returns, Merton Jump-
Diffusion model is an appropriate one for oil prices. In addition to the components of Brownian, 
jump-diffusion processes include processes with discrete movements. The process was first intro-
duced by Merton [22]. In his paper, he pointed out that the empirical evidence, with the probability of 
one; do not support the models with continuous sample movement. He also found that jumps exist in 
asset prices. In addition, for more accurate pricing of derivatives, he proposed to model those prices as 
a jump-diffusion process rather than pure diffusion model (geometric Brownian motion process). the 
continuous process normally representing component of asset prices are called Wiener Process, and 
the component of jump are called Poisson Process by Merton. The input rate of assets data is de-
scribed by a random Poisson distribution. It is assumed that the inputs are independent and distribut-
ed. Therefore, he introduced the jump-diffusion process as a combination of jump and diffusion pro-
cesses. In fact, jump-diffusion process, is the Black-Scholes model plus the jump component. This 
process is generally shown as: 

X୲ = μt + σW୲ + ∑ Y୧
౪
୧ୀଵ                                                                                                           (3) 

Where, the first phrase represents the continuous part (drift and diffusion, respectively), and the third 
phrase shows discreteness (jump) in jump-diffusion process. Merton described the base asset price 
process S୲with a stochastic differential equation of the model as: 
dS୲ = S୲ష(μdt + σdW୲ + dY୲)                                                                                                              (4) 
Where t≥0 and S ≥ 0. μ are the rate of assets return (when there is no jump), σ is the volatility pa-
rameter, both of which are considered fixed. Also S୲ష  is the left limit of S୲ at the time of t and de-
scribes the amount before the jump. And Y = {Y୲, t ≥ 0} is a compound Poisson process such that: 

Y୲ = ∑ ε୩
౪
୩ୀଵ                                                                                                                                           (5) 

Therefore: 
dY୲ = ε౪షశభ

dN୲                                                                                                                       (6) 

Where N = {N୲ , t ≥ 0}is a Poisson process with intensity of λ> 0. Thus: 

dN = ൜
1     ,                    λdt with the probability of

0 , (1 −  λdt) with the probability of
                                                                              (7) 

And εଵ, εଶ, … are random variables independent from N and W with the mean below: 
κ = E(ε୧) < ∞                                                                                                                                                        (8) 
Suppose the time for jump 1k for the Poisson process N is shown by τச, therefore, the size of the 
jump for the process Y is: 
∆Yτκ

= Yτκ
− Yτκష = ε୩                                                                                                                                                               (9) 

Where τச is κ ∈ {1,2, … }. Where the κ growth is 
∆Sτκ

= Sτκ
− Sτκష = Sτκష ∆Yτκ

= Sτκష εκ                                                                                                          (10) 

 Sτκ
− Sτκష = Sτκష εκSτκ

= Sτκష (1 + εκ)                                                                                                           (11) 

Therefore,  
ୗτκ

ୗτκష
= (1 + εκ)                                                                                                                                    (12) 
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Where S is the jump rate at the time of t. In order to have a nonnegative S, we assume that εச ≥ −1 . 
In average, we learn that the jump rate in nonnegative according to equations (7) and (8) for all κ ∈

{1,2, … } is non-negative, thus: 

Y୲ = ∑ ε୩                                                                                                                                           
౪
୩ୀଵ                  (13) 

Merton considered the distribution of jump rate κ as my log-normal. Then, according to equations (4), 
(6) and (11): 
dS = S[μdt + σdW୲ + (Υ − 1)dN]                                                                                                    (14) 
In some cases, assuming κ = E(ε୧) = E(Υ − 1) the mean returns is used as: 
dS = S[μdt + σdW୲ + (Υ − 1)dN]                                                                                                                  (15) 

This means that if κ is larger than 
ஜ


 negative coefficient for dt indicates a descending trend for the 

asset price and if κ less than 
ஜ

ச
 the asset base price moves above the average. If dN = 0 , then λ = 0. 

Therefore, the Black-Scholes model (with no jumps) is achieved. The stochastic differential equation 
considered by Merton for the price of crude oil (16), S୲ is the crude oil price, μ the instantaneous ex-
pected return, σଶ is the instantaneous return variance, W୲ standard Wiener process with distribution 
dW୲~N(0, dt), the price discreteness is expressed by Poisson counting N୲. Shown as Y୲ in the inde-
pendent Poisson process equation (10), where dW is independent Brownian motion and dY Poisson 
process, λ is the intensity of the Poisson process that describes the average number of data per unit 
time and expressed as prob[∆N୲ = 1] = λdt and  prob[∆N୲ = 0] = 1 − λdt. When skewed data is 
inputted, jumps crude oil price moves from S୲ష  toward  S୲ = ΥS୲ష0 and κ ≡ E(Υ − 1) where (Υ − 1)  
is the random variable percentage change in oil prices in case of an Poisson and E is the operator of 
hope on the random variable Υ. The size of the jump ε୲ is dependent from W୲ and  N୲ and it is as-
sumed that contains ε୲~N(β, σଶ). The σdW is the instantaneous return of the normal price volatilities 
and dY describes the irregular price volatilities. If λ = 0 then the dynamic performance is the same as 
that of Black-Scholes and Merton [35]: 

ቐ

dS୲
S୲

ൗ = (μ − λκ)dt + σdW୲                      No Poisson entry

dS୲
S୲

ൗ = (μ − λκ)dt + σdW୲ + (Υ − 1)dN୲         In case of Poissoin entry              
                         (16) 

2.1.3. The Bates stochastic volatility jump-diffusion model (SVJ) 
For the dynamics of the asset base, we assume that the stochastic differential equation for S follows 
the integration of the Merton [31] jump-diffusion process and Heston [18] stochastic volatility pro-
cess. The dynamics of S under Q Martingale size follows the stochastic differential equation below: 

𝑑𝑆 = (𝜇 − 𝜆𝜅)𝑆𝑑𝑡 + √𝜈𝑆𝑑𝑊ଵ + (𝛶 − 1)𝑆𝑑𝑁                              (17) 

𝑑𝜈 = 𝜅ఔ(𝜃 − 𝜈)𝑑𝑡 + 𝜎√𝜈𝑑𝑊ଶ                                                                                                           (18) 
Where; 
𝜇  the instantaneous return of the asset base at the unit of time, 
𝜈 the instantaneous volatility of the asset base at the unit of time, 
𝑊ଵ Wiener process under Q. Also, the entry of Poisson jump is defined as: 

dN = ൜
1,                    λdt with the probability of

  0, (1 −  λdt) with the probability of
 

𝜅 = 𝛦ద[(𝛶 − 1)] = ∫ (𝛶 − 1)𝐺(𝛶)𝑑𝛶                                                                                
ஶ


                          (19) 

Where 𝐺(𝛶) is the continuous probability density function for multi-step jump measurements, and Υ 
generated by Q. In the long-term average 𝜃 for ν 𝜈  က 𝜅ఔ, average variance rate, 𝜎 is the instantaneous 
variance at time unit, 𝑊ଶ is the standard continuous Wiener process with 𝑊ଵ under Q Martingale size 
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where 𝐸[𝑑𝑊ଵ𝑑𝑊ଶ] = 𝜌𝑑𝑡. It should be noted that 𝑑𝑁 and 𝑑𝑊ଵက 𝛶က  𝑑𝑊ଶ are discrete. We assume that 
𝑟  is the interest rate of neutral risk and the share of a compounded continuous return is at the rate of 
Y, where 𝑟 and 𝑌 are fixed. It can be easily generalized that these functions are determined by time. 

As Heston, we assume that the risk of market price volatility is proportional to √𝜈 and expressed as 

𝜆ఔ√𝜈 where 𝜆ఔ is fixed [2]. 

𝛶 − 1 = 𝑍௧
௦ ~ 𝑁(𝜇௬, 𝜎௬

ଶ)                                                                                                                     (20) 

Stochastic volatility model with SVJ [2], is an extension to the model SV [18], in which stochastic 
jumps in prices occur. Overall, 𝐽௧

௦ (or  𝜀௧) is a pure Poisson process and∀𝑡  𝐽௧
௩ = 0. It is assumed that a 

distributed jump sizes are as below: 

𝛶 − 1 = 𝑍௧
௦ ~ 𝑁൫𝜇௬, 𝜎௬

ଶ൯   (21) 

 
This is a typical model, which includes integrated component in the distribution of returns. This com-
ponent adds mass to the tails of return distributions. When negative 𝜇௬ implies relatively less mass in 

the right tail, an increase of 𝜎௬ adds mass to both tails, and vice versa [18]. 
 

2.1.3 Stochastic Volatility Model with Correlated Jumps (SVCJ) 
 

In Stochastic Volatility Model with Correlated Jumps (SVCJ) model expressed as stochastic volatility 
model with correlated jumps, jumps simultaneously affect both price and volatility. Stochastic volatil-
ity model with jumps correlated Stochastic Volatility Model with Correlated Jumps (SVCJ) that arises 
in this model, both price and volatility jumps at the same time it affects. In this research, as well as 
continuous time models for the logarithm of the spot price is as follows: 

𝑑𝑣(𝑡) = 𝑘൫𝜃 − 𝑣(𝑡)൯𝑑𝑡 + 𝜎ඥ𝑣(𝑡)𝑑𝑤ଶ(𝑡) + 𝑍௧
௩𝑑𝑁௧                                                                                (22) 

Its general form is expressed by the following stochastic differential equation as: 

𝑑𝑆(𝑡) = 𝑆(𝑡)(𝜇𝑑𝑡 + ඥ𝑣(𝑡)𝑑𝑤ଵ(𝑡) + 𝑍௧
௬𝑑𝑁௧)                                                                                 (23) 

𝑑𝑣(𝑡) = 𝑘൫𝜃 − 𝑣(𝑡)൯𝑑𝑡 + 𝜎ඥ𝑣(𝑡)𝑑𝑤ଶ(𝑡) + 𝑍௧
௩𝑑𝑁௧ 

Where S is the spot price, and V is random variance. Continuous dynamics is applied by two correlat-
ed Brownian motions of wଵ و   wଶwith correlation  ρ where  E(dw୲

ୱdw୲
୴) = ρdt . In this model, vola-

tiles undergo jumps. Jump in volatilities and prices is used by the same Poisson process with a con-

stant intensity λ. In the case of a normal Poisson process N୲
୷

= N୲
୴   . Z୲

୷ and Z୲
୴ are the random jump 

sizes and since the jumps in Poisson process are constant in both price and volatility, jump sizes can 
be correlated. Where jumps in volatility has exponential distribution as 

Zଢ଼หZ~ N ቀμଢ଼ + ρZ
, σଢ଼

ଶቁ ;            Z~EXP൫μ൯ (24) 

Where σ is the volatility parameter, σ is the average long-term volatility, κ controls mean reversion 
speed, μmeasures the expected return logarithm if there is no price jump. It should be noted that the 
reverse effect created for the SV base model does not apply to SVCJ as only small price changes due 
Brownian shocks affect the volatilities. On the other hand, big price changes caused by jumps have no 
effect on the volatilities in the SVJ model. The SVCJ specifications correct this shortcoming in the 
SVJ model. Whenever ρ୨ is negative, volatilities in market crash increase. Furthermore, in this model, 

small changes in prices may not have a noticeable effect on volatility, while for large changes price 

jumps do occur (for example, ρ = 0 and หρห >0. It is also probable that this model attributes large 

market jumps entirely to the increases in volatility by setting the parameters in the price jump distri-
bution, μ୷ , ρ and σ୷ to zero. 
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2.2 Background of Research 
 

Li and et al. [31], investigated the efficient of Bayesian estimation for GARCH-type models via Se-
quential Monte Carlo. He said that, the advantages of sequential Monte Carlo (SMC) are exploited to 
develop parameter estimation and model selection methods for GARCH (Generalized Auto Regres-
sive Conditional Heteroskedasticity) style models. It provides an alternative method for quantifying 
estimation uncertainty relative to classical inference. Also, he said that, even with long time series, it 
is demonstrated that the posterior distribution of model parameters are non-normal, highlighting the 
need for a Bayesian approach and an efficient posterior sampling method. Moreover, he said that, 
efficient approaches for both constructing the sequence of distributions in SMC, and leave-one-out 
cross-validation, for long time series data are also proposed. Finally, he used of an unbiased estimator 
of the likelihood is developed for the Bad Environment-Good Environment model, a complex 
GARCH-type model, which permits exact Bayesian inference not previously available in the litera-
ture. Ma et al. [35], investigated the of the dual control Monte- Carlo method for tight bounds of value 
function under Heston stochastic volatility model. The aim of this paper is to study the fast computa-
tion of the lower and upper bounds on the value function for utility maximization under the Heston 
stochastic volatility model with general utility functions.  
It is well known there is a closed form solution to the HJB equation for power utility due to its homo-
thetic property. It is not possible to get closed form solution for general utilities and there is little liter-
ature on the numerical scheme to solve the HJB equation for the Heston model. In this paper we pro-
pose an efficient dual control Monte-Carlo method for computing tight lower and upper bounds of the 
value function. His identify a particular form of the dual control which leads to the closed form upper 
bound for a class of utility functions, including power, non-HARA and Yaari utilities. Finally, in this 
research perform some numerical tests to see the efficiency, accuracy, and robustness of the method. 
Moreover, the numerical results of this research support strongly proposed scheme. Le Sage et al. 
[32], investigated of the Markov Chain Monte Carlo estimation of spatial dynamic panel models for 
large samples. Theirs, used of the set forth a Markov Chain Monte Carlo (MCMC), estimation proce-
dure capable of handling large problems, which we illustrate using a sample of T=487 daily fuel pric-
es for N=12, 435 German gas stations, resulting in N x T over 6 million. The procedure produces es-
timate equivalent to those from QML and has the additional advantage of producing a Monte Carlo 
integrated estimate of the log-marginal likelihood, useful for purposes of model comparison. their 
MCMC estimation procedure uses:1) a Taylor series approximation to the log determinant based on 
traces of matrix products calculated prior to MCMC sampling, 2) block sampling of the spatiotem-
poral parameters, which allows imposition of the stability restrictions, and 3) a Metropolis-Hastings 
guided Monte Carlo integration of the log marginal likelihood. Also, there are provide an efficient 
approach to simulations needed to produce the empirical distribution of the partial derivatives for 
model interpretation.  
Hong et al. [22], investigated the Leverage effect on stochastic volatility for option pricing in Hong 
Kong: A simulation and empirical study. This paper explores the importance of incorporating the fi-
nancial leverage effect in the stochastic volatility models when pricing options. For the illustrative 
purpose, his first conduct the simulation experiment by using the Markov Chain Monte Carlo 
(MCMC) sampling method. Their then make an empirical analysis by applying the volatility models 
to the real return data of the Hang Seng index during the period from January 1, 2013 to December 
31, 2017. Our results highlight the accuracy of the stochastic volatility models with leverage in option 
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pricing when leverage is high. In addition, the leverage effect becomes more significant as the maturi-
ty of options increases. Moreover, leverage affects the pricing of in-the-money options more than that 
of at-the-money and out-of-money options. Our study is therefore useful for both asset pricing and 
portfolio investment in the Hong Kong market where volatility is an inherent nature of the economy. 
Tsiliyannis [41], investigated the survey Markov chain modeling and forecasting of product returns in 
remanufacturing based on stock mean-age. He said that, Markov-chain Monte-Carlo simulation ena-
bles assessment of the efficacy of the forecasting method.  
Exploiting reliable, current information, the method may provide improved estimates of product re-
turns compared to linear models that relate returns to past levels of sales and/or returns, and utilize 
conventional regression, recursive least squares, or adaptive identification methods. Forecasting effi-
ciency is higher as measured by mean or integral absolute error, and particularly so, regarding peaks 
and lows of the return flow. The results may be useful for enhanced acquisition of returns with re-
duced stock inventories and efficient planning of remanufacturing operations. Lux [35], investigated 
the Estimation of agent-based models using sequential Monte Carlo methods. Here his resort to Se-
quential Monte Carlo (SMC) estimation based on a particle filter. This approach is used here to nu-
merically approximate the conditional densities that enter into the likelihood function of the problem. 
in this research, his with approximation his simultaneously obtain parameter estimates and filtered 
state probabilities for the unobservable variable (s) that drive(s) the dynamics of the observable time 
series. In this research examples, the observable series will be asset returns (or prices) while the unob-
servable variables will be some measure of agents’ aggregate sentiment. his apply Sequential Monte 
Carlo (SMC) to two selected agent-based models of speculative dynamics with somewhat different 
flavor. The empirical application to a selection of financial data includes an explicit comparison of the 
goodness-of-fit of both models. Shao and et al. [39], investigated the survey of the Pricing and simu-
lating catastrophe risk bonds in a Markov-dependent environment. He said that, at present, insurance 
companies are seeking more adequate liquidity funds to cover the insured property losses related to 
natural and manmade disasters. Past experience shows that the losses caused by catastrophic events, 
such as earthquakes, tsunamis, floods, or hurricanes, are extremely high. An alternative method for 
covering these extreme losses is to transfer part of the risk to the financial markets by issuing catas-
trophe-linked bonds.  
In this paper, they propose a contingent claim model for pricing catastrophe risk bonds (CAT bonds). 
First, using a two-dimensional semi-Markov process, their derive analytical bond pricing formulae in 
a stochastic interest rate environment with aggregate claims that follow compound forms, where the 
claim inter-arrival times are dependent on the claim sizes. Furthermore, their obtain explicit CAT 
bond prices formulae in terms of four different payoff functions. Next, their estimate and calibrate the 
parameters of the pricing models using catastrophe loss data provided by Property Claim Services 
from 1985 to 2013. Finally, their use Monte Carlo simulations to analyze the numerical results ob-
tained with the CAT bond pricing formulae. Kim et al. [29], investigated the stochastic volatility of 
the futures prices of emission allow-ances with A Bayesian approach. he said that understanding the 
stochastic nature of the spot volatility of emission allowances is crucial for risk management in emis-
sions markets. hence, in this study, by adopting a stochastic volatility model with or without jumps to 
represent the dynamics of European Union Allowances (EUA) futures prices, estimate the daily vola-
tilities and model parameters by using the Markov Chain Monte Carlo method for stochastic volatility 
(SV), stochastic volatility with return jumps (SVJ) and stochastic volatility with correlated jumps 
(SVCJ) models. the empirical results of this research, reveal three important features of emissions 
markets.  
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First, the data presented herein suggest that EUA futures prices exhibit significant stochastic volatili-
ty. Second, the leverage effect is noticeable regardless of whether or not jumps are included. Third, 
the inclusion of jumps has a significant impact on the estimation of the volatility dynamics. Finally, 
the results shown that market becomes very volatile and large jumps occur at the beginning of a new 
phase. moreover, he said that these findings are important for policy makers and regulators. Lian et al. 
[30], investigated the State-dependent jump risks for American gold futures option pricing. In this 
study, they investigate the valuation of American-style options when the underlying gold futures price 
follows a pure diffusion structure with state-dependent jump dynamics.  
Under such dynamics, the jump events are described as a compound Poisson process with a log-
normal jump amplitude, and the regime-switching arrival intensity is captured by a hidden Markov 
chain whose states represent the economic states. Considering the different jump risk assumptions, 
their use the Merton measure and Esscher transform to derive risk-neutral gold futures price dynamics 
under an incomplete market setting. To achieve a desired accuracy level, the least-squares Monte Car-
lo method is used to approximate the values of American gold futures options. Our empirical and nu-
merical results based on actual market data are provided to illustrate the importance of incorporating 
state-dependent jump risks when pricing American put options on gold futures. Estevez et al. [17], 
investigated the estimation of general equilibrium model in dynamic economies using Markov Chain 
Monte Carlo methods. This paper describes a general procedure to do Bayesian inference based on the 
likelihood evaluation of the stochastic general equilibrium models (MEGE) through Markov Chain 
Monte Carlo methods (MCMC). The proposed methodology involves log linearizing the model, trans-
formed into state space form, then use the Kalman filter to evaluate the likelihood function and finally 
apply the Metropolis Hastings algorithm to estimate the posterior distribution parameters.  
Technique is illustrated using the stochastic growth of basic model, considering quarterly data on the 
Venezuelan economy between the first quarter of (1984), through the third quarter of (2004). The 
empirical analysis made allows us to conclude that the algorithms used to estimate the model parame-
ters work efficiently and low computational cost, the estimates obtained are consistent, that is, esti-
mates of the predictions adequately reflect the behavior of the product, employment, consumption and 
investment per capita in the country. The graphs of the estimated histograms show bimodal and 
skewed distributions. Garcı́a [19], investigated Convergence and Biases of Monte Carlo estimates of 
American option prices using a parametric exercise rule. This paper presents an algorithm for pricing 
American options using Monte Carlo simulation. The method is based on using a parametric represen-
tation of the early exercise decision. It is shown that, as long as this parametric representation sub-
sumes all relevant stopping-times, error bounds can be constructed using two different estimates, one 
which is biased low and one which is biased high. Both are consistent and asymptotically unbiased 
estimators of the true option value. Results for high-dimensional American options confirm the viabil-
ity of the numerical procedure.  
The convergence results of the paper shed light into the biases present in other algorithms proposed in 
the literature. Longstaff and Schwartz [33], propose an algorithm for pricing American options called 
least-squares Monte Carlo (LSM) approach. This technique proceeds by simulating forward paths 
using the Monte Carlo simulation, and then performs backward iterations by applying least-squares 
approximation of the continuation function over a collection of basic functions. This algorithm is sim-
ple to implement within existing Monte Carlo frameworks, and has the additional advantages that the 
continuation functions are constructed explicitly and it is easy to calibrate to existing market prices. 
Based on the previously mentioned advantages, their then adopt this approach to approximate the 
American option prices [30]. Chib and Greenberg [14], investigated presented several Markov chain 
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Monte Carlo simulation methods that have been widely used in recent years in econometrics and sta-
tistics. Among these is the Gibbs sampler, which has been of particular interest to econometricians. 
Although the paper summarizes some of the relevant theoretical literature, its emphasis is on the 
presentation and explanation of applications to important models that are studied in econometrics. 
This research includes a discussion of some implementation issues, the use of the methods in connec-
tion with the EM algorithm, and how the methods can be helpful in model specification questions. 
Many of the applications of these methods are of particular interest to Bayesians, but also point out 
ways in which frequentist statisticians may find the techniques useful.  
 

3 Research Methodology  
 

3.1 Monte Carlo Simulation and Stochastic Differential Equation 
 

In this simulation, we present the expected value 𝐸[𝑔൫𝑋(𝑇)൯] for a solution, X, of a known stochastic 

differential equation with a known function of g. In general, bipartite approximation error contains 
two parts: random error, and time discretization error. Statistical error estimate is based on the central 
limit theorem. Error estimation for the time - discretization error of the Euler method directly 

measures with one remained phrase the accuracy of 
ଵ

ଶ
 robust approximation. Consider the following 

stochastic differential equation: 

𝑑𝑋(𝑡) = 𝑎൫𝑡, 𝑋(𝑡)൯ + 𝑏൫𝑡, 𝑋(𝑡)൯𝑑𝑊(𝑡) (25) 
 

How can the value of 𝐸[𝑔൫𝑋(𝑇)൯] be calculated on 𝑡 ≤ 𝑡 ≤ 𝑇? Monte Carlo method is based on the 

approximation of 

𝐸ൣ𝑔൫𝑋(𝑇)൯൧ ≅ 
𝑔 ቀ𝑋ത൫𝑇; 𝜔൯ቁ

𝑁
,

ே

ୀଵ

      (26) 

Where 𝑋ത is an approximation of X, according to Euler method, the error in the Monte Carlo is: 

𝐸ൣ𝑔൫𝑋(𝑇)൯൧ 
𝑔(𝑋ത൫𝑇; 𝜔൯)

𝑁
,

ே

ୀଵ

                                                                                                                         

 

(27) 

= 𝐸ൣ𝑔൫𝑋(𝑇)൯ − 𝑔൫𝑋ത(𝑇)൯൧ − 
𝑔 ቀ𝑋ത൫𝑇; 𝜔൯ቁ − 𝐸[𝑔൫𝑋ത(𝑇)൯]

𝑁

ே

ୀଵ

. (28) 

 

3.2 Monte Carlo Estimation and Central Limit Theorem 
 

Assume the vector (U1 … … UN) and U୧~𝑢൫[0,1]ௗ൯  for i = 1, ... , N; the standard Monte Carlo esti-

mation I is defined as follows: 

𝐼 = 𝐼ே =
ଵ

ே
∑ 𝑓(𝑈)ே

ୀଵ                                                                                                                                       (29) 

Regarding the law for large numbers: 

𝑃 ቀ lim
ே→ஶ

I = 𝐼ቁ = 1                                                                                                                                          (30) 

The Variance of 𝑓(𝑈) for the square integrable f is as follows: 

 𝜎
ଶ = 𝑣𝑎𝑟[𝑓(𝑈)] = ∫ ൫𝑓(𝑥) − 𝐼൯

ଶଵ

 
 𝑑𝑥                                                                                                      (31) 

Regarding the central limit theorem: 
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I − I → 𝑁 ቆ0,
𝜎

ଶ

𝑁
ቇ   (32) 

 

3.3 Oil Market and Sample Data 
 

Oil market modeling methods are categorized into three groups: structural, computational and reduced 
form or financial models. Although sometimes a hybrid framework encompasses more than one ap-
proach, most models usually emphasize only one methodology. The intention of these categories is 
not to create a formal taxonomy of oil price models, but instead to build some terminology that aids in 
their comparison [20]. In other word, Understanding the evolution of the oil price is important to con-
sumers, firms and policymakers because oil price fluctuations affect economic decisions across all 
segments of the global economy [3, 4, 20, 27, 28]. Oil price fluctuations, however, are difficult to 
anticipate due to unexpected shifts in supply and demand [10].  
In practice, the oil price will only be as predictable as its determinants, implying that the better one 
can identify and understand the determinants of past oil price fluctuations, the more realistic interpre-
tations and better forecasts one can make [1, 11, 12, 13]. The unexpected component of a change in 
the price of oil is referred to as an oil price shock, defined as the difference between the expected 
price of oil and its eventual realization [16]. Hence, in this research, variability and dynamics of oil 
prices during the two critical periods of oil shocks and pressure on oil market including the Persian 
Gulf War and the 2008 financial crisis are studied to fit an appropriate model for explanation and 
greater compatibility with these types of markets and forecasting prices. For this purpose, a twenty-
year period of daily prices of West Texas Intermediate crude oil (WTI) in spot market presented in 
Cushing (Oklahoma) from1989 to 2009 will be used. Because WTI crude oil prices is one of the most 
important international standards for oil and one of the most influential oil prices in America. In addi-
tion, it is considered the benchmark for most of the derivatives on the New York Mercantile Exchange 
(NYMEX). 
In this research, with the review of literature review and background, the hypothesis of research, 
writhed as below: 
" Price estimating under dynamic economic models (jump diffusion with stochastic volatility) using 
Markov chain Monte Carlo simulation, provides a significantly better fit to the data and have more 
power to price estimating under dynamic economic models." 
 

4 Analysis 
 

4.1 Describe Analysis 
 

In this research, variability and dynamics of oil prices during the two critical periods of oil shocks and 
pressure on oil market including the Persian Gulf War and the 2008 financial crisis are studied to fit 
an appropriate model for explanation and greater compatibility with these types of markets and fore-
casting prices. For this purpose, a twenty-year period of daily prices of West Texas Intermediate crude 
oil (WTI) in spot market presented in Cushing (Oklahoma) from 25.05.1989 to 05.25.2009 will be 
used. Because WTI crude oil prices is one of the most important international standards for oil and 
one of the most influential oil prices in America. In addition, it is considered the benchmark for most 
of the derivatives on the New York Mercantile Exchange (NYMEX). According to the sample period, 
spot prices are as follows: 
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Fig.1:  Spot Price Charts 

Source: finding of research 
 

According to the figure, oil prices has experienced two major crises during our period sample and has 
caused changes in financial time-series process, and it shows two big jumps in prices. The first jump 
occurred during the 1990-1991 Iraqi invasion of Kuwait following the Persian Gulf War, and the sec-
ond during the recent financial crisis that peaked in 2008. It also illustrates some of the jumps and 
volatilities during the Asian and Russian financial crises in 1997 and 1998. In other words, perhaps 
the most uncommon feature of the data is the recent boom in oil prices from 2002 to the end of 2008, 
when from around $20 per barrel, the prices increased to over $145. In the preliminary analysis, Table 
1 demonstrates the descriptive statistics based on the sample data.  
Average of oil time series when compared to its standard deviation is large. A comparison on the 
standard deviation of the mean shows that during the investigation, this variable has undergone large 
swings in oil prices and shows large volatilities in oil price returns. Significant negative skewness and 
elongation can be observed with high peaks and thicker tails and cannot be properly represented by a 
normal distribution. Such elongation and skewness is the common feature of asset returns. Time series 
demonstrates outstandingly high volatility over the sample period, especially during the Persian Gulf 
War and the financial crisis has. (Logarithm of the daily returns of oil prices is calculated using the 

formula 
 
𝑌௧

= ln (
𝑆௧

𝑆௧ିଵ
ൗ )). 

 

Table 1: Statistical description of log data daily oil output in Period1989-2009 

Elongation Skewness SD Min data Max data Mean 

28.4200 -1.1302 2.6803 -40.2039 26.9804 0.0219 

Source: finding of research  
 

4.2 Results of estimating 
 

4.2.1 Estimation of parameters 
 

Estimating the distribution parameters of the diffusion process models with latent variables such as 
volatility and random jumps, the Markov chain Monte Carlo numerical methods is applied. If parame-
ters and latent variables in the SVCJ model areθ = {𝜇, 𝜇, 𝜎, 𝜆, 𝛼, 𝛽, 𝜎, 𝜌, 𝜌 , 𝜇} and 𝑋௧ =

{𝑉௧ , 𝑍௧
௬, 𝑍௧

௩ , 𝐽௧}, all components of θ and X are assumed as random variables by MCMC method, 
Joint distribution of parameters and latent variables conditional on the data referred to as the posterior 
distribution is:   
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𝑃(𝜃, 𝑋|𝑌) = 𝑃(𝑌|𝜃, 𝑋)𝑃(𝑋|𝜃)𝑃(𝜃) (33) 

𝜇~N(0,100) , 𝜎
ଶ~IG(2.5,0.1) , (α, , β)~N(0ଶ∗ଵ, 𝐼ଶ∗ଶ)   , μ~𝑁(0,25) (34) 

𝜎
ଶ~IG(10,40)  , 𝜌~𝑈(−1,1) , 𝜌~𝑁(0,0.5) , 𝜇~𝐼𝐺(10,20) , 𝜆~𝐵𝑒(2,40) (35) 

 

Posterior distribution can be decomposed into three factors; 𝑃(𝑌|𝜃, 𝑋) data likelihood probability, 
𝑃(𝑋|𝜃) prior distribution of latent variables conditional on the parameters, and 𝑃(𝜃) the prior distri-
bution of the parameters, where for the prior distributions parameters: 
 

𝜇~N(0,100)  , 𝜎
ଶ~IG(2.5,0.1)  , (α, , β)~N(0ଶ∗ଵ, 𝐼ଶ∗ଶ)   , μ~𝑁(0,25) (36) 

𝜎
ଶ~IG(10,40)  , 𝜌~𝑈(−1,1) , 𝜌~𝑁(0,0.5) , 𝜇~𝐼𝐺(10,20) , 𝜆~𝐵𝑒(2,40) (37) 

 

Results from MCMC numerical methods using MATLAB, for each of the models are summarized in 
the table below. The columns mean and standard deviation are the mean and posterior standard devia-
tion obtained from the estimation. 
 

Table 2: Estimation of Parameters 

Parameter 
Heston model (SV)  Merton model (JD)  Bates model (SVJ) 

Stochastic volatility corre-
lated jumps (SVCJ) 

Mean STD Mean STD Mean STD Mean STD 

𝜇 0.0461 0.0261 0.0796 0.0300 0.05336 0.0261 0.0481 0.0244 

𝜇 - - -0.5300 0.2991 1.5166 0.8700 -1.3333 1.4594 

𝜎 - - 5.9998 1.9339 6.9609 1.2886 7.8986 1.2817 

𝜆 - - 0.1073 0.0121 0.0245 0.0077 0.0183 0.0049 

K 0.0171 0.0034 - - 0.0106 0.0027 0.0194 0.0065 

θ 6.6543 0.8394 - - 5.5287 0.8930 2.7422 0.5288 

 𝜎
ଶ 0.1296 0.0186 - - 0.0576 0.0108 0.0374 0.0102 

𝜌 -0.399 0.0600 - - -0.1083 0.0781 -00798 0.0901 

𝜇 - - - - - - 3.0957 1.4469 

𝜌  - - - - - - -0.1242 0.3870 

𝜎
ଶ - - 3.2581 0.1288 - - - - 

Source: Finding of Research 
 

4.2.2 Comparison of Models 
 

One way to identify the best model obtained by the remnants is through the Euler differencing model 
where the residuals for each model are: 

𝜀௧ାଵ
,ௌ =

శభିఓିశభ
ೊ శభ

ඥ
~𝑁(0,1)                                                                                                      

𝜀௧̂ାଵ
,ௌ =

𝑌௧ାଵ − �̂� − 𝑍መ௧ାଵ
 𝐽መ௧ାଵ

ඥ𝑉௧

  ;  𝜀௧̂ାଵ
,ௌ =

𝑌௧ାଵ − �̂�

ඥ𝑉௧

  ;  𝜀௧̂ାଵ
, =

𝑌௧ାଵ − �̂� − 𝑍መ௧ାଵ
 𝐽መ௧ାଵ

𝜎ො
 

(38) 

 

     Residues is estimated to have approximately a normal distribution 𝑁(0,1). Figure 2 shows the 
normal probability plots for the four models. Normal probability plots is used for assessing whether 
the data has a normal distribution. Many statistical methods based on the assumption that the distribu-
tion of normal is created. Therefore, the normal probability plots can provide assurance that this as-
sumption is acceptable, or that it refutes the assumption. Plus, sign in the charts expresses empirical 
probability against the data value for each point in the data. In the normal probability plot, if all data 
points fall near the line, the assumption of normality is reasonable. Otherwise, if the curve points are 



Oil Price Estimating Under Dynamic Economic Models Using Markov Chain Monte Carlo Simulation Approach 
 

   
 
[644] 

 
Vol. 6, Issue 3, (2020) 

 
Advances in Mathematical Finance and Applications  

 

away from the line, the normality assumption is not justified. Analysis of normality is typically a mix-
ture of normal probability plots with a test of normality.  
The Jarque-Bera test is a test to check the normality of time series. The null hypothesis of the test is 
that the data are normally distributed. In other words, the null hypothesis is a joint hypothesis of zero 
skewness and zero stretch. This test has an asymptotic distribution of (𝜒ଶ with the DOF 2. The test 

statistic is 𝐽𝐵 =



(𝑠ଶ +

(ିଷ )మ

ସ
) where n is the sample size, s is the sample skewness, and k is sample 

elongation. Great statistics indicates that the data do not follow a normal distribution. The test applies 
a table of critical values calculated using Monte Carlo simulation for sample sizes of less than 2000 
and the significant level α between 0.001 and 0.5. According to the figure, it can be seen that the SV 
and JD models, their corresponding residues significantly deviate from normality. The charts for 
SVCJ and SVJ models have improved significantly. Residuals for the model SVCJ shows no strong 
sign of abnormalities. Also, using the Jarque-Bera test, we check and examine the assumption of nor-
mality of the residues. The p-value of the test for SVCJ model, is 0.088 indicating that the test cannot 
reject the null hypothesis of normality at any standard significance level (0.05, 0.001) and have a 
normal distribution. Null hypothesis is rejected for the SVJ models and the p-value of SV and JD are 
both less than10ିଵ, which strongly indicates a rejection of the assumption of normality of residual 
distribution for all significant levels. 

 

 
Fig. 2: Normal Probability Plots for Models SVCJ, SVJ, SV and JD 

Source: Finding of Research 
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Fig. 3: Scatter Plots for Models SVCJ, SVJ, SV and JD 

 

Estimating the parameters and checking the normality assumption for the estimated residuals of the 
models, we compare models and select the best model to fit the sample data set for oil price, under the 
Monte Carlo simulation technique in a specific time, and compare the average simulated prices with 
the actual market price. Models with Euler differencing functions are implemented in MATLAB and 
letting the parameter estimates (Table 2) in them, the output will be similar to the Figures 3, 4 and 5.  
 

 
Fig. 4: Plots for Models SVCJ, SVJ, SV and JD 

 
Two of the best oil price paths simulated by Monte Carlo for the next three months (the day 90th) are 
presented above. Each graph is plotted according to the characteristics and features available in the 
structure of the functions of each model, such as jumps and stochastic volatility in the price paths, 
which have a decisive role in the behavior of oil prices. The table below shows the average oil price 
obtained through simulating price paths for each of the models. 
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Fig. 5: Oil Price Paths Charts by Monte Carlo Simulation for SVCJ, SVJ, SV, and JD Models 
Source: Finding of Research 

 

Table 3: The Average Oil Prices Calculated by Simulating Models Price Paths 

Stock price mean 
Asset Paths Merton Asset Paths Heston Asset Paths    Bates Asset Paths    SVCJ 

39.9928 44.31801 42.34361 11.02702 

Source: Finding of Research 
 

The price per barrel of WTI crude oil spot market on the 90th day on May 9, 1986 was about $15.83. 
As it can be seen the closest average price to the actual market price is obtained through simulating 
the price paths of SVCJ model. 
 

6 Conclusion  
 

In this research, variability and dynamics of oil prices selecting a sample of WTI oil spot market dur-
ing the two critical periods of oil shocks and pressure on oil market including the Persian Gulf War 
and the 2008 financial crisis are studied. Plotting the WTI spot price charts and tables describing the 
statistical data of daily oil output log data, it is clearly seen that the distribution of the logarithm of 
asset prices (crude oil) is not normal and the distributions has a taller central peak, thicker tails and 
negative skewness and elongation compared to a normal distribution. In addition, across the sample 
and particularly during some of the most critical periods of the oil shock, the price volatility is high 
and outstanding.  
According to the experimental results, we seek a model which combining the jumps and stochastic 
volatilities better fit to the data and have a more acceptable representation of the oil prices dynamics. 
In this context, estimating the parameter under the represented models in Section II, using one of the 
methods for diagnosing an appropriate model, is to check the assumption of normality of the residues 
estimated from the discrete functions of the models. By checking this assumption for all models, we 
showed that only the Jarque-Bera test approves the normality assumption of the estimated residuals 
for SVCJ model at all significant levels of the standard normal distribution and has a normal distribu-
tion. We simulate oil prices path for all the models with Monte Carlo simulation method at a certain 
time for our sample period. By separately comparing the average prices for each model, we find that 
models with actual market prices, the SVCJ model is closer to the actual price of the market and it is 
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the best model fit to the original data. Price paths simulation Graphs also indicate that the jumps in 
both price and scholastic volatility provide a significantly better fit to the actual values of the market, 
and can modify the price paths to the original data, and even further promote jumps in the volatility 
model. Also, observing the scatter plots, Merton [36] and Heston [21] models have too many outliers, 
but the Bates model with correlated scholastic volatility (SVCJ) has less outliers than the price as-
sumed in the simulation, and if there are outliers, its amount will not increase. Finally, we showed that 
jumps in both prices and volatility are vital and influential factors. We suggest they be used in future 
studies on modeling the oil price.  
Moreover, in this section, for the more conclusion, the result of this research compared with some of 
the research that pay to oil price estimating under dynamic economic models using Markov Chain and 
Monte Carlo simulation approach. Where, we referred and compared the results of this research with 
research of the Li et al. [31], Ma et al. [35], Le Sage et al. [32], Hong et al. [22], Tsiliyannis [41], Lux 
[35], Shao et al. [39], Kim et al. [29], Lian et al. [30], Estevez et al. [17], Garcıá [19], Longstaff and 
Schwartz [33], Chib and Greenberg [14]. But, one of the important researches that compared with this 
research, was Kim et al. [12], research. Where, Kim et al. [12], In theirs study, by adopting a stochas-
tic volatility model with or without jumps to represent the dynamics of European Union Allowances 
(EUA) futures prices, theirs estimate, the daily volatilities and model parameters by using the Markov 
Chain Monte Carlo method for stochastic volatility (SV), stochastic volatility with return jumps (SVJ) 
and stochastic volatility with correlated jumps (SVCJ) models. Hence, the empirical results of this 
research, reveal three important features of emissions markets. First, the data presented herein suggest 
that European Union Allowances (EUA) futures prices exhibit significant stochastic volatility. Sec-
ond, the leverage effect is noticeable regardless of whether or not jumps are included. Third, the in-
clusion of jumps has a significant impact on the estimation of the volatility dynamics. Finally, the 
market becomes very volatile and large jumps occur at the beginning of a new phase. Moreover, theirs 
said that these findings are important for policy makers and regulators. where, also, the results of this 
study showed that this model is more efficient than the others are, as it provides a significantly better 
fit to the data, and therefore, corrects the shortcomings of the previous models and that it is closer to 
the actual market prices. Therefore, our estimating model under the Monte Carlo simulation allows an 
analysis on oil prices during certain times in the periods of tension and shock in the oil market and it 
can be said that these results are consistent with the results of research by Kim et al. [29].  
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Appendix 
% Set up the parameters. 
lam = 2; 
n = 1000; 
% Generate the random varia-
bles. 
uni = rand(1,n); 
X = -log(uni)/lam; 
% Get the values to draw the 
theoretical curve. 
x = 0:.1:5; 
% This is a function in the 
Statistics Toolbox. 
y = exppdf(x,1/2); 
% Get the information for the 
histogram. 
[N,h] = hist(X,10); 
% Change bar heights to make 
it correspond to 
% the theoretical density - 
see Chapter 5. 
N = N/(h(2)-h(1))/n; 
% Do the plots. 
bar(h,N,1,'w') 
hold on 
plot(x,y) 
hold off 
xlabel('X') 
ylabel('f(x) - Exponential') 
function f() 
disp('For simulation of 
f_distribution') 
a=input('Please inter a  : '); 
b=input('Please inter b  : '); 
for j=1:1000 
  sum=0; 
  for i=1:a 
      sum=sum+randn^2; 
  end; 
  x(j)=sum; 

  sum=0; 
  for i=1:b 
      sum=sum+randn^2; 
  end; 
  y(j)=sum; 
end 
ff=x./y; 
mean(ff) 
var(ff) 
hist(ff) 
function f() 
a=input('Please inter a  : '); 
b=input('Please inter b  : '); 
for j=1:10000 
  sum=0; 
  for i=1:b 
      sum=sum+(-a)*log(rand); 
  end 
  x(j)=sum; 
end 
mean_error=mean(x)-a*b 
var_error=var(x)-a^2*b 
hist(x) 
clear; 
unction f() 
n=input('Please inter free 
degree for simulation of 
k_square distribution: '); 
for j=1:1000 
  sum=0; 
  for i=1:n 
      sum=sum+randn^2; 
  end; 
  x(j)=sum; 
end 
mean(x) 
var(x) 
hist(x) 
function f() 
n=input('Please inter free 
degree for simulation of 

t_distribution: '); 
for j=1:1000 
  sum=0; 
  for i=1:n 
      sum=sum+randn^2; 
  end; 
  x(j)=rand/sqrt(sum/n); 
end 
m_error=mean(x) 
var_error=var(x)-n/(n-2) 
hist(x) 
clear; 
clc; 
n=input('Please inter free 
degree for simulation of 
t_distribution: '); 
 for j=1:1000 
  sum=0; 
  for i=1:n+1 
      z(i)=randn; 
  end; 
  
x(j)=mean(z)/(var(z)/sqrt(n+1)
); 
end 
m_error=mean(x) 
var_error=var(x)-n/(n-2) 
hist(x) 
% Set up the parameters. 
lam = 2; 
n = 1000; 
% Generate the random varia-
bles. 
uni = rand(1,n); 
X = -log(uni)/lam; 
% Get the values to draw the 
theoretical curve. 
x = 0:.1:5; 
% This is a function in the 
Statistics Toolbox. 
y = exppdf(x,1/2); 
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% Get the information for the 
histogram. 
[N,h] = hist(X,10); 
% the theoretical density - 
see Chapter 5. 
N = N/(h(2)-h(1))/n; 
% Do the plots. 
bar(h,N) 
hold on 
plot(x,y,'r') 
hold off 
xlabel('X') 
ylabel('f(x) - Exponential') 
n = 1000; 
t = 3; 
lam = 2; 
% Generate the uniforms need-
ed. Each column 
% contains the t uniforms for 
a realization of a 
% gamma random variable. 
U = rand(t,n); 
% Transform according to Equa-
tion 4.13. 
% See Example 4.8 for an il-
lustration of Equation 4.14. 
logU = -log(U)/lam; 
X = sum(logU); 
[N,h] = hist(X,10) 
N = N/(h(2)-h(1))/n; 
x = 0:.1:6; 
y = gampdf(x,t,1/lam); 
bar(h,N) 
hold on 
plot(x,y,'r') 
p=0.5 
 n=6 
 N=100 
 X=zeros(1,N) 
 U=rand(N,n) 
for i=1:N 
ind=find(U(i,:)<=p); 
X(i)=length(ind) 
X=sum(rand(n,N)<=p); 
end 
hist(X) 
lam = 0.5; 
n = 500; % Sample size 
x = zeros(1,n); 
j = 1; 
while j <= n 
flag = 1; 
% initialize quantities 
u = rand(1) 
i = 0; 
p = exp(-lam); 
F = p; 
while flag % generate the 
variate needed 
if u <= F % then accept 
x(j) = i; 
flag = 0; 
j = j+1; 
else % move to next probabil-
ity 
p = lam*p/(i+1); 
i = i+1; 
F = F + p; 
end 
end 
end 
edges = 0:max(x); 

f = histc(x,edges); 
bar(edges,f/N,1) 
for i=1:10000 
while(1) 
u1=rand 
u2=rand 
v1=2*u1-1.0 
v2=2*u2-1.0 
s=v1*v1+v2*v2 
if(s>=1.0 | s<=0.0)continue 
end 
b=sqrt(-2.0*log(s)/s) 
x1=b*v1 
x2=b*v2 
break 
end 
end 
scatter(x1,x2) 
p=0.3; 
Y = zeros(10000,1); 
for i=1:10000 
n = 0; 
Y(i) = 200; 
for j=1:200 
if (rand() < p) 
n = n + 1; 
if (n==4) Y(i)=j; 
end 
end 
end 
end 
f = zeros(200,1); 
for i=1:200 
f(i) = sum(Y == i); 
end 
% pdf  
bar(f/10000) 


